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An integrative investigation on significant
mutations and their down-stream pathways
in lung squamous cell carcinoma reveals
CUL3/KEAP1/NRF2 relevant subtypes

Zongang Liu, Meiyan Deng, Lin Wu" and Suning Zhang

Abstract

Background: Molecular mechanism of lung squamous cell carcinoma (LUSC) remains poorly understood, hampering
effective targeted therapies or precision diagnosis about LUSC. We devised an integrative framework to investigate on
the molecular patterns of LUSC by systematically mining the genomic, transcriptional and clinical information.

Methods: We utilized the genomics and transcriptomics data for the LUSC cohorts in The Cancer Genome Atlas.. Both
kinds of omics data for 33 types of cancers were downloaded from The NCI's Genomic Data Commons (GDC) (https://
gdc.cancer.gov/about-data/publications/pancanatlas). The genomics data were processed in mutation annotation
format (maf), and the transcriptomics data were determined by RNA-seq method. Mutation significance was estimated
by MutSigCV. Prognosis analysis was based on the cox proportional hazards regression (Coxph) model.

Results: Significant somatic mutated genes (SMGs) like NFE2L2, RASAT and COLT1AT and their potential down-stream

way to classify LUSC.

pathways were recognized. Furthermore, two LUSC-specific and prognosis-meaningful subtypes were identified.
Interestingly, the good prognosis subtype was enriched with mutations in CUL3/KEAP1/NRF2 pathway and with
markedly suppressed expressions of multiple down-stream pathways like epithelial mesenchymal transition. The
subtypes were verified by the other two cohorts. Additionally, primarily regulated down-stream elements of different
SMGs were also estimated. NFE2L2, KEAPT and RASAT mutations showed remarkable effects on the subtype-
determinant gene expressions, especially for the inflammatory relevant genes.

Conclusions: This study supplies valuable references on potential down-stream processes of SMGs and an alternative
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Background

Lung cancer is one of the most frequent malignant neo-
plasms and one major cause of cancer death around the
world (Torre et al. 2016; Malhotra et al. 2016). It is a
highly heterogeneous and complex disease and there are
many subtypes. Non-small cell lung cancer (NSCLC) is
the most common lung cancer type, which can be
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mainly divided into lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC) (Derman et al.
2015). Several targeted drugs have been developed to
treat LUAD patients which have mutations on specific
genes like EGFR (Paez et al. 2004) and ALK (Felip et al.
2011), and have displayed remarkable therapeutic effects.
However, these drugs were not applicable to the LUSC
patients since the specific mutations were rarely ob-
served in LUSC. LUSC differs from LUAD in both
pathological and molecular levels. Some genomic studies
have revealed significant mutations in a collection of
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genes, such as TP53, PIK3CA, NFE2L2, KEAP1, FBXW7,
etc., and some of the mutations showed significant asso-
ciations with LUSC prognostic outcomes (Choi et al.
2017; Cancer Genome Atlas Research N 2012).

Simply identification of the significant mutations is
not sufficient to describe the complicated molecular
mechanism of LUSC. Each mutation can lead to direct
or in-direct effects on cascades of down-stream pro-
cesses. For instance, NRF2 (protein encoded by NFE2L2)
mainly activates cellular antioxidant responses by tran-
scriptional regulation of numerous cytoprotective genes
which can combat harmful effects such as xenobiotics
and oxidative stress (Wu et al. 2019). Besides, NRF2 has
also been demonstrated to regulate mTOR signaling
pathway (Bendavit et al. 2016) and inflammatory re-
sponse (Kobayashi et al. 2016). Some studies have dis-
covered the dual roles of NRF2 in cancer (Wu et al.
2019; Lau et al. 2008; Gonzalez-Donquiles et al. 2017). It
is unquestionable there are a great deal of un-revealed
down-stream pathways underlying the driven mutations.
Consequently, to better understand the molecular mech-
anism and to design effective personalized treatments
for LUSC, a comprehensive understanding about both
the SMGs as well as their potential down-stream effects
is essential.

Here, we put forward a systematical study to investi-
gate on both the significant mutations and their down-
stream pathways by integratively mining the genomic,
transcriptional and clinical data of LUSC cohorts. Mean-
while, we also attempt to examine whether the differen-
tial expression profiles of down-stream pathways can
help identify clinical meaningful LUSC subtypes. As re-
sults, we identified two LUSC-specific subtypes which
showed significant differences in mutational, expres-
sional as well as clinical patterns, and the better progno-
sis subtype was enriched by mutations in CUL3/KEAP1/
NRF2 pathway and displayed suppressed expressions of
genes involved in epithelial mesenchymal transition
(EMT), inflammatory responses and other potential
down-stream pathways.

Materials and methods

TCGA data preparing

We mainly utilized the genomics and transcriptomics
data for the LUSC cohorts in the Cancer Genome Atlas
(TCGA) (Cancer Genome Atlas Research N 2012). Both
kinds of omics data were downloaded from The NCI’s
Genomic Data Commons (GDC) (https://gdc.cancer.
gov/about-data/publications/pancanatlas) which con-
tained multi-omics data resources for 33 types of can-
cers. The genomics data were processed in mutation
annotation format (maf), and the transcriptomics data
were determined by RNA-seq method. From this pan-
cancer atlas, we mainly extracted the data corresponding
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to LUSC patients for this study. Besides, we also ex-
tracted the transcriptomics and clinical data for LUAD
patients for independent comparison.

Pathway information

Pathway information, i.e., pathway names as well as
genes belonging to each pathway, were obtained from
Molecular Signatures Database (MsigDB, http://software.
broadinstitute.org/gsea/msigdb) (Liberzon et al. 2015),
where the hallmark gene sets were utilized for the
pathway-based analyses.

Identification of significant somatic mutated genes
(SMGs)

For the maf mutation file, we utilized MutSigCV (ver-
sion 1.3.4) (Lawrence et al. 2013) to recognize significant
SMGs and the significance threshold was set as q-value
<0.1. Then, we utilized the R package maftools to
visualize the mutation information of these significant
SMGs for all TCGA LUSC patients. Besides, we applied
pair-wise Fisher’s Exact test to detect mutually exclusive
or co-occurring SMGs.

Identification of potential downstream genes of SMGs
The RNA-seq based transcriptomics data were prepro-
cessed based on the voom algorithm (Law et al. 2014) in
the R package limma (Ritchie et al. 2015). Next, for each
SMG, we separated the samples into mutated and wild
type sets, and utilized T-test (unpaired, two-sided) to
identify which genes were differentially expressed be-
tween mutated and wild type set in the transcriptomics
data, then genes with FDR less than 0.1 were taken as
the potential downstream genes of the SMG.

Survival analysis based on gene expression levels

The clinical information of all TCGA-LUSC patients
was also obtained from the GDC. For the SMG relevant
potential downstream genes, we also analyzed their
prognosis impacts. For each such gene, we utilized the
Cox proportional hazards (coxph) regression model in
the R package “survival” (Therneau and Grambsch 2000)
to examine whether the expression level of this gene has
a significant influence on the survival rate. According to
the coxph results, genes with p-values less than 0.05
were regarded as prognosis-relevant, and if the regres-
sion coefficients are larger than 0, then higher expres-
sion levels will correspond to worse survival rates,
otherwise, higher expression levels will correspond to
better survival rates.

Identification of potential down-stream pathways of
SMGs

For each individual SMG, we separated the samples into
mutated and wild type sets and calculated the difference
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value of the mean mRNA expression levels of each gene
between the two groups. Then, we ranked the genes ac-
cording to the difference values, utilized the ranked gene
list as input for Gene Set Enrichment Analysis (GSEA)
(Subramanian et al. 2005), and obtained the p-values. At
last, pathways with p-values less than 0.01 were regarded
as the potential down-stream pathways of the SMG, and
the -logl0(p) was calculated as the SMG-pathway rele-
vant score.

Unsupervised clustering of patients based on SMG
relevant genes and pathways

The mRNA-level expression matrix of solid tumor tissues
in terms of all SMGs and all gene members in their down-
stream pathways were utilized as the input for clustering
analysis. This expression matrix was scaled by subtracting
the mean level and being divided by the standard deriv-
ation with respect to each individual gene. Based on the
scaled expression matrix, we applied a consensus cluster-
ing method implemented in the R package “Consensu-
sClusterPlus” (Wilkerson and Hayes 2010) where the
basic clustering method was set as “partitioning around
medoids” to cluster the patients into 2 clusters.

Evaluate the importance of genes for the clustering
results

After clustering the patients into 2 clusters, we used the
random forest (Liaw and Wiener 2002) algorithm to
evaluate the importance of all genes in the input expres-
sion matrix for predicting the accurate cluster labels.
These genes were ranked by the importance score. Be-
sides, we also examined enrichment significance of the
top-50 important genes in each pathway based on the
hypergeometric distribution.

Validating the prognosis differences based on the other
independent lung cancer cohorts

The mRNA expression matrix and the corresponding
clinical information for two lung cancer cohorts
(GSE30219 and GSE37745) were downloaded from Gene
Expression Omnibus (GEO) database by the R package
‘GEOquery’ (Sean and Meltzer 2007). We constructed a
cluster-label predictor based on the TCGA-LUSC ex-
pression matrix of the shared genes between the top-50
important and genes measured in the GEO dataset. This
predictor was trained by a generalized linear model (im-
plemented by the R package “glmnet” (Simon et al.
2011)). We used this predictor on the GEO datasets or
TCGA-LUAD cohort to predict the corresponding
cluster-labels for each patient, and survival differences of
the two predicted clusters were tested by log-rank and
the corresponding survival curves were estimated by the
Kaplan-Meier method.
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Statistical analysis

All statistical analysis and computations were performed
in R. The detailed statistical methods were included in
the corresponding sections.

Results

Significant SMGs in LUSC rarely generate significant
prognostic impacts themselves

According to the gene mutation data of 502 LUSC
patients in TCGA, we identified 18 potential SMGs
by MutSigCV (q-value <0.1, Fig. 1a). The mutations
for most of these SMGs like TP53, CDKN2A, KEAPI,
PTEN, PIK3CA, NFE2L2, RBI, etc. have already been
identified in previous studies (Cancer Genome Atlas
Research N 2012). Compared to the SMG identified
for LUAD from TCGA, there are only 7 common
SMGs including TP53, CDKN2A, RBI, KEAPI,
ARIDI1A, NF1, COL11AI between LUSC and LUAD
(Fig. 2b). Some SMGS were specific to one type of
cancer. The significant SMGs like NFE2L2 and RASAI
are rarely mutated in LUAD patients. These results
confirmed the differential molecular mechanism be-
tween LUAD and LUSC.

To evaluate the most direct mutational effects, we
compared the expressions of these SMGs in the mutated
and wild type samples. We found that some of the
SMGs can lead to significant expressional alterations.
For instance, the mutations of RB1 were related with sig-
nificantly reduced expressions of RB1 while mutations of
CDKN2A, NFE2L2 might improve the expression levels
(Figure S1A). CDKN2A is a well-known tumor suppres-
sor gene in lung cancer, and it is frequently inactivated
in LUSC (Wikman and Kettunen 2006). Here, we found
its mutation may be related with a higher level of ex-
pression in this gene, then the inactivation of CDKN2A
may be caused by some other effects like silencing
methylation or homozygous deletion (Cancer Genome
Atlas Research N 2012; Wikman and Kettunen 2006).
Besides, only two of the expressional alterations (KEAPI
and NFE2L2) can lead to significant prognosis influence
(Figure S1B).

Among the significant SMGs for LUSC, the muta-
tions of certain pairs of SMGs, like NFE2L2 and
KEAPI, RB1 and CDKN2A, PTEN and CDKN2A were
mutual exclusive (Fig. 1c), suggesting the potential
convergent effects on the same downstream elements
between different SMGs. For instance, KEAPI en-
codes the adapter protein of an E3 ligase complex
which can ubiquitinate NRF2, and previous studies
have proven that mutations in KEAPI and NFE2L2
may lead to NRF2 activation which may further con-
tribute to spontaneous cancer development (Leinonen
et al. 2014; Taguchi et al. 2010).
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Fig. 1 Significant somatic gene mutations in TCGA LUSC. a. Oncoplot of SMGs in LUSC. b. Overlapped SMGs between LUSC and LUAD. c. Interactions
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Somatic mutations generate remarkable down-stream
alterations

To reveal the down-stream influences generated by the
SMGs in a more comprehensive perspective, we evalu-
ated the mutation effects of all SMGs in a genome-wide
manner. For each individual SMG, we identified the
genes with significant expressional alterations between
samples with and without mutations in terms of this
SMG. According to this results, NFE2L2 was with the
largest number of significantly altered down-stream
genes (false discover rate [FDR] adjusted p value <0.1,
T-test, unpaired, two-sided), TP53, RBI, KEAPI and
RASA1 were among the top-5 (Fig. 2a). The mutations
of these SMGs might lead to significant expressional al-
terations of the other genes. Based on the top-ranked

(the ranking is based on the fold change of mean expres-
sion levels between mutated and wild type samples) ex-
pressional altered genes, a network was constructed
(Figure S2). It described the potential down-stream regu-
lated genes for the SMGs. Interestingly, we found that
NFE2L2 and KEAPI, RB1 and CDKN2A, two pairs of
SMGs which showed co-exclusive mutation patterns in
Fig. 1c, were tightly connected by the shared potential
down-stream genes also (Figure S2). This is just coher-
ent with the above notion that co-exclusive SMGs may
produce convergent down-steam effects. Meanwhile,
some SMGs may lead to remarkable expressional alter-
ations of well-known oncogenes or tumor suppressor
genes, e.g., the mutations in RB1 may regulate the up-
regulation of the oncogene DEK, and the mutations in
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TP53 may be related with up-regulation of both onco-
gene SOX2 and tumor suppressor gene WNK2 (Figure
S2, role of the downstream genes were annotated based
on the COSMIC database (Forbes et al. 2017)), suggest-
ing the multi-aspect downstream impacts of the SMGs.
Besides, some of the down-stream genes can be directly
regulated by the mutated genes. For instance, NFE2L2 is
a transcriptional factor that binds with the antioxidant
response element (ARE), and among the top-ranked
down-stream genes (Figure S2), NQO1 contains the
ARE motif in the gene promoter, and has been reported
as a direct target of NFE2L2 (Dhakshinamoorthy and
Jaiswal 2000).

Meanwhile, we also evaluated the prognostic effects of
all the potential down-steam genes. For top-8 ranked
SMGs in terms of the number of potential down-stream
genes (Fig. 2b), nearly half of these potential down-
steam genes were with significant prognosis (log-rank
p <0.05) impacts, and almost half favourable (higher ex-
pressions will correspond to a better survival rate) and
half un-favourable (higher expressions will correspond
to a worse survival rate). For PTEN, CUL3, and
COL11A1, the portions of prognosis relevant potential
down-stream genes were much lower, and the
favourable ones took the majority. The distinct progno-
sis impacts for these potential down-steam genes of the
same SMGs or across different SMGs both suggested
that the complexity of the down-stream impacts gener-
ated by the SMGs in LUSC.

Potential down-stream pathways influenced by the SMGs
Furthermore, we also recognized the potential down-
steam pathways of each SMG based on the genome-

wide expressional alterations. According to the cluster-
ing results of the SMG-pathway relevance scores, two
major SMQG clusters or groups emerged (Fig. 3). The first
group included ARIDIA, TP53, CDKN2A, FBXW?7,
NFE2L2, CUL3, KEAPI and COLI11Al, their mutation
may lead to the up-regulations of mTOR signaling path-
way, MYC targets and the down-regulations of inflam-
matory response. The second one included FATI,
RASA1, NFI1, ZNF716, RBI, et al, and their mutations
may generate somewhat reversed pathway impacts com-
pared to the first group, for instance, their mutations
may largely lead to up-regulations in inflammatory re-
sponse and rarely lead to significant alterations in the
mTOR signaling pathway. The SMG-pathway relevance
imply the convergent effects among certain SMGs, like
NFE2L2, KEAPI and CUL3 where both KEAP1 and
CUL3 are components of E3 ligase complex and NRF2 is
the targeted ubiquitination substrate (Leinonen et al
2014). Meanwhile, contrary regulation patterns between
some SMGs, like KEAP1 and RASA1 were also observed.
Without a global perspective of the down-stream influ-
ences of SMG@Gs, it is impossible to understand the com-
plex molecular mechanism of LUSC development and
progress.

Expressional profiles of the potential downstream
pathways help reveal two subtypes with significant
differences in SMGs and prognosis outcomes

To obtain a more holistic view of the molecular and
clinical heterogeneity, we separated the TCGA LUSC pa-
tients into two clusters based on the expression matrix
with respect to all the SMGs and their down-stream
pathways (Fig. 4a, see materials and methods).
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Comparing these two clusters, we observed that a collec-
tion of EMT relevant genes including TGM2 (Ma et al.
2018), FBLNS (Lee et al. 2008), PDGFRB (Chang et al.
2018), etc. and a series of genes involved in the inflam-
matory response pathway including PTAFR (Nakamura
et al. 1991), ICAM1 (van Buul et al. 2007), GPR132 (Lin
and Ye 2003), etc. were up-regulated in Cluster 1 (C1)
comparing to Cluster 2 (C2). The significantly differen-
tial expression patterns were probably associated with
the mutations of NFE2L2, CUL3, KEAP1, COL11AI and
RASA1I, where mutations of NFE2L2, CUL3, KEAPI and
COL11AI were significantly enriched in C2 (p<0.05,
hypergeometric distribution), while RASAI mutations
were enriched in C1 (p = 6.22e-3, hypergeometric distri-
bution). The mutations of these five SMGs together with
their significant influences on the down-stream pathways
may contribute to the LUSC molecular heterogeneity.

Notably, the two differential groups displayed a signifi-
cant difference in prognosis, where C1 showed signifi-
cantly lower survival rate than C2 (Fig. 4b, p <0.05).
Besides, the poor prognosis of C1 may also be related
with a significantly longer time of smoking history and
older ages among the patients (Wilcox-test, two-sided,
unpaired, P-value = 6.82e-3 and 2.72e-3 for smoking year
and age respectively), however, the identified two clus-
ters were totally different from the original tumor stage
definition (Chi-squared test, P = 0.51). Interestingly, al-
though previous studies have revealed that KEAPI/
NEF2L2 mutations may contribute to LUSC or poor
prognosis (Tian et al. 2016; Cloer et al. 2019; Solis et al.
2010), here, we found that both KEAPI and NFE2L2
mutations were enriched in the better prognosis subtype
(C2, Fig. 4a and b). This is probably in part because the
dual-role of NRF2 in cancer (Wu et al. 2019) and it also
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indicates that although certain mutations may be driven
factors for LUSC, their prognostic impacts can be condi-
tional rather than absolutely un-favourable. Meanwhile,
examinations on the prognostic impacts of the subtype
relevant SMGs showed each individual SMG cannot lead
to significant survival differences (Figure S3). The cancer
subtypes and their underlying prognosis difference were
not determined by certain SMGs, but a combination of
multiple factors like smoking history as well as the com-
bined down-stream effects.

The molecular level heterogeneity of LUSC is reflected
in numerous SMGs and pathways. In addition to the
EMT and inflammatory response pathways, the highly-

important genes for separating the LUSC patients into
the two clusters were also significantly enriched in the
UV-response, IL6-JAK-STAT3 signaling and TGF-Beta
signaling pathways (Fig. 4c).

Robustness of the two subtypes was verified by the other
independent LUSC cohorts

To validate whether the identified expressional and
prognostic differences in the two subtypes also exist in
the other LUSC cohorts, we constructed a subtype pre-
dictor based on the expressional profiles and clustering
results of the TCGA-LUSC cohorts and applied it to
predict the corresponding cluster labels for the LUSC



Liu et al. Molecular Medicine (2020) 26:48

patients in GEO datasets. For GSE30219, two cluster pa-
tients annotated by this framework were also with sig-
nificant prognostic differences (Fig. 5a), just as observed
in TCGA-LUSC, and similar expressional patterns
emerged (Fig. 5b). To be noted, when the other types of
lung cancer were taken into consideration, the corre-
sponding clusters were with totally reversed prognosis
outcomes (C1 were with better survival rates, Fig. 5c),
suggesting the specificity of the identified LUSC sub-
types. To examine the robust of the LUSC-based hetero-
geneity pattern further, we also applied the cluster
predictor on the other lung cohorts, the identified two
LUSC clusters also displayed similar prognostic differ-
ences as observed in TCGA-LUSC (Fig. 5d), but the
prognosis differences disappeared (Fig. 5e) or showed
opposite outcomes (Fig. 5f) for the other non-LUSC lung
cancers. This result suggested the NFE2L2, KEAPI and
RASA1 relevant expressional heterogeneity and the
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corresponding prognostic influences mainly hold true in
LUSC patients, but not for the other types of lung
cancers.

Identification of the primarily regulated genes among the
potential down-stream pathways of different SMGs

To further understand the relationships between muta-
tional patterns and down-stream expressional profiles
which all contributed to the two identified subtypes, we
further examined whether the mutations of the five
SMGs were associated with significant expressional al-
terations of the top-50 important genes in separating
two subtypes. Therefore, we constructed a core SMG-
gene association network (Fig. 6) describing which genes
involved in the down-stream pathways were more likely
to be directly regulated by the SMGs. As results,
NFE2L2 mutations showed significant influences on the
largest number of subtype-determinant down-stream
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Fig. 6 A core association network between SMG and down-stream elements. Yellow nodes are SMGs, the other nodes are genes showing the
top-50 important scores in separating the two subtypes for LUSC, and the inflammatory relevant ones are marked by green. Edges stand for the
significant associations (T-test, un-paired, two-sided, FDR adjusted P-value < 0.05), and edge colors represent the log2 transformed fold change
(log2FC) values of down-stream genes in mMRNA level between samples with and without mutations in the SMG

genes, especially the genes in inflammatory response
pathway, e.g., ICAMI (van Buul et al. 2007), GPR132
(Lin and Ye 2003), AXL (Bottai et al. 2016), SCARFI
(Son et al. 2015), etc. Additionally, KEAPI and RASAI
also showed significant effects on certain NFE2L2-rele-
vant genes (e.g., ANTXR2, GNAI2, PTAFR and TGM2),
suggesting the cooperative regulating modes among the
SMGs. This core SMG-gene network only covers a part
of the top-50 important genes (17 out of 50), implying
the differentially expressional patterns between two sub-
types were not simply caused by individual mutations,
but the results of complicated and multi-factorial
perturbations.

Discussion
The accumulation of various types of omics data has
promoted the understanding about molecular mechan-
ism of cancers. The initial analysis on the TCGA-LUSC
cohorts covered 178 samples (Cancer Genome Atlas Re-
search N 2012). With the completion of the TCGA pro-
ject (Cancer Genome Atlas Research et al. 2013), more
LUSC samples were accumulated and measured and
more comprehensive omics data were provided. Based
on the larger scale of LUSC data resource, we re-
analyzed the mutation and RNA-seq data, identified the
SMGs and their potential down-stream genes and path-
ways, and revealed an alternative way to classify LUSC
subtypes which showed significant prognostic and mo-
lecular differences across multiple cohorts consistently.
Cancer is a complex disease. Frequent SMGs were
taken as potential therapeutic targets, however, only spe-
cific patients are suitable for certain forms of therapeutic
strategies. Meanwhile, many SMGs were un-druggable.
A comprehensive understanding about the down-stream
processes of the SMGs can help improve the efficiency

of precision medicine and provide alternative therapeutic
targets. According to our analysis, we identified 18
SMGs with significant mutations in LUSC. These SMGg,
especially NFE2L2, TP53 and RASAI were related with
the expressional alterations of large number of genes.
The activity of NFE2L2 is known to be mainly regulated
via its interaction with KEAP1 (Bryan et al. 2013). Here,
we observed that mutations of NFE2L2 and KEAP1 were
highly co-exclusive, suggesting the convergent down-
stream effects. A SMG down-stream gene analysis
showed that the down-stream functions of all SMGs
where both NFE2L2 and KEAPI exhibited significant in-
fluences on the pathways of mTOR signaling and in-
flammation responses (Fig. 3) which have been reported
(Bendavit et al. 2016; Kobayashi et al. 2016).

Nearly half of the potential down-stream regulated
genes can generate significant prognostic impacts. How-
ever, the expressional alterations underlying the same
SMG can also lead to opposite prognostic effects. The
complex molecular features of LUSC make it impossible
to predict the prognosis with respect to single SMG or
its relevant down-stream pathways. Here, to obtain a
more comprehensive perspective, we recognized two
LUSC subtypes (termed C1 and C2) by clustering the
TCGA-LUSC patients according to the expression pro-
files of all SMGs and their relevant pathways. The two
subtypes showed distinctively mutational patterns in
NFE2L2, KEAPI, RASAI, CUL3 and COL11A1I, and re-
markably differential expressions of genes involved in
multiple pathways like EMT, inflammatory response,
and IL6-JAK-STATS3 signaling pathways. These molecu-
larly differential subtypes also showed significantly prog-
nosis differences. Interestingly, the better survival
subtype (C2) was observed to be with higher mutation
frequencies considering NFE2L2, KEAPI and CUL3
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which may be onco-driver of LUSC (P6lonen and Levo-
nen 2016; Kandoth et al. 2013). This indicates although
mutations of certain genes may contribute to the devel-
opment of cancer, their mutations are not indicators of
poor prognosis. This may also be related with the dual
roles of NRF2 (Lau et al. 2008; Gonzalez-Donquiles et al.
2017). In any case, the prognostic differences between
subtypes are determined by a series of factors but not
only one simple condition like a SMG or over-expressed
gene. Accordingly, a subtype predictor was trained and
tested based on the expressional profiles of LUSC pa-
tients. Similar subtypes were also recognized in the other
independent LUSC cohorts where patients with C1-like
expressional profiles were also with worse survival rates.
However, when applied on LUAD, Cl-like and C2-like
patients were with opposite prognosis outcomes than
that observed in LUSC.

Furthermore, primely regulated pathway members of
the subtype-relevant SMGs were also recognized in this
study. NFE2L2, KEAP1 and RASAI were more likely to
have direct influences on some key down-stream ele-
ments in a cooperative way, especially for those belong-
ing to inflammatory response pathway. These potential
down-stream pathways for KEAP1/NFE2L2/CUL3 muta-
tions can also provide alternative way for LUSC treat-
ment where therapeutic interventions for governing
NRF2 activity have proven largely intractable.

However, there are some limitations of this study.
Here, for the gene mutation analysis, we only focused on
gene mutations identified by the MutSig algorithm
which recognized point mutations or small indels, copy
number variants or epigenetic effects like methylation
were not considered in this study. Consequently, the
identified results mainly reflect the influences caused by
the point mutations or small indels of the genes. In the
future, we will design new workflows to further explore
the impacts caused by the other types of alterations that
were not included here.

Conclusions

Here, we obtained a comprehensive description on the
key prognosis-relevant genes of KEAPI/NFE2L2/CUL3
for LUSC. The interesting molecular and clinical pat-
terns between the two subtypes in LUSC reinforce the
highly heterogeneity of LUSC. Although large-scale gen-
omic studies have identified the frequent mutations in
KEAP1/NRF2/ CUL3 pathway and their prominent roles
in LUSC and other cancers, less attention is paid on
their complicated down-stream effects. Also, an integra-
tive study of both SMG and the down-stream expression
profiles of LUSC help recognized two robust subtypes
where one subtype with markedly suppressed expres-
sions in EMT and inflammatory response pathways
showed significant better survivals and higher mutation
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frequencies in the KEAP1/NRF2/ CUL3 pathway. This
alternative LUSC subtyping can provide promising diag-
nosis references and potential therapeutic targets for
LUSC.
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