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ABSTRACT

We present the results of a simple, statistical assay
that measures the G1C content sensitivity bias
of gene expression experiments without the
requirement of a duplicate experiment. We analyse
five gene expression profiling methods: Affymetrix
GeneChip, Long Serial Analysis of Gene
Expression (LongSAGE), LongSAGELite, ‘Classic’
Massively Parallel Signature Sequencing (MPSS)
and ‘Signature’ MPSS. We demonstrate the methods
have systematic and random errors leading to a
different G1C content sensitivity. The relationship
between this experimental error and the G1C
content of the probe set or tag that identifies each
gene influences whether the gene is detected and, if
detected, the level of gene expression measured.
LongSAGE has the least bias, while Signature
MPSS shows a strong bias to G1C rich tags and
Affymetrix data show different bias depending on
the data processing method (MAS 5.0, RMA or
GC-RMA). The bias in the Affymetrix data primarily
impacts genes expressed at lower levels. Despite
the larger sampling of the MPSS library, SAGE
identifies significantly more genes (60% more
RefSeq genes in a single comparison).

INTRODUCTION

Gene expression profiling methods are used extensively for
quantitative transcriptome analysis (1–6). Array based meth-
ods, such as Affymetrix GeneChip, rely on the hybridization
of labeled transcript-derived sequences to oligonucleotide
probes synthesized on the microarray. Probe hybridization
intensity values are used to measure the expression levels
of transcripts.

Sequencing methods, such as MPSS and SAGE generate a
short sequence tag for transcripts. The gene expression level

is measured by counting these tags. For 30 tag-based methods,
the ‘tag’ identified is a short stretch of nucleotides adjacent to
(and including) the 30 most site of a specific restriction
enzyme in a transcript. The CAGE method is a variant that
detects the 50 most site (7). By generating tag sequences
derived from an mRNA population and mapping these tag
sequences to transcript databases, one can infer the abun-
dance of transcripts in the original population. Longer tag
sequences provide better specificity of mapping tags to
genes. SAGE [14 bp tags; (1)] and its variants LongSAGE
[21 bp tags; (2)], LongSAGELite [21 bp tags from nanogram
quantities of RNA; (8)], SuperSAGE [26 bp tags; (9)] pro-
duce concatemers of tags which are cloned and sequenced
using standard Sanger di-deoxy terminator sequencing chem-
istry. The total number of tags sequenced determines the
accuracy of gene expression quantization (10) and the ability
to detect rare transcripts. Recently, MPSS [20 bp tags; (4)], a
sequencing technology able to generate millions of short
sequences in parallel, has been used to create digital gene
expression profiles at apparently lower costs than typically
incurred for LongSAGE libraries sequenced using capillary
sequencers and the Sanger chemistry.

New applications of gene expression profiling methods
[MPSS, 50 SAGE, poly(A)± Affymetrix tiling arrays (6,7)]
are providing rich views of the transcriptome. Many papers
have compared the results of different gene expression
experiments across platforms and assessed platform repro-
ducibility (11–18) without providing an explanation for the
observed differences. Mecham et al. (19) and Carter et al.
(20) demonstrated that incorrect assignation of Affymetrix
probes to genes as one source of variability and suggested
sequence-based mapping as a corrective measure. Kluger
et al. (21) showed that the physical location of probes on
the Affymetrix GeneChip is correlated with gene expression
levels. The effect of G+C content on the stability of
hybridized sequences is well known with higher G+C content
corresponding to more stable DNA duplexes (22). Kuo et al.
(23) found that several probe-specific factors, including G+C
content, were associated with the degree of correlation
between gene expression levels of the same mRNA sample
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measured by different microarray technologies. Margulies
et al. (24) identified G+C content bias in 10 bp SAGE
libraries and suggested a statistical analysis to assess G+C
bias before deep sequencing was initiated. They gave several
experimental steps for reducing bias and suggested that
longer LongSAGE ditags may not suffer from the same
degree of bias. Dinel et al. (25) demonstrated that SAGE
replicate data was highly reproducible if one accounted for
differences in concatemer and ditag replication, the number
of sequenced tags and double PCR amplification of ditags.

Here, we compare and analyse publicly available gene
expression data generated using one microarray method and
four sequencing methods. By using a large number of pub-
licly available experiments, we are able to measure the varia-
tion of the G+C sensitivity of all five methods by measuring
the G+C sensitivity of an individual experiment without the
requirement of a matched sample for comparison. We dem-
onstrate that the variation results in an intrinsic limit on
experimental reproducibility within a method (with current
technology and methodology) and the ability to compare
results across methods. Furthermore, we demonstrate that
the differences in genes observed for both intra-method and
inter-method comparisons can be explained directly in
terms of the relative G+C sensitivity of the experiments.

MATERIALS AND METHODS

Mapping of tags and probes to genes

Tags were mapped to the 30 most restriction enzyme site of
transcripts using RefSeq NM genes for human and mouse
(26) and the TAIR annotated gene set for Arabidopsis (27).
The restriction enzyme used for the LongSAGE and LongSA-
GELite experiments was NlaIII (tags begin with CATG).
MPSS utilized DpnII (tags begin with GATC). References
to the entire set of 30 most transcripts refer to either the set
of NlaIII tags or DpnII tags, whichever is appropriate for
the experiment under study.

Probes were mapped to Refseq genes using the annotation
files provided by Affymetrix for the HGU 133 GeneChip
(using both the A and B chips or using the A chip alone as
dictated by the available data). Gene expression levels for
the Human ES data were derived using both the MAS 5.0
software and GC-RMA. The gene expression values for the
set of 993 experiments were derived from processed by vari-
ety of software including MAS (14). Present and absent calls
from the MAS 5.0 software were used as a measure of gene
presence or absence. For GC-RMA processed data, a gene
expression level of 3.32 or greater was required for presence.
This cutoff called present the same average percentage of
genes on the chip as the MAS 5.0 software. Likewise for
RMA processed data, a gene expression level of 22.1 or
greater was required for presence.

Measuring G+C bias

For SAGE and MPSS, the bias is calculated from the premise
that, for any experiment, the G+C content of the observed set
of 30 most tags should be equivalent to the G+C content of
a random sampling of 30 most tags from all transcripts. The
calculation is performed in the following manner. The G+C

content of the observed tags that map to the set of 30 most
tags of transcripts is determined (minus the four letter restric-
tion site prefix). From that the deviation of the observed G+C
content relative to the G+C content of the entire set of 30 most
tags is derived. To provide a fair basis of comparison that
accounts for differences in the number of transcripts observed
in each experiment (sampling size) as well as possible
differences in the NlaIII versus DpnII tags, for each experi-
ment, we calculate the standard deviation of the G+C content
of randomly sampled tags (equivalent in number to the
mapped tags that the experiment yields) relative to the entire
set of 30 most tags. The random sampling is performed
1000 times with the G+C content of the sampled tags and
its deviation from the G+C content of the entire set measured
each time. The standard deviation is derived from the 1000
data points. The measured deviation of the observed G+C
content is divided by the standard deviation to give the
number of standard deviations by which the observed G+C
content varied from the expected mean. It is this measure,
the number of standard deviations by which the measured
mean G+C content deviates from the expected G+C content,
that is used to evaluate G+C bias.

A similar approach is used for Affymetrix data. The
analysis is performed at the level of the probe set. The pre-
mise is that, for any experiment, the G+C content of the
observed set of probe sets that are annotated as mapping to
RefSeq transcripts should be equivalent to the G+C content
of a random sampling of all probe sets on the chip that are
annotated as mapping to RefSeq transcripts. The rest of the
calculation is performed the same way as it is for SAGE
and MPSS.

Affymetrix intensity values were normalized by taking the
natural logarithm of the intensity value and then subtracting
the median and dividing by the interquartile range for the
experiment. Signals that were reported as marginal or absent
by the Affymetrix software were ignored.

RESULTS

Assessment of gene coverage

We began by assessing whether the different methods identi-
fied comparable numbers of genes. In Table 1, the first com-
parison shown is between a LongSAGE library of mouse
liver RNA and an MPSS library derived from the same
RNA sample. The MPSS library yielded 1 724 799 tags,
whereas the SAGE library was sampled to only 108 117
tags. Despite the shallower depth of sampling, the SAGE
library identified over 60% more RefSeq genes (3593 versus
2226; Materials and Methods). The total number of RefSeq
genes that can be identified by LongSAGE with tags con-
structed using NlaIII (15 054) is slighter greater than that,
which can be identified by MPSS with tags constructed
using DpnII (14 685; Table 2), but this difference is not
large enough to explain the discrepancy in the number of
genes identified especially considering the large difference
in sampling depth. A comparison of a SAGE library and
MPSS library both created using RNA purified from different
adult mouse kidneys gave a similar result. In this experiment,
7291 genes were identified by SAGE and only 3547 by MPSS
despite the deeper sampling by MPSS (883 305 SAGE tags
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versus 2 230 467 MPSS tags). For both comparisons, the
number of genes observed in common, 1425 genes for the
first comparison and 2924 for the second comparison,
were substantially reduced from the total number observed
in an individual experiment, indicating that a large fraction
of genes are observed in only one experiment in each
comparison.

Further comparisons are provided in Table 1. Interestingly,
MPSS [classic; (5)] generally identified more genes than
MPSS [signature; (4)]. The numbers of genes identified by
Affymetrix and LongSAGE are comparable. From Table 1
we see that, in general, the number of genes shared by a
pair of experiments is only somewhat larger and often smaller
than the sum total of unique genes identified by each experi-
ment in a comparison.

These comparisons, though limited in number, demon-
strated that there were differences in the number of transcripts

identified using each of the methods that could not be
explained by sampling depth alone. Our initial survey of tran-
scripts observed by one method and missed by the other
implicated a bias in detection sensitivity, perhaps related to
the G+C content of the transcripts. Therefore, we sought to
assess the G+C content bias for each experiment.

Assessment of G+C content bias and detection
sensitivity

The G+C detection sensitivity (G+C DS; Materials and
Methods) was calculated for a series of gene expression
profiling experiments. These were 67 Signature MPSS Mus
musculus experiments [from http://www.ncbi.nlm.nih.gov/
projects/geo/info/mouse-trans.html and downloaded from the
Gene Expression Omnibus (28)], 83 LongSAGE M.musculus
experiments (29), 21 LongSAGELite M.musculus experi-
ments (29), 5 Classic MPSS Arabidopsis thaliana experi-
ments (30), 12 Signature MPSS A.thaliana experiments
(30), 28 Affymetrix Homo sapiens experiments (from www.
transcriptomes.org), 16 LongSAGE H.sapiens experiments
(from www.transcriptomes.org) and 993 Affymetrix
H.sapiens experiments [from the Gene Expression Omnibus
(28)]. The G+C DS is a measure of the deviation of G+C
content of observed tags or probe sets from neutral and
indicates increased sensitivity to G+C or A+T rich tags or
probe sets.

Figure 1 shows the distribution of G+C DS among the
experiments comprising each experimental group. The
mean and standard deviation of G+C DS for each series of
experiments is shown in Table 3. The LongSAGE data
shows the least bias with a G+C DS of 0.15 ± 3.75.
LongSAGE-Lite has some bias in detection sensitivity

Table 2. The number of NM RefSeq genes that can be identified by each

method

Experiment Species Number of genes
that can be identified

LongSAGE (NlaIII) Human 14 129
MPSS (DpnII) Human 13 555
Affymetrix U133A/B Human 11 700

(14 186 probe sets)
Affymetrix U133 A Human 11 193

(13 173 probe sets)
LongSAGE (NlaIII) Mouse 15 054
MPSS (DpnII) Mouse 14 685
MPSS (DpnII) Arabidopsis 22 381

For SAGE and MPPS, unique mappings are required.

Figure 1. Histogram showing the distribution of bias among five experimental methods. The A+T/C+G bias of an individual experiment is measured in units of
the number of standard deviations by which the observed bias deviates from the expected bias. The biases of the individual experiments comprising each series
are plotted as a histogram. The position of the peak and the width of the distribution are different for each method and illustrate differences in systematic and
random error with respect to A+T/G+C bias.
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towards G+C rich tags (�9.48 ± 4.89). For both A.thaliana
and M.musculus, signature MPSS shows a strong G+C bias
in detection sensitivity, although, for A.thaliana, classical
MPSS shows a smaller bias towards A+T. This difference
between the two MPSS methods may occur as a result of dif-
ferences in the method of preparation of the samples for
sequencing (30). If so, it is possible that the strong G+C
bias in signature MPSS data arises in that step and not during
sequencing itself. The Affymetrix data demonstrate a prefer-
ential detection of A+T rich probe sets when processed by
GC-RMA and MAS 5.0. The GC-RMA software (31) uses
the G+C content of probes to correct the gene expression
level and Figure 1 demonstrates that Affymetrix data pro-
cessed using GC-RMA has only �70% of the bias of MAS
5.0 processed data. Unlike GC-RMA, the RMA software
(32) does not correct the data for the G+C content of probes.
It introduces less bias than either MAS 5.0 or GC-RMA and
the bias is towards G+C rich probesets.

To ensure that these results were not due solely to rare
transcripts, we repeated the experiment restricting the anal-
ysis to transcripts observed at a level of 100 tags per million
or greater for SAGE and MPSS (Supplementary Figure 1).
This reduced the number of transcripts to �17% of the origi-
nal number. The smaller number of transcripts led to a larger
standard deviation and hence to a smaller, measured bias for
all experiments. The distribution of G+C DS does not change
and therefore, we conclude that the G+C DS is affecting tran-
scripts at all expression levels for these technologies. The
same experiment was repeated for the Affymetrix GeneChip
data restricting the analysis to transcripts observed with a nor-
malized signal intensity of 100 or greater (Supplementary
Figures 1 and 2), a cutoff that reduces the number of tran-
scripts detected to �15% of the original number. The mean
bias is largely reduced (Supplementary Figure 1). We con-
clude that the bias in the Affymetrix GeneChip data are
restricted to genes expressed at lower levels.

The observed differences in G+C DS for the different
experimental platforms and conditions raised the possibility
that these differences might explain why some genes were
observed (those with tags or probe sets with favourable
G+C contents relative to the G+C DS of the experimental
method) while others were not (those with tags or probe
sets with an unfavourable G+C content relative to the G+C
DS of the experimental method). Having established that
differences in G+C DS existed, we turned our attention to

evaluating the impact of these differences on data interpre-
tation and identification of expressed genes.

Assessment of the impact of G+C detection sensitivity

To assess the impact of G+C DS on gene identification, we
analysed pairs of gene expression profiling experiments per-
formed on similar samples. Where possible, we utilized pairs
of experiments that constituted biological replicates, or even
better, experiments performed on the same RNA sample. In a
few cases, where a biological replicate was not available, it
was necessary to substitute a closely matched experiment
(e.g. mouse heart atrium versus mouse heart bulbus cordis
at the same developmental stage). Though the lack of
replicate experiments could be perceived as a limitation of
our analysis, a strong, consistent pattern is demonstrated
that strengthens our confidence in the observations.

Comparison of the experimental results allowed us to
identify genes with detected expression using one experi-
mental method, but not detected by the second experimental
method. We refer to the undetected genes as ‘missed genes’.
For intra-method comparisons, missed genes were simply
those that the second experimental method failed to detect.
For inter-method comparisons, the initial list of missed
genes were filtered to remove those genes that the second
method was unable to detect because it lacked the probe set
or tag. The tags or probe sets (using the second experimental
method’s tags or probe sets), corresponding to the missed
genes were identified.

Using the same approach as before, we evaluated the G+C
DS of the probe sets or tags associated with the missed genes
(Table 1, last column). The results consistently demonstrated
that if one experimental method had a more negative G+C DS
relative to the second experimental method, then the tags or
probe sets of genes missed by the first experiment would be
A+T rich (have a positive G+C DS) and those missed by the
second experiment would be G+C rich (have a negative G+C
DS). For example, the first matched pair of libraries is a com-
parison between LongSAGE and MPSS liver libraries. The
data from the LongSAGE library with a G+C DS of �4.31
are A+T rich relative to the data from the MPSS library
which have a G+C DS of �18.91. Both are G+C rich relative
to zero. The NlaIII tags of genes missed by LongSAGE are
G+C rich (�0.88 G+C DS) and the DpnII tags of genes
missed by MPSS are A+T rich (8.7 G+C DS). This result is

Table 3. Mean and standard deviation of the distributions of G+C DS for each experimental series (Figure 1)

Experiment series Number of
experiments

Mean G+C DS Standard
deviation
of G+C DS

Number of replicates
required to achieve a
standard error in the
mean of 1.0

MPSS (Signature) Mus. 67 �27.76 6.48 42
LongSAGE Mus. 83 0.15 3.75 15
LongSAGELite Mus. 21 �9.48 4.89 24
MPSS (Classic) Arab. 5 5.48 2.98 9
MPSS (Signature) Arab. 12 �23.7 5.79 35
Affymetrix (ES series) U133A/B 28 26.36 2.32 6
Affymetrix (ES series) U133A RMA 28 �7.56 3.54 13
Affymetrix (ES series) U133A GC-RMA 28 18.35 1.96 4
Affymetrix (993 expts.) U133A 993 21.43 7.62 59
LongSAGE Human ES 16 �0.57 4.07 17
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reproduced consistently for each matched pair for both inter-
and intra-method comparisons. This confirms our earlier
hypothesis that differences in G+C DS results in different
genes observed.

Our general interpretation of these results is that both
experimental methods correctly identify tags or probe sets
representing transcripts in the sample; however, each method
exhibits a different sensitivity to the G+C content of those
transcript regions detected by it. Within each experimental
method, there is a range of G+C DS, perhaps related to differ-
ences in experimental conditions. Hence, the variation in
G+C DS arises from two sources: a method dependant bias
(mean G+C DS; Table 3) and a method dependent variability
(standard deviation of G+C DS; Table 3). The method depen-
dant variability is related to the reproducibility of a particular
method.

Looking at the LongSAGE ES Hs and Affymetrix ES Hs
series (Figure 1), we see that there is variability in G+C DS
for replicate samples from the same tissue and that the mean
bias is similar to the mean bias of the larger distributions
when they are compared to LongSAGE Mm and Affymetrix
Hs series, respectively. This lends further evidence to support
the assertion that the observed variance in G+C DS is a prod-
uct of the technology being used to measure gene expression
levels and not reflective of the real gene expression levels.
The width of the larger Affymetrix series is much wider
than the Affymetrix ES series. This difference is addressed
in the next section.

The data in Table 1 provide additional confirmation of the
G+C bias in the Affymetrix data. The comparison of Long-
SAGE and Affymetrix demonstrates that genes observed by
LongSAGE and missed by Affymetrix have G+C rich probe
sets. This orthogonal observation support the notion that the
A+T bias in the Affymetrix MAS processed data reduces

sensitivity of gene expression detection for genes with G+C
rich probe sets.

Variability of affymetrix results among experimental
series

Figure 1 and Table 3 show that the Affymetrix results from
www.transcriptomes.org, though encapsulated within the dis-
tribution of the larger group of 993 experiments, have a much
smaller standard deviation than the larger group. The ES
Affymetrix data were generated by a single laboratory;
hence, suspecting that different laboratories, utilizing differ-
ent scanners, protocols and batches of chips, would produce
data with a greater variation in G+C DS than a single lab,
we divided the data into groups of experimental series as
specified by GEO. Each of the chosen experimental series
comprised of repeat gene expression experiments performed
on the same tissue, but extracted from different individuals
with the exception of GSE1296 which was comprised of
gene expression experiments performed on the same tissue
processed using different collection protocols.

Figure 2 provides a representative sample of the series and
demonstrates that the results from each series have their own
distribution. Although, there are limited data points in the
individual series, the data appear to confirm our hypothesis
that the different laboratories produce data with different lev-
els of bias. The standard deviations of these distributions are
smaller and hence experiments performed as part of the
same series will have a higher degree of reproducibility
than when compared between series. Therefore, as demons-
trated previously by others (33) we expect the results of repli-
cate Affymetrix experiments performed on the same material
at different laboratories to have greater variability than those
performed at the same laboratory.

Figure 2. Histogram showing the distribution of bias among individual series of Affymetrix experiments. For each series, the position of the peak and the width
of the distribution are different. The figure illustrates individual laboratories have their own bias and variation in bias. Thus, combining experiments from
different laboratories leads to a greater width in the summed distribution (Affymetrix 993 experiments). The series identifiers in the figure (e.g. GSE994) are
GEO dataset identifiers.
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DISCUSSION

The mean and standard deviation of the G+C DS (Table 3)
can be discussed in terms of accuracy and reproducibility,
respectively or systematic error and random error, respec-
tively. A method with a larger standard deviation in observed
G+C DS has more variation in experimental results. This
variation can be corrected through the use of replicates,
though methods with a larger standard deviation will require
additional replicates to obtain a more precise measure of gene
expression levels. However, replicates will not improve the
accuracy of the measurement if there is a systematic error
underlying the experimental method as measured by the
deviation of the mean G+C DS from zero. Hence, the better
method of measuring gene expression has both a G+C DS
mean and standard deviation of zero. In reality, each method
has its own strengths and weaknesses. While LongSAGE has
the lowest mean G+C DS, replicates are relatively expensive
at this time. Affymetrix has a similar standard deviation in
G+C DS to LongSAGE and replicates are less expensive.
For Affymetrix, the mean G+C DS is strongly related to the
data processing method (MAS, RMA and GC-RMA).
Although LongSAGELite demonstrates a G+C DS bias, the
method allows the creation of SAGE libraries from nanogram
quantities of RNA. Signature MPSS shows the strongest
G+C DS bias, but allows deep profiling of RNA samples.
In contrast to the results for Signature MPSS, Classical
MPSS shows a much smaller bias.

The Affymetrix data show different biases with each of the
data processing methods. RMA does not utilize the probeset
sequence to correct the gene expression levels and that data
show a G+C bias. GC-RMA attempts to correct for stronger
hybridization to G+C rich probesets. Our results indicate that
GC-RMA may be overcorrecting the data and an intermediate
correction may yield better results.

Series of experiments performed across different platforms
often utilize a reference experiment against which other
experiments are normalized. This strategy is an attempt at
removing the measurement biases inherent in each platform.
The effectiveness of this strategy is limited by experimental
realities: unknown non-linear signal response, signal satura-
tion and background noise. For example, if a gene is observed
at levels comparable to the background noise, its true expres-
sion level cannot be recovered. We have shown that the
difference in detected genes is extremely large. For example,
in Affymetrix MAS processed data and LongSAGE compari-
sons only approximately one-half of the observed genes are
common to both experiments. These differences cannot be
resolved by normalization and we present, for the first time,
an explanation for these differences.

This study has also demonstrated that the impact of the
G+C bias is not merely restricted to detection but affects
the gene expression level itself. Hence, one cannot infer
that gene A is more highly expressed than gene B from the
gene expression intensity value assigned to each gene.
While relative expression changes between individual experi-
ments within a single platform are valid, we have shown,
for the first time, that certain genes will be harder to observe
(i.e. have lower expression intensity values) in certain plat-
forms (e.g. MPSS is poor at detecting genes with high A+T
content probe sets).

We have demonstrated that differences in sensitivity
directly impact the genes that are observed. This observation
presents an explanation and means of quantifying one source
of experimental error in gene expression experiments. Of the
methods studied, LongSAGE performs the best, while MPSS
shows a strong bias to G+C rich tags and Affymetrix shows
different biases as a function of the data processing method.
The Affymetrix bias is partially corrected by the RMA
software and a similar approach may improve MPSS data.
Still, large experimental biases remain and an understanding
of them is necessary for correct interpretation of gene
expression data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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