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Abstract: The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research
communities to better understand this rapidly spreading infection. Employing multiple bioinformatics
and computational pipelines on transcriptome data from primary normal human bronchial epithelial
cells (NHBE) during SARS-CoV-2 infection revealed activation of several mechanistic networks,
including those involved in immunoglobulin G (IgG) and interferon lambda (IFNL) in host cells.
Induction of acute inflammatory response and activation of tumor necrosis factor (TNF) was
prominent in SARS-CoV-2 infected NHBE cells. Additionally, disease and functional analysis
employing ingenuity pathway analysis (IPA) revealed activation of functional categories related
to cell death, while those associated with viral infection and replication were suppressed. Several
interferon (IFN) responsive gene targets (IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44
and IFI44L) were highly upregulated in SARS-CoV-2 infected NBHE cell, implying activation of
antiviral IFN innate response. Gene ontology and functional annotation of differently expressed
genes in patient lung tissues with COVID-19 revealed activation of antiviral response as the hallmark.
Mechanistic network analysis in IPA identified 14 common activated, and 9 common suppressed
networks in patient tissue, as well as in the NHBE cell model, suggesting a plausible role for these
upstream regulator networks in the pathogenesis of COVID-19. Our data revealed expression of
several viral proteins in vitro and in patient-derived tissue, while several host-derived long noncoding
RNAs (lncRNAs) were identified. Our data highlights activation of IFN response as the main hallmark
associated with SARS-CoV-2 infection in vitro and in human, and identified several differentially
expressed lncRNAs during the course of infection, which could serve as disease biomarkers, while
their precise role in the host response to SARS-CoV-2 remains to be investigated.

Keywords: SARS-CoV-2; COVID-19; gene expressions; pathway analysis; bronchial epithelial; IFN
response; immune response; MAPK; lncRNAs

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) was declared a global pandemic by the World Health Organization (WHO) on
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11 March 2020 [1,2]. Since its initial emergence, COVID-19 has spread to the majority of countries
worldwide, with more than 10.0 million confirmed cases and over 500,000 deaths thus far [3];
requiring an imminent response from medical research communities to better understand this rapidly
spreading infection.

Although SARS-CoV-2 is the seventh coronavirus which has led to human disease, it is the third
strain to surpass common cold like symptoms, all three deriving from the β-coronavirus genus [4],
with the first and second resulting in endemics in recent history [5]. Severe acute respiratory syndrome
coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) breakouts
were reported in Southern China in 2003 and Saudi Arabia in 2012, respectively. To confirm genealogy,
genomic sequencing of SARS-CoV and MERS-CoV showed approximately 79% and 50% similarities
with SARS-CoV-2, respectively [6]. SARS-CoV and SARSCoV-2 also share around 76% in amino
acid identities [7]. Mathematical algorithms show that SARS-CoV-2 has a high estimated basic
reproductive number (R0), reported as high as 6.49 (mean; 3.28), exceeding WHO estimations of 2.5 [8].
In contrast, SARS-CoV and MERS-CoV have R0 scores of <1 and 1.4–2.5, respectively [6]. This is
indicative of SARS-CoV-2 ability to spread faster than other Coronaviridae strands, possibly as a result
of asymptomatic transmission when encountering close human contact (respiratory droplets) during
the incubation period of 2 to 14 days [6]. Symptoms of COVID-19 include atypical pneumonia, high
fever, respiratory difficulties, shortness of breath, a dry cough and a sore throat. Severe cases have also
reported organ failure and death. Most of these same symptoms also present with other viruses of
the same Coronaviridae family.

Structurally, coronaviruses are single stranded RNA, positive sense, enveloped viruses of around
30 kilobases, coding for multiple structural and non-structural proteins [9]. The four structural proteins
include the main lattice forming membrane (M) protein, spike proteins (S) which form dimers and
facilitate viral attachment onto host cell receptors via glycoprotein projections, envelop (E) proteins and
the nucleocapsid (N) protein which homes the helical viral genome, some of which is non-coding [10].
With viral infections initiating from the binding to host cellular receptors, extensive research has been
conducted on receptor recognition, identifying human angiotensin converting enzyme 2 (hACE2) as
receptor for human viral entry for SARS-CoV and human dipeptidyl peptidase 4 (hDPP4) as receptor
for MERS-CoV [11–14]. With this knowledge at hand, researchers were able to swiftly associate
SARS-CoV-2 binding with hACE2, mainly expressed on type 2 alveolar cells [15], as the mechanism
of entry into host cells due to amino acid residue similarities in its receptor binding domain (RBD).
In fact, nine out of the 14 residues in the RBD of SARS-CoV are conserved in human through bat [16].
Residues evolving on the viral RBD is predicted to contribute to viral adaptation, in turn, facilitating
cross species transmission [17–19]. Comparative sequence analysis in human ACE2 revealed 84.8%
and 80.8–81.4% similarities with pangolins and bats, respectively [20]. Further interspecies analysis
reports are constantly emerging [21,22] to solidify our understanding of the origins of SARS-CoV-2,
facilitating helpful solutions for subsequent disease control. In fact, through structural and biochemical
data, Shang et al., have shown that through these changes in amino acid residues, SARS-CoV-2 RBD
has a significantly higher hACE2-binding affinity than SARS-CoV RBD [23,24]. This could be due to
the identification of naturally selected “hotspot” regions of the RBD for exceptionally high affinity
hACE2 binding [19]. Cryogenic electron microscopy (Cryo-EM) structures of the SARS-CoV-2 spike
glycoprotein protrusions show that 20 out of 22 are conserved from SARS-CoV to SARS-CoV-2, with
an additional furin cleavage site setting them apart.

Aside from the coding part of the human genome, research efforts in the past decade have been
significantly shaped by the discovery of non-coding RNAs’ (ncRNAs) potential and role in various
cellular processes, including the onset and progression of many diseases including cancers and
infectious disease [25,26]. Viral ncRNAs have shown to have just as much functional and pathological
importance as viral structural proteins [27,28]. Deep RNA sequencing of lung tissue of SARS-CoV
infected mice revealed three small viral RNAs (svRNAs) that when inhibited via the use of antagomirs,
caused a reduction in pro-inflammatory cytokine expression and reduced lung pathology [29].
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Phenomenal changes in ncRNA expression are also seen within host cells, which can play a major
role in respiratory virus pathogenesis, with long non-coding RNAs (lncRNAs) exhibiting higher
tissue specificity than coding genes [30]. LncRNAs are around 200 base pairs in length and have
been predicted to play a role in innate immune responses via their association with IFN mechanistic
pathways [31]. Understanding the effects of their differential expression and modes of action will
immensely impact the fields of immunology and infectious diseases. Whole transcriptome analysis of
host response to SARS-CoV in mouse strains highlighted over 500 differentially expressed annotated
lncRNAs, which clearly showed association with innate immune signaling and pathogenesis regulation
through Signal transducer and activator of transcription 1 (STAT1) [31].

In our current study, we employed modern computational genomics tools and performed more
in-depth analysis of transcriptome data from primary normal human bronchial epithelial cells (NHBE)
during the course of SARS-CoV-2 infection and lung biopsies derived from COVID-19 patients
from the Blanco-Melo et al. study, revealing multiple affected mechanistic networks and functional
categories related to innate immunity, interferon activation and cellular response to viral infection [32].
Additionally, we characterized the lncRNA transcriptional portrait in response to SARS-CoV-2 infection
in NHBE cells, as well as in lung biopsies derived from COVID-19 patients. To our knowledge, this is
the first study highlighting systemic alterations in cellular host response to SARS-CoV-2 infection
in the context of lncRNAs, adding to previously published data, in efforts to further grasp their
potential utilization as disease markers or therapeutic targets.

2. Materials and Methods

2.1. Dataset and Bioinformatics

Raw RNA sequencing data were retrieved from the sequence read archive (SRA) database
under accession no. (PRJNA615032) [32]. Detailed experimental procedures are explained
in the aforementioned reference. Single-end FASTQ files for mock (SRX8089292, SRX8089293,
and SRX8089294) and SARS-CoV-2 infected (SRX7990869, SRX7990870, and SRX7990871) NHBE
cells (24 h) as well as FASTQ files for lung biopsies from healthy (SRX8089341 and SRX8089342) and
from patients with COVID-19 (SRX8089343 and SRX8089344) were retrieved using the SRA toolkit
version 2.9.2 as previously described [33]. FASTQ files were subsequently mapped and aligned
to the hg38 reference genome (including both protein coding and non-coding RNAs) using built
in RNA-seq analysis module in CLC genomics workbench 20.0 with default settings as we described
before [34]. To detect viral genome transcriptome, raw sequence data were aligned to the NCBI
viral genome reference sequence in CLC genomics workbench 20.0 and subsequently mapped reads
to severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome (NCBI
Reference Sequence: NC_045512.2) was estimated. All expression values for mRNA, lncRNA, and viral
genes from the current study are provided in Supplementary Table S1. Normalized expression data
(TPM (Transcripts Per Million) mapped reads) for protein coding were separated from those of lncRNAs
using BioMart Ensembl tool and were sequentially imported into AltAnalyze v.2.1.3 software for
differential expression analysis using 2.0-fold change and <0.05 p-value cut-off. Transcripts with raw
expression values < 1.0 TPM were excluded from the analysis. Hierarchical clustering was performed
using cosine for columns and cosine for rows, and marker finder prediction as described before [35,36].
Cell type and gene expression explanations were allotted using a custom gene-set enrichment approach.
Cell type predictions were created from the software Gene Ontology (GO)-Elite in AltAnalyze using its
previously defined cell and tissue marker gene database. This database encompasses markers for lots
of nominated cell types and bulk tissue samples. The databases are created mainly from the Ensembl
database that includes all external ID systems related to Ensembl as well as supported platforms
(e.g., Illumina). Relationships to numerous biological Ontology (GO, disease and phenotype), pathway
and gene set resources are conserved. Marker Finder analysis was achieved within each experimental



Genes 2020, 11, 760 4 of 19

condition to predict specific markers based on gene-set enrichment by GO-Elite algorithm as described
before [37].

2.2. Gene Set Enrichment and Modeling of Gene Interactions Networks

Upregulated genes were imported into the Ingenuity Pathways Analysis (IPA) software (Ingenuity
Systems; Qiagen, Redwood City, CA, USA) www.ingenuity.com/) and were subjected to functional
annotations and regulatory network analysis using upstream regulator analysis (URA) to analyze
upstream molecules, which are connected to genes in the dataset via a set of either direct or indirect
relationship based on changes in expression. Mechanistic networks (MN) analysis was performed
using IPA to generate signaling cascades which connect upstream regulators to help visualize how
they connect to explain the observed changes in gene expression. Downstream effector analysis (DEA)
identifies the biological processes (disease) and functions, which are casually affected by deregulation
of genes in datasets and predicts their activation state (Z score). IPA uses precise algorithms to predict
functional regulatory networks from gene expression data and provides a significance score for each
network according to the fit of the network to the set of focus genes in the database. The score represents
the negative log of the p-value for the probability that focus genes in the network are found together by
chance [34].

2.3. Statistical Analyses

Statistical analyses and graphing were performed using Microsoft excel 2016 and GraphPad
Prism 8.0 software (GraphPad, San Diego, CA, USA). Two tailed t-test was used for comparative
groups. p-values ≤ 0.05 (two-tailed t-test) were considered significant. For IPA analyses, a Z score
(−2.0 ≥ Z ≥ 2.0) was considered significant.

3. Results

3.1. Identification of Differentially Regulated Host Cell Genes in Response to SARS-CoV-2 Infection
NBHE Cells

To highlight the changes in cellular host genes in response SARS-CoV-2 infection, we employed recent
RNA-seq datasets utilizing the NBHE cell model. Analysis of three biological triplicates of NHBE cells
mock treated (control) or infected with SARS-CoV-2 (USA-WA1/2020) instigated differential expression of
377 upregulated and 3012 downregulated mRNAs (Figure 1a and Supplementary Table S2). A volcano
plot (scatterplot) that shows statistical significance (log p value; Y-axis) vs. magnitude of change (log fold
change; X-axis) is depicted in Figure 1b, with selected genes being displayed. The red colors (right) and
blue colors (left) represent genes with significantly upregulated or downregulated expression in NHBE
SARS-CoV-2 vs. mock-infected cells, respectively (Figure 1b). Transcriptome data were subsequently
mapped and aligned to the NCBI viral genome reference sequence which revealed the expression of several
SARS-CoV-2 viral genes, particularly Open Reading Frame (ORF) that codes for viral non-structural
proteins (NSP), orf1ab_8; S_14; ORF3a_9; E_10; M_51; ORF6_14; ORF7a; ORF8_8; N_65; and ORF10_9,
except ORF7b which was not expressed (Figure 1c).

We subsequently employed the marker gene finder algorithm to identify genes associated
with the SARS-COV-2, employing the NHBE model. Modules of co-expressed mRNAs (120 genes)
were associated with specific biological condition, (i.e., SARS-CoV-2), where the heatmap highlights
differentially expressed mRNAs that are positively correlated with an idealized cluster-specific
expression profile. We found putative markers that are selectively expressed in SARS-CoV-2 vs. control
infected NBHE cells. The text on the left side of the y-axis indicates enriched cell- type markers from
the default gene-set enrichment analysis (Gene Ontology-Elite) along with top default gene markers
for each GO term displayed on the right side of the y-axis on the heatmap. The color scale displays
differential gene expression (log2). In SARS-COV-2 infected cells, top modules of co-expressed genes
were associated with acute inflammatory response, response to TNF and Interferon gamma (INFG),
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immune response, cell adhesion, leukocyte migration, cell projection, lipid transport, transcription
from RNA polymerase II promotor, cytosol and extra cellar space, and cell projection, respectively.
Whereas cell cycle, mitosis, vascular membrane and mRNA transport, and cellular development GO
classifications were enriched in the mock control group (Figure 1d and Supplementary Table S3).

Figure 1. Clustering of SARS-CoV-2 and control NBHE cells based on mRNA RNA-seq analysis.
(a) Hierarchical clustering of control and SARS-CoV-2 infected NHBE cells based on differentially
expressed mRNAs. Each column represents one replica, while each row represents one mRNA.
Expression is depicted at the indicated color scales. (b) Volcano plot representation of significantly
altered genes in NHBE SARS-CoV-2 vs. mock infected cells. Red and blue colors indicate the genes with
significantly increased or decreased expression, respectively. (c) Relative expression of the indicated
viral genes in SARS-COV-2 NHBE vs. control NHBE cells. (d) Marker discovery analysis to identify
putative markers that are selectively expressed in control vs. SARS-CoV-2 infected NBHE cells. Enriched
gene ontology (GO) associations are indicated on the y axis.
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3.2. Canonical and Upstream Regulator Analysis Highlights Activation of Interferon Response Pathways
in SARS-CoV-2 NHBE Cells

Canonical pathway analysis on the differentially expressed genes in SARS-CoV-2 NHBE cells using
ingenuity pathway analysis (IPA) revealed downregulation of several canonical pathways, including
Ephrin receptor signaling (Figure 2a and Supplementary Table S4). IPA upstream regulator analysis
provides a powerful tool to predict the deregulated functional activities that are possibly affected by
the transcriptome data. Figure 2b horizontal bars denote the different upstream regulators (top 10 up
and down regulated genes) in the SARS-CoV-2 group based on the Z-scores. This analysis revealed
significant enrichment in several functional classifications, those predicted to be activated (top 10)
are associated with type I and III interferon groups that play important roles against viral infection,
mainly IFNL1 (IL-29; IFN-lambda 1), IFNG cytokines and IgG complex, and LONP1, CST5, SPI1,
TRAP1, KDM5B, DAP3, and let-7 microRNA (miR/miRNA). Conversely, functional categories that were
predicted to be inhibited (top 10) are interrelated to p53 binding and cell cycle (ESR1, CAB39L, SYVN1,
RABL6, TP63, BRD4, MAPK1, MYC, MITF and ERBB2 (Figure 2b and Supplementary Table S5).

Figure 2. Ingenuity pathway analysis (IPA) of differentially expressed gene in Control and SARS-CoV-2
infected NBHE cells. (a) Canonical IPA analysis of differentially expressed genes in SARS-CoV-2
vs. control NBHE cells. X- axis indicates Z score while y-axis indicates the corresponding canonical
pathways. Blue color indicates suppressed pathways. (b) Upstream regulator analysis of differentially
expressed genes in SARS-CoV-2 vs. control NBHE cells using IPA. IgG (c) and interferon lambda 1
(IFNL1, (d)) mechanistic network and their activation state in SARS-CoV-2 infected NBHE cells based
on IPA analysis.



Genes 2020, 11, 760 7 of 19

IgG complex and IFNL were observed among the top predicted upstream regulators
in the SARS-CoV-2 group and were chosen for mechanistic network analysis to provide better
understanding of the upstream regulators leading to downstream effector molecules and subsequent
changes in gene expression. The predicted active state of IgG complex was anticipated to activate
the NFkB and RELA complex through inhibiting ERK directly. Although mechanistic network analysis
illustrates that the IgG complex plays a role in the downregulation of TP63 and activation of RELA
through activation of TNF, the effect of this relationship is still under evaluation (Figure 2c). Likewise,
the predicatively active IFNL and its associated network molecules, are illustrated in Figure 2d.

3.3. SARS-CoV-2 NHBE Gene Signature Predicted Activation of Cell Death and Inhibition of Viral Infection
Based on Disease Functions Analysis by IPA

Downstream effector analysis in IPA predicts the differences in the downstream biological functions
that are presumed to be affected by the changes in the transcriptome. Tree map (hierarchical heat map)
portrays the affected downstream functional groups based on differentially expressed mRNAs, where
the major boxes represent a category of diseases and functions in the SARS-CoV-2 group. Each individual
rectangle (blue and orange colors) indicates the decreasing and increasing state, while rectangle
dimensions using Fisher exact test (FET) p-value is associated with increasing overlap significance,
either up or down as a group, and color intensity stipulates higher absolute Z-scores (Figure 3a).
Disease and function analysis on the differentially expressed genes revealed the most significant
enrichment in pathways related to reactive oxygen species, induction of apoptosis and necrosis, as well
as activation of neutrophils in SARS-CoV-2 infected NHBE cells (Figure 3a,b). On the other hand,
the most suppressed functional category in SARS-CoV-2 infected NHBE cells was the infectious disease
category, which includes replication and infection by viruses (Supplementary Table S6).

IPA analysis revealed the suppression of viral infection and replication as the main affected
functional category in SARS-CoV-2 NHBE cells. Therefore, we sought to elucidate the expression of
selected genes with known role in combating viral infection. Figure 3e depicts the upregulation of
IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L in SARS-CoV-2 infected NBHE
cells, which are known to play crucial roles in host cell responses to viral infection through type I
interferon. Those data were further validated in RNA-seq dataset from calu-3 (lung adenocarcinoma)
cells infected with SARS-CoV-2 (Supplementary Figure S1).
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Figure 3. Downstream effector analysis of differentially expressed genes in SARS-CoV-2 infected
NBHE cells. (a) Tree map (hierarchical heat map) depicting affected functional categories based on
differentially expressed genes where the major boxes represent a category of diseases and functions.
Each individual colored rectangle is a particular biological function or disease and the color range
indicates its predicted activation state—increasing (orange) or decreasing (blue). Darker colors indicate
higher absolute Z-scores. In this default view, the size of the rectangles is correlated with increasing
overlap significance. (b) Bar graph depicting the activated (red) and suppressed (blue) functional
categories. (c) Expression of selected gene from the antiviral defense genes category in mock and
SARS-COV-2 infected NHBE cells.

3.4. Expression Pattern of lncRNAs in SARS-CoV-2 Infected NBHE Cells

Given their emerging role as key regulators of various biological functions [38], our comparative
analysis comparing SARS-CoV-2 and control NBHE cells revealed 155 upregulated and 195
downregulated lncRNAs in response to SARS-CoV-2 viral infection (Supplementary Table S7). While
lncRNAs are emerging regulators implicated in a myriad of biological processes; their role in antiviral
host response is mostly unknown. Hierarchical clustering of control and SARS-CoV-2 infected NHBE
cells based on differentially expressed lncRNAs revealed a clear separation of the two treatment
groups (Figure 4a). Volcano plot illustrating differentially expressed lncRNAs in SARS-CoV-2 vs. mock
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infected NHBE cells is presented in Figure 4b.The expression level of selected upregulated lncRNAs
from the RNA-seq data (AC008760.2, RP1-20B21.4, RP11-329L6.1, RP11-498C9.3, RP11-385G11.10,
AL161431.1, MALAT1, NEAT1, RP11-519G16.5, RN7SL834P, CTB-79E8.2, RP11-344B2.2, ACOO4264.1,
MIR3142HG, RP11-198G11.2, AC015712.7, U62317.4 and AC083862.2) in SARS-CoV-2 infected NBHE
cells is presented in figure (Figure 4c). The role of those lncRNAs in the cellular response to SARS-CoV-2
remains to be investigated.

Figure 4. Clustering of SARS-CoV-2 and control NBHE cells based on lncRNA expression.
(a) Hierarchical clustering of control and SARS-CoV-2 infected NHBE cells based on differentially
expressed lncRNAs. Each column represents one replica, while each row represents one lncRNA.
Expression is depicted at the indicated color scale. (b) Volcano plot representation of differential
expression analysis of lncRNAs in NHBE SARS-CoV-2 vs. mock infected cells. Red and blue colors
indicate the genes with significantly increased or decreased expression, respectively. (c) Expression of
selected lncRNAs in mock and SARS-COV-2 infected NHBE cells.

3.5. Alterations in Gene Expression and Associated Functional Classification in Lung Tissue from Patient with
COVID-19 Revealed Activation of Interferon and Response to Viral Infection as the Main Hallmarks

Transcriptome data of lung tissue from patients with COVID-19 compared to healthy subjects
from the Blanco-Melo study [32] were subjected to differential and biomarker discovery analysis
(Figure 5a). Differentially expressed mRNAs and lncRNAs in COVID-19 compared to healthy control
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are listed in Supplementary Table S8. Functional enrichment studies show differentially expressed
genes that positively correlate with an idealized cluster-specific expression profile in COVID-19 lung
tissue, while enriched gene ontology (GO) associated with enriched GO terms are indicated on the Y
axis. Color scales display marker gene correlation and differential gene expression (log2). Interestingly,
several enriched GO classifications in the COVID-19 group were associated with immune response,
negative regulation of viral genome replication, activation of JUN, and regulation of NFKB pathways
(Figure 5a). Mapping and aligning RNA-seq data to the NCBI viral genome reference sequence revealed
expression of orf1ab_8, S_14, M_51, ORF67a, ORF8_8 and N_65 viral genes (Figure 5b). There was no
detected expression of ORF3a_9, E_10, ORF6_14, ORF7b and ORF10_9 viral genes in COVID-19 lung
tissue (Figure 5b). In order to identify common genes and lncRNAs in the context of SARS-COV-2
infection, we compared the transcriptome of SARS-CoV-2 NHBE cells and lung tissue from patients
with COVID-19, and identified 27 common upregulated and 867 common downregulated genes
(Figure 5c). Similarly, comparing the lncRNA transcriptome also revealed 5 common upregulated and
57 common downregulated lncRNAs in SARS-CoV-2 NHBE and COVID-19 patient-derived lung tissue
(Figure 5d), suggesting a plausible role for these genes and lncRNAs in host response to SARS-CoV-2
infection. The list of common altered mRNAs and lncRNAs in NHBE SARS-CoV-2 and COVID-19 is
provided in Supplementary Table S9.

Figure 5. Alteration in mRNA and lncRNA expression in lung biopsies from patient with COVID-19.
(a) Marker discovery analysis to identify putative markers that are selectively expressed in the lungs
from COVID-19 subjects compared to normal lung tissue. Enriched gene ontology (GO) associations
are indicated on the y axis (left) while gene guides are listed on the right side. (b) Relative expression of
the indicated viral genes in lung tissue from COVID-19 patient. Comparative analysis of differentially
expressed mRNAs (c) and lncRNAs (d) in NHBE compared to patient-derived lung tissue.
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3.6. Upstream Regulator Predicts Upregulation of JAK-STAT and Interferon Cascade and miR-122 Functional
Categories in Lung Tissue from COVID-19 Patient

The top ten activated upstream regulator networks (CST5, IFNG, IFNL1, IFNA2, SPI1, RNY3, PRL,
TGM2, miR-122 and miR-122-5p) in lung tissue derived from COVID-19 patient based on transcriptome
and IPA analyses, revealed the enrichment of functions related to immune system associated JAK-STAT
cascade, type 1 interferon receptor binding, cytokine receptor binding, and MHC 1 biosynthesis
(Figure 6a and Supplementary Table S10). Likewise, the ten most inhibited upstream regulator
networks were MAPK1, ASPSCR1-TFE3, EHMT1, SYVN1, IL1RN, BTK, ERG, TP53, UHRF2, and GPER1,
respectively (Figure 6a). When comparing affected upstream regulator networks in SARS-CoV-2
NHBE and lung tissue from COVID-19 patients, we observed 14 common activated (IFNL1, CST5,
SPI1, TRAP1, IFNG, NUPR1, TGM2, SMARCB1, RNY3, STAT1, IRF9, PRL, IFNA2, and Interferon α)
and 9 common suppressed networks (TAP1, GPER1, TFEB, UHRF2, ASPSCR1-TFE3, IL1RN, BTK,
SYVN1, and MAPK1, Figure 6b), suggesting changes observed in patient tissue are indeed inflicted by
SARS-CoV-2 infection. IFNG mechanistic network illustrates gene expression and their interaction
state as well as their subcellular localizing based on IPA. The network flow explains IFNG’s role
and function in the extracellular space, plasma membrane, cytoplasm and nucleus. Arrows indicate
direct interactions (activation or inhibition) between upstream and downstream pathway molecules.
Molecule type is illustrated as per the indicated shapes. Activation state is depicted according to
the color scale (Figure 6c).

Figure 6. Mechanistic Network Analysis Predicts central role for IFNG in the host response of patients
with COVID-19 infection. (a) Top ten activated and top ten inhibited upstream regulator networks
in lung tissue derived from COVID-19 patients based on transcriptome and IPA analyses. (b) Venn
diagram illustrating the overlap between activated and suppressed upstream regulator networks
in SARS-COV-2 NHBE and lung tissue from COVID-19 patients based on RNA-seq and IPA analysis.
(c) Illustration of the IFNG mechanistic network according to subcellular localization. Activation state
is depicted according to color scale.
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3.7. Suppression of Viral Infection and Replication Based on Transcriptome and IPA Analysis of Lung-Derived
Tissue from COVID-19 Patient

The topmost enriched functional category based on RNA-seq from lung-derived tissue from
COVID-19 patient using the regulator effect network analysis was the suppression of viral infection
and replication (Figure 7).

Figure 7. Suppression of viral infection and replication based on transcriptome and IPA analysis of
lung-derived tissue from COVID-19 patient. Regulator effects network analysis based on IPA revealed
suppression of viral infection and replication in lung tissue from patients with SASRS-COV-2 infection.
Network highlights a role for BTK, EIF2AK2, IFNA2, IFNG, IFNL1, IL1RN, Interferon α, IRF9, JAK,
MAPK1, PAF1, PRL, RNY3, SGPL1, SPI1, STAT1, TGM2 and USP18 in mediating these inhibitory effects
as illustrated. Activation state is depicted according to the color scale.

The network combined differentially expressed potential upstream regulators (18, including 14
activated (orange; EIF2AK2, IFNA2, IFNG, IFNL1, Interferon α, IRF9, JAK, PAF1, PRL, RNY3, SGPL1,
SPI1, STAT1 and TGM2), four inhibited (blue; BTK, MAPK1, IL1R1 and USP10)) and 18 mediator
genes (including 17 increased and 1 decreased) in the middle of the hierarchy, which are involved
in the inhibition of 5 major downstream effector functions such as viral infection and replication,
and infection of epithelial cells. Among the 18 upstream regulators, IRF9, interferon α, IFNA2 and
EIF2AK2 suppress downstream functions directly, as well as through the mediator genes, which
collectively implies a massive IFNG response and subsequent predicted suppression of viral replication
(Figure 7). Concordantly, disease and function analysis revealed viral infection as the most affected
functional category in lung tissue from COVID-19 patients (Figure 8 and Supplementary Table S11).
Cumulative complex network depicts the viral infection functional category according to subcellular
localization. The majority of the green color associations indicate the down regulation and the minority
in red indicate the upregulation of appropriate molecules in the extracellular space, plasma membrane,
cytoplasm and nucleus (Figure 8).
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Figure 8. Illustration of the viral infection functional category according to subcellular localization
based on transcriptome and IPA analysis of lung-derived tissue from COVID-19 patients.

4. Discussion

Since the recent outbreak of COVID-19, the number of affected individuals is rising expeditiously,
claiming hundreds of thousands of lives thus far. Such a crisis calls for prompt responses from research
communities to better understand and contain this rapidly spreading pandemic. In our current study,
we explored recent in vitro and patient-derived transcriptome datasets to dissect the cellular and
molecular changes in response to SARS-CoV-2 infection using state-of-the art bioinformatics pipelines.
In vitro and patient-derived data revealed a central role for IFN signaling in the host response to
SARS-CoV-2 infection. As part of our innate anti-viral defense, host cells release interferons as the first
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warning to a suspected infection. Interferons are a large group of signaling proteins (cytokines) that
facilitate interference with viral replication as a defense mechanism, classed based on receptor signaling
receptors and subsequent pathways, with some overlap. Our data shows a number of differentially
expressed genes within the interferon type I and type III pathways in the SARS-CoV-2 infected cells
compared to control NHBE cells. These genes (Supplementary Table S2) include STAT2 and IRF9,
translocate to the nucleus and stimulate additional transcription of genes related to anti-viral responses,
common to interferon type I and III [39,40]. In addition, other aberrantly expressed genes in response
to viral infection include Vav1, which is member of interferon type I and III pathway, leading to
cAMP Response Element-Binding Protein (CREB) mediated chromatin remodeling, also contributing
to gene specific repression [41]. Furthermore, our data identified IRS2, mTOR genes, 4EBP1, EIF4A3,
and RPS6, (components of type I and II signaling pathways) to be differentially expressed, affecting
mRNA translation in response to interferon receptor signaling [42]. Blanco-Melo et al., also found
a high level of chemokines induction, in concordance with our data, as well as high levels of type I and
type III interferon response in human adenocarcinoma alveolar basal epithelial (A549) cells expressing
ACE2, and in Calu-3 host cells infected with SARS-CoV-2 [32]. In these models, a significant interferon
I and III response signature is seen, which is concordant with our findings.

Looking into changes in gene expression in lung biopsies from COVID-19 patients revealed
substantial induction of immune response (p = 5.7 × 10−35), including innate immune response
(p = 5.3 × 10−29). In particular, we observed the activation of antiviral defense (p = 4.7 × 10−19)
mechanisms through upregulation of genes that inhibit viral replication (OAS1, OAS2, OASL, ISG15,
MX1, APOBEC3A, C19orf66, EIF2AK2, IFIT1, IFITM1, IFITM2, IFITM3, LTF, TNF, and ZC3HAV1).
Several of the upregulated genes are also known to play a role in preventing viral entry into host cells
(FCN1, IFITM1, IFITM2, and IFITM3). A number of receptors which facilitate viral entry into host
cells have been described. Interestingly in a patient with active viral gene transcription, we observed
upregulation of several surface receptors implicated in viral entry into host cells (CD4, CD86, CD80,
ACE2, CLDN1, CD55, CR1, and CLEC5A). Concordant with our findings, recent data revealed
SARS-CoV-2 cell entry to depend on ACE2 and TMPRSS2 [7,24]. While ACE2 was upregulated
in COVID-19 lung tissue, TMPRSS2 was severely downregulated (−7.1 FC, p = 0.007) suggesting
downregulation of TMPRSS2 as a plausible mechanism through which the host counteracts SARS-CoV-2
infection. It is not clear why ACE2 expression was unregulated in lung tissue from COVID-19 patient.
It is possible that ACE2 expression is induced in response to interferon signaling. In fact, analyzing
data from NHBE cells treated with INFB revealed a time-dependent increase in ACE2 expression
in response to INFB treatment (Supplementary Figure S2).

Looking into commonalities in upstream analysis between the NHBE and COVID-19 data, our data
revealed 14 common activated (IFNL1, CST5, SPI1, TRAP1, IFNG, NUPR1, TGM2, SMARCB1, RNY3,
STAT1, IRF9, PRL, IFNA2, and Interferon α) and 9 common suppressed (TAP1, GPER1, TFEB, UHRF2,
ASPSCR1-TFE3, IL1RN, BTK, SYVN1, and MAPK1) networks. Interestingly, our data highlighted
a role for the activation states of PAF1, IFNL1, IFNG, STAT1, RNY3, SPI1, JAK, PRL, SGPL1, TGM2,
EIF2AK2, IFNA2, interferon α, and IRF9 as the upstream regulators leading to subsequent activation of
CYBB, IFITM3, ZC3HAV1, IFITM1, IFITM2, MX1, TNF, OAS3, ISG15, APOBEC3A, IFIT1, OAS1, OASL,
and STAT2 activation, collectively leading to inhibition of viral genome replication. Our data also
highlights a central role for CST5 and IFNG activation and suppression of MAPK1 and Interleukin-1
receptor antagonist (IL1RN) in the host response against SARS-COV-2 infection.

Downregulation of the Mitogen-activated protein kinase 1 (MAPK1) network was observed
in SARS-CoV-2 infected NHBE as well as in COVID-19 lung tissue. MicroRNA translation of
IFN-stimulated genes is additionally regulated through the Mitogen-activated protein kinase (MAPK)
pathway [43], as well as a variety of essential cell processes including mitosis, cell survival, apoptosis,
metabolism and cell differentiation [44]. MAPK1, or ERK2, was found to be suppressed in the in vitro
model and patient data in our current study. Upon phosphorylation, MAPK1 subsequently
phosphorylates a number of transcription factors including FOS, MYC, EGR-1, Elk-1, and JUN [45].
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Therefore, its suppression will ultimately affect transcriptional activation of further downstream genes.
Research into the Ebola virus by Zampieri et al., show glycoprotein mediated cytotoxicity as a result of
MAPK signaling cascade. This inhibition of ERK2 was found to negatively affect cellular viability and
integrin expression [46]. This is also in concordance with other studies that show inhibition of the ERK
pathway as a result of hepatitis C virus (HCV) and HIV type 1 infection [47,48].

In addition to protein coding genes, our data also highlighted a number of lncRNAs which
were differentially expressed in COVID-19 patient-derived lung tissue. For instance, using marker
finder algorithm, upregulation of AC131011.2, AC007298.2, AC002398.2, AC022966.2, AC006064.4,
AC099343.4, AC007032.1, AL034397.3, AC008537.4 and downregulation of LINC01089, LINC00115,
AC027288.3, AC103706.1, AC022098.1, AC020915.3, AC007192.2, AP002840.2, AC018690.1, AC015819.1,
AC009318.2, AC245140.2, AC097382.3, and AL035587.2 was associated with COVID-19 infection.
Interestingly, we observed upregulation of metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) and Nuclear-enriched autosomal transcript 1 (NEAT1) lncRNAs in NHBE cells in response
to SARS-CoV-2 infection. Despite the emergence of lncRNAs as critical mediators of various biological
processes, mechanistic roles for many lncRNAs in viral infection are still poorly understood. Studies
on MALAT1 have shown this lncRNA to be overexpressed in several cancer tissues, associated
with high rates of metastasis, and poor prognosis in lung cancer [49], breast cancer [50], colon
cancer [51] and esophageal cancer [52], as well as several other cancer types. MALAT1 has also
been implicated in the regulation of histone acetylation [53], endothelial to mesenchymal transition
(EMT) [54], and cardiac inflammation and dysfunction [55]. Emerging research has highlighted yet
another role for MALAT1 lncRNA in viral infection and innate immune processes, affirming the crucial
roles it plays in many biological processes. Wei et al., investigates the role of MALAT1 in inflammatory
injury following lung transplant, which could give plausible indicators for the role of MALAT1
in inflammation injury following SARS-Cov-2 infection. Interestingly, silencing MALAT1 alleviated
inflammatory injury by inhibiting neutrophil chemotaxis and immune cell infiltration to the site of
infection [56]. They suggest this could regulate the progression of acute lung injury through NF-kB
and p38 MAPK pathways [57], however is it also plausible that the inhibition of neutrophil chemotaxis
lightens the burden of cytokine storms in lung inflammation injury. Bhattacharyya et al., describe
the role of MALAT1 in two flaviviruses; Japanese encephalitis virus (JEV) and West Nile virus (WNV).
Neuro2a cells treated with these viruses show MALAT1 overexpression, promoting inflammatory
response [58].

MALAT1, along with lncRNA NEAT1, have been shown to be potential biomarkers for HIV
infection, after the detection of high levels of both lncRNAs in peripheral blood mononuclear cells
(PBMCs) upon infection [59]. Qu et al., found MALAT1 to promote HIV-1 transcription and infection
by alleviating the epigenetic silencing of HIV-1 transcription via its interaction with enhancer of zeste
homolog 2 (EZH2), which binds the HIV-1 promoter [60]. Neat1 knockout mice present enhanced
inflammation through the activation of NLRP3 and NLRC4 inflammasomes, promoting inflammatory
mediated cell death in vivo [61]. In addition to this, NEAT1 has also been shown to be involved in HIV-1
replication in infected cells. The knockdown of NEAT1 enhanced viral production by promoting
nucleus-to cytoplasm export of HIV-1 mRNA transcripts in HeLa cells [62]. The current data provides
us with plausible indicators surrounding the involvement of such lncRNAs in the progression of
SARS-Cov-2 infection. The specific mechanisms, whether it be via the regulation of inflammation,
epigenetic silencing of target genes or dysregulation of gene expression are yet to be deciphered. Further
research into the roles of MALAT1 and NEAT1 in the context of COVID-19 will be valuable in further
understanding the mechanism behind disease progression in the perusal of potential biomarkers and
therapeutic intervention.

5. Conclusions

Our results highlighted activation of IFN and inflammatory response as the main hallmark
associated with SARS-CoV-2 infection, and identified several differentially expressed lncRNAs
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during the course of infection, which could serve as disease biomarkers, while their precise role
in the host response to SARS-CoV-2 remains to be investigated. Interferon and inflammatory
response to SARS-CoV-2 infection might provide explanation to cytokine storms associated with severe
COVID-19 cases.
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