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A comparison of epigenetic mitotic-like
clocks for cancer risk prediction
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Abstract

Background: DNA methylation changes that accrue in the stem cell pool of an adult tissue in line with the cumulative
number of cell divisions may contribute to the observed variation in cancer risk among tissues and individuals. Thus,
the construction of epigenetic “mitotic” clocks that can measure the lifetime number of stem cell divisions is of
paramount interest.

Methods: Building upon a dynamic model of DNA methylation gain in unmethylated CpG-rich regions, we here derive
a novel mitotic clock ("epiTOC2") that can directly estimate the cumulative number of stem cell divisions in a tissue. We
compare epiTOC2 to a different mitotic model, based on hypomethylation at solo-WCGW sites (“HypoClock”), in terms
of their ability to measure mitotic age of normal adult tissues and predict cancer risk.

Results: Using epiTOC2, we estimate the intrinsic stem cell division rate for different normal tissue types,
demonstrating excellent agreement (Pearson correlation =0.92, R? =0.85, P=3e—6) with those derived from
experiment. In contrast, HypoClock's estimates do not (Pearson correlation = 0.30, R* = 0.09, P=0.29). We
validate these results in independent datasets profiling normal adult tissue types. While both epiTOC2 and
HypoClock correctly predict an increased mitotic rate in cancer, epiTOC2 is more robust and significantly
better at discriminating preneoplastic lesions characterized by chronic inflammation, a major driver of tissue
turnover and cancer risk. Our data suggest that DNA methylation loss at solo-WCGWs is significant only when
cells are under high replicative stress and that epiTOC2 is a better mitotic age and cancer risk prediction
model for normal adult tissues.

Conclusions: These results have profound implications for our understanding of epigenetic clocks and for
developing cancer risk prediction or early detection assays. We propose that measurement of DNAm at the
163 epiTOC2 CpGs in adult pre-neoplastic lesions, and potentially in serum cell-free DNA, could provide the
basis for building feasible pre-diagnostic or cancer risk assays. epiTOC2 is freely available from https://doi.org/
10.5281/zen0d0.2632938
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Background

There is increasing evidence that the risk of neoplastic
transformation of any given tissue in any given individ-
ual is a direct function of the mitotic age of the tissue,
that is, cancer risk may correlate with the cumulative
number of cell divisions within the underlying (adult)
stem cell pool [1-4]. The mitotic age of a tissue depends
on intrinsic factors, such as the cell turnover rate of the
tissue, and on tissue-independent factors that modulate
this normal turnover rate. Well-known factors that in-
crease the turnover rate of a tissue are chronic inflam-
mation and tissue injury/repair [5], which may result
from exogenous cancer risk factors such as bacterial/
viral infections or smoke carcinogens [6-8]. Increased
cellular turnover in a tissue is thought to underpin the
gradual accumulation of molecular alterations in the
stem cell pool, eventually predisposing specific subclones
to neoplastic transformation [9, 10].

Given the appeal and importance of such a mitotic
stem cell model of oncogenesis, there is increased inter-
est to construct molecular “mitotic-like” clocks that can
yield proxies for the cumulative number of stem cell di-
visions in the tissue of any given individual, which may
ultimately serve to predict the risk of neoplastic trans-
formation [11-21]. DNA methylation (DNAm)-based
mitotic-like clocks [15-17], which aim to track the cu-
mulative number of DNA methylation errors arising
during cell division [13, 14, 22], are of particular interest
given that DNAm changes in normal tissue have already
been shown to correlate with cancer risk [7, 18, 20, 23—
26]. However, two outstanding questions have emerged
with regards to these DNAm-based mitotic-like clocks.
First, can existing models be used to directly estimate
the cumulative number of stem cell divisions in a tissue.
While some recent studies have proposed DNAm drift
models that can compute the time of onset for premalig-
nant fields (e.g., Barrett’s esophagus) and colorectal neo-
plasia lesions [27-29], these models have not been used
to explicitly calculate stem cell division rates in normal
tissues. To achieve this, requires formulation of an expli-
cit mathematical dynamic model for DNAm transmis-
sion between cell generations, as well as subsequent
derivation of a proxy that describes DNAm measure-
ments in a sample in terms of the underlying number of
stem cell divisions. A second outstanding question is
which CpGs are best for tracking mitotic age, as two
complementary approaches have emerged. One pro-
posal, which underlies the epiTOC model [15], is based
on CpG sites in CpG-rich regions marked by the poly-
comb repressive complex-2 (PRC2) which are generally
unmethylated across many different fetal tissue types.
The rationale for focusing on these sites is fourfold: they
become methylated during ontogeny and aging [13, 15,
22, 30, 31], they are strongly enriched among sites
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undergoing hypermethylation with age [32—34] and ex-
posure to cancer risk factors [18, 35-37], and fourthly,
most of the observed hypermethylation is not functional
as it preferentially occurs at target genes that are not
expressed in the fetal tissue [38]. However, the under-
lying molecular mechanism which leads to erroneous
methylation accrual at otherwise unmethylated sites is
still unclear [39]. An alternative model, recently advo-
cated by Berman and colleagues [17], is focused on
“solo-WCGWs,” ie., isolated CpGs occurring in a
WCGW sequence context, which are generally methyl-
ated in fetal tissue and which would gradually lose
methylation as a result of incomplete methylation main-
tenance during cell division. Approximately 3.7 million
solo-WCGWs were identified, with 1.8 million of these
mapping to partially methylated domains (PMDs), which
largely overlap with late-replicating regions [40]. While
hypomethylation at solo-WCGWs is largely seen in can-
cer and early development (i.e., states of high replicative
stress), it is unclear whether DNAm loss in late-
replicating regions would play a sufficiently major role
in a normal physiological setting or in pre-cancerous
states where cells are not under significant replicative
stress. Moreover, solo-WCGWs may be subject to sub-
stantial confounding by cell type heterogeneity [41, 42],
which may preclude a direct interpretation in terms of
DNAm changes that accrue because of cell division.
Here, we address these outstanding questions. We first
derive and validate a novel mitotic clock model called
epiTOC2 (Epigenetic Timer of Cancer-2), which, unlike
our previous epiTOC model [15], allows direct estima-
tion of the cumulative number of stem cell divisions in a
tissue. Like epiTOC, epiTOC?2 is also based on cumula-
tive hypermethylation at a subset of PRC2 targets. Sub-
sequently, we provide a detailed comparison of epiTOC2
to an analogous model based on cumulative hypomethy-
lation at solo-WCGWs (called “HypoClock”). This
comparison is performed in normal adult tissue, precan-
cerous lesions, and cancer itself, confirming our hypoth-
esis that methylation loss at solo-WCGWs is only
significant for cells under high replicative stress. In
addition, we demonstrate that unlike the CpGs making
up epiTOC2, solo-WCGWs are subject to substantial
confounding by cell type heterogeneity, which may pre-
clude their use for estimating mitotic age. Overall, our
data suggest that epiTOC2 is much better suited than
HypoClock for developing cancer risk prediction assays.

Methods

Formulation and derivation of epiTOC2

epiTOC2 is based on a formal dynamic model relating
DNA methylation, as measured in a sample tissue, to the
underlying total number of stem cell divisions per stem
cell. It builds upon a site-specific (i.e., CpG specific)
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model for DNA methylation transmission between cell
generations, first proposed by Generaux [43]. To de-
scribe this model, we first introduce variables represent-
ing the frequency of methylated and unmethylated
gametes in the sample at a given instant in time (corre-
sponding to a particular number of cell divisions), as
well as the corresponding frequencies of gamete-pairs,
which we refer to as dyads:
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Next, we derive a useful approximation that allows dir-
ect estimation of division rates from the measured DNA
methylation profile. First, we note that the probability of
methylation loss is typically very small. A number of
studies [43, 44] have estimated the probability of methy-
lation maintenance to be approximately 0.95, yet this es-

P =

m; = frequency of methylated gametes at division time f;ate was derived from analyzing DNAm patterns at

u; = frequency of unmethylated gametes = 1-m;,

M, = frequency of methylated dyads at division time ¢

only 2 genomic loci. Moreover, methylation mainten-
ance is likely to be CpG dependent. It is therefore un-

H, = frequency of hemimethylated dyads at division timadyy if existing estimates can be applied genome-wide.

U, = frequency of unmethylated dyads = 1-M,-H,

We also introduce a number of parameters describing
the probabilities of methylation maintenance, y, and of
de novo methylation on parent §, and daughter &,
strands. Thus, 1-4 is the probability of methylation loss
of a methylated strand after cell division. We stress that
all the introduced parameters are site (i.e., CpG) specific,
but for now and for notational convenience, we do not
indicate this explicitly. The frequency of fully methylated
and hemimethylated dyads at division time ¢ can then be
expressed as:

My = pmy_y + 6,041
H;, = (1-p)m; + 5d(1—6p)ut_1 +6,(1-64) 11

Since at any given division time ¢, m, = M; + %H £ My
can be expressed as

m; =a+ bmt_l

with
1 1
ﬂzla(é\p-f—(;d) = 56

Importantly, the above iteration equation can be
solved exactly, yielding the formula

t-1
= a " b bt
k=0

where m, is the number of methylated gametes at time
0. We shall assume that this time refers to the fetal
stage. Using the Taylor expansion (1-b)"' = Z;;Obk ,
one can express the above equation as

a a
- (et
(RN
DNA methylation is normally measured and quantified

as a f§ value, representing the fraction of methylated
CpGs, and equals

Because we shall focus on sites that start out unmethy-
lated in fetal tissue, it is reasonable, in a 1st approxima-
tion, to assume that methylation maintenance is much
closer to 1, i.e., =~ 1. It follows that b~ 1 - §/2, so that
the above equation becomes

B, = 1-<1—g>t+ﬁ0<1—g>t

which expresses the DNAm beta value at cell division
time ¢ in terms of the total de novo methylation prob-
ability J, the number of stem cell divisions ¢, and the
methylation value at time 0 (3y). Note that, as required,
lim s, = 1.

—oo

The above equation forms the basis for the epiTOC2
model. Assume that DNA methylation has been mea-
sured in a sample s representing tissue type x and that i
labels a specific CpG site unmethylated in fetal tissues
(i.e., Bip<0.1), for which its methylation frequency in-
creases according to the above formula, i.e.,

kY t(s.x) Fy t(s.x)
Biswy = 1= (1‘ j) + Bio <1_§l>

where the number of stem cell divisions ¢ is obviously
dependent on the individual s and tissue type x. Writing
t(s,x) = TNSC(s,x), where TNSC stands for the total
number of stem cell divisions per stem cell, this number
can be factorized as

TNSC(s,x) = A(s)R(s,x)

where A(s) denotes the chronological age of individual s
and where R(s,x) denotes the annual stem cell division
rate per stem cell, i.e., the number of divisions a stem
cell undergoes during 1 year in tissue x. We note that in
general, R(s,x) will have two contributions: an intrinsic
rate (IR) contribution and an extrinsic modulating factor
ER, so that R(s,x) =IR(x)(I1+ ER(s,x)). It is reasonable
that the intrinsic rate is only dependent on the tissue
type, but that the modulating extrinsic rate factor is
sample dependent, which may include the effects of
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environmental exposures, as well as inherited genetic
factors (which may also modulate the IR).

If we have a cohort of reasonably healthy individuals,
then we can assume that on average, R(s,x) = IR(x), and
therefore that TNSC(s,x) = A(s)IR(x). Thus, by fitting the
formula

6') A(s)IR(x)

. 5. A(s)IR(x)
= 1-| 1-—
/))ts(t) ( 2 >

1-=
+/3l0< 2

to a DNAm dataset from a large cohort of healthy indi-
viduals of known ages in a single tissue type «x, and
across a sufficiently large number of CpG sites i, we can
solve for the unknown parameters (J; B, IR(x)). Note
that the de novo methylation probabilities as well as the
ground state methylation values are CpG dependent, but
that the intrinsic rate of cell division is not. At a fixed
site i, variation in the measured beta values across indi-
viduals is therefore due to their different ages and due to
specific stochastic factors (e.g., exposures), which in a
healthy cohort we assume average out to zero.

CpG selection and estimation of epiTOC2 model
parameters

The mathematical approximations derived above as-
sumed CpG sites where DNAm gradually increases with
mitotic age. As with our previous epiTOC-model [15],
we therefore begin with a set of 385 CpGs that locate to
gene promoters marked by the PRC2 complex, which
are constitutively unmethylated in a ground state of age
zero (e.g., fetal tissue), and which acquire increases in
DNAm during hematopoietic ontogeny [31] and aging
[15]. Specifically, the 385 epiTOC CpGs were identified
as being unmethylated across 37 fetal samples from the
Stem-Cell Matrix Compendium-2 (SCM2) [45] and 15
cord blood samples [46].

To estimate the parameters of the epiTOC2 model, a
large number of individuals are required. We use whole
blood, since for this tissue type DNAm data for large
healthy cohorts is available. Specifically, we used the Illu-
mina Infinium 450k data from Hannum et al. [47],
encompassing 656 whole blood samples. Model fitting
and parameter estimation is performed for each CpG
site i separately, using non-linear least squares (nls2 R-
package), using a three-dimensional grid of starting
values: § = (0.001, 0.00075, 0.0005, 0.00025, 0.0001, 5e-5,
le-5), Bo=(0, 0.01, 0.02, 0.03, 0.04, 0.05), IR = (1, 2, 3, 4,
5, 10, 15, 20, ..., 90, 95, 100). Next, we inspected the in-
dividual fits for all 385 epiTOC sites and observed that
for some CpGs, the estimated rate of increase in DNAm
over a 10-year period (i.e., the product §*IR*10) was less
than 1%. Given that the resolution of the Illumina assay
is about 1% [48], we thus decided to only retain CpGs
where the product § *IR is larger or equal than 0.001,
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i.e, if 6*IR*10 is larger or equal than 0.01. This resulted
in 163 CpGs (the “epiTOC2” CpGs). However, we note
that the true IR value cannot be CpG dependent, and
therefore, any differences in the estimated IR value
across these 163 CpGs reflect differences in the de novo
methylation probabilities, which however are not opti-
mally captured by the estimation procedure. Thus, to ar-
rive at a single IR estimate for blood, we posited that the
specific combination (§, IR) of values with highest repre-
sentation among all 163 CpGs would correspond to the
most likely true IR value. Remarkably, we observed a
clear mode at § = 5e-5 and IR = 35. This IR estimate cor-
responds to a turnover rate of 365/35 ~ 10, i.e., to blood
turnover every 10 days. Finally, we use this IR estimate
to refit the model, so as to obtain fits for each of the 163
CpGs in terms of a site-specific de novo methylation
probability §; and ground-state methylation value S, all
of which are assumed to be independent of tissue type.

Estimation of mitotic age and relation to previous epiTOC
model

We can now estimate the mitotic age, i.e., the total num-
ber of stem cell division per stem cell (TNSC) of any
sample s, irrespective of tissue type x, using the esti-
mated parameters §; and Sy, We note that it is reason-
able to assume in a first approximation that these
parameter estimates are independent of tissue type, since
de novo methylation probabilities are likely to be mostly
sequence dependent, whilst the ground-state methyla-
tion values are all close to 0 for all fetal tissue types, by
virtue of how the original 385 epiTOC CpGs were se-
lected. From the previous formula, we can now derive
the first-order approximation

%
2

ﬁw=k(k&A@Rm@)+(k

2
=> By =PBo+ % (1-B,9) TNSC(s)

AIR(5))Bo

where A(s) is the chronological age of sample s. Import-
antly, this equation can now be solved directly for
TNSC(s):

TNSC(S) _ gi ﬁis_ﬁio

= 6i<1_ﬁi0)

where 7 is the number of CpGs used and equals 163,
since this is the number of epiTOC CpGs for which we
obtained reliable §; and f3;) parameter estimates.

Of note, if we make the further approximation that
Bio=0 for all i (reasonable since all B,y <0.05), TNSC(s)
becomes a weighted average of the DNAm beta values
over the 163 CpGs:
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1 1¢-28,
INSC(s) =3, > wiby =3
a

i=1

And if we further assume that the de novo methylation
probabilities are site independent, then TNSC(s) is dir-
ectly proportional to our previous epiTOC-score [15],
denoted by pcgtAge, given by the average methylation
beta value over selected CpG sites, albeit over the re-
duced subset of 163 epiTOC2 CpGs (pcgtAge was de-
fined as the average DNAm over the 385 epiTOC
CpGs). Thus, modulo the specific set of CpG-sites, epi-
TOC represents a special case of epiTOC2, with epi-
TOC2 providing a more general assumption-free model
that subsumes epiTOC.

Estimation of the intrinsic stem cell division rate of
normal tissues

From the previous formula, we can estimate TNSC(s) for
each sample s. If the ages of the samples are known, and
assuming that all samples represent the same tissue type
x, we can now estimate the intrinsic stem cell division
rate of a tissue by

IR(x) = (TNSC(s,x)/A(s)),

where <*>¢ denotes the average or median over the sam-
ples. Results reported in this work are for the median es-
timator, as it is more robust. However, we point out that
results are largely unchanged had we used the mean. We
used the above formula to estimate the intrinsic rate (IR)
of stem cell division for normal tissue types, for which
genome-wide DNAm data generated in large numbers of
samples is available. In one analysis, we used the Illu-
mina 450k DNAm data for the normal adjacent tissue
samples of the TCGA [49]. In the second analysis, we
obtained and normalized Illumina 450k DNAm data for
normal tissues not adjacent to cancer, as described fur-
ther below.

Simulation model to demonstrate identifiability of model
parameters

To demonstrate that the parameters IR, §; and f3;9 are all
identifiable from the non-linear least squares fitting pro-
cedure, we simulated age-associated DNAm accrual at
163 loci in a cohort of 656 individuals with an age-
distribution identical to that of Hannum et al [47]. Age
range was 19 to 101. All samples are from the same tis-
sue, and so IR is the same for all samples. In the simula-
tion, we set IR=35. We also set all S5,y =0.05. We
choose variable §; drawn from values (0.001, 0.00075,
0.0005, 0.00025, 0.0001, 5e-5, 1le-5). To model noise
and, specifically, to capture the age-associated increase
in DNAm variance, as observed in real data, we used the
Hannum et al. dataset to estimate the variance in DNAm
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for the 385 epiTOC PRC2 loci for samples in specific
age intervals. We used the following age intervals: age <
40 (n=35), 40 < age <50 (n ="74), 50 < age < 60 (n =138),
60 < age <70 (n=167), 70 < age < 80 (n = 142), and age >
80 (n =100), yielding sufficient samples in each interval
to estimate DNAm variance for each PRC2 locus. We
then averaged over the 385 loci to obtain one final
DNAm variance estimate for each age interval. To in-
corporate this variance into the simulation model, we
generated a beta value for each of the 163 loci i in each
sample s, by drawing it from a beta-distribution B(a,b)
with a mean value given by the formula

S Age(s)IR Y Age(s)IR
=1-{1-=2 ol 1-=

and a variance o given by the estimate for the corre-
sponding age interval. It can be shown that the (a,b)
parameters are given by a = (u(1 — y)/o° - I)u and b = a/
u — a. Finally, having simulated the DNAm data for the
163 loci and 656 samples, we then fit the original epi-
TOC2 model as described earlier and compare param-
eter estimates to the true values.

Independent estimates of stem cell division rates in
normal tissues

Experimentally derived stem cell division rate estimates
were obtained from independent studies: from Toma-
setti and Vogelstein [1, 50], we obtained estimates for
colon (IR =73 divisions per stem cell per year), rectum
(IR=73), esophagus (IR=33.2), head and neck (IR=
21.5), liver (IR =0.91), lung (IR = 0.07), pancreas (IR =1),
thyroid (IR = 0.087), breast (IR = 4.3), prostate (IR = 2.99),
and kidney (IR= 0.91). The turnover rate in gastric
stomach tissue has been estimated to be on average
about every 5.5 days [51-53], which leads to an IR esti-
mate of about 66.4. In the case of bladder, we obtained a
value of IR = 2 from [54].

Skin is a tissue where the turnover rate is highly
dependent on age, with cell renewal occurring every 3
weeks (21 days) for a teenager, every 35 days for an adult
between ages 20 and 50, and with cell-turnover increas-
ing from 45 to 90 days as age increases from 50 to 80.
Thus, we estimated an average lifetime IR for a person
of a given age by integration of these estimates, using a
constant rate until age 20, another constant rate between
the ages of 20 to 50, and finally a linear model for the
turnover rate between the ages of 50 and 80. For in-
stance, for a teenager, the lifetime IR value is simply
365/21. For a person between the ages of 20 and 50, the
lifetime IR value is (20%(365/21) + (age — 20)*365/35)/age,
whereas for a person over the age of 50, the lifetime IR
value was estimated as (20*365/21 + 30*365/35 + (age —
50)*365/rd)/age, where rd = (45/30)*age + 90-8*15 is the
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rate of turnover for someone over the age of 50. Thus,
for someone of age 50, rd =45, and for age 80, rd = 90.
Assuming a cohort of mean age 50, the mean lifetime IR
over the cohort is approximately 13.3. Hence, for skin,
we estimated a value of 13.3. We note that this value is
highly consistent with experimentally derived ones [55].

In the case of white blood cells, estimated turnover
rates vary widely, as pointed out by Tomasetti and
Vogelstein [1]. Hematopoietic stem cells have been re-
ported to divide every 15days [56], but also every 57
days [57]. Moreover, hematopoietic progenitors are
known to divide much more frequently: for instance,
inactivated neutrophils, the major component of white
blood cells, have an average lifespan of only 4 days [58]
in line with other estimates [53]. Thus, overall, we
assigned a turnover rate for blood tissue of 10 days, lead-
ing to an IR estimate for blood of 365/10 = 36.5.

HypoClock solo-WCGW analysis

In analogy to epiTOC/epiTOC2, we decided to con-
struct a mitotic-like clock based on the 6214 solo-
WCGWs with representation on Illumina 450k/EPIC
beadarrays, as derived by Berman and colleagues [17].
However, because a large fraction of the 6214 solo-
WCGWs were not uniformly methylated across fetal tis-
sue types (using Illumina 450k DNAm data from the
SCM2 [45]), in order to avoid confounding by cell type
heterogeneity as much as possible, we also restricted to
a subset of 678 solo-WCGWs which did exhibit uni-
formly high methylation across 10 fetal tissue types
(SCM2 data) [45] and cord blood [46]. Using the same
underlying mathematical model of DNAm transmission
between cell generations, one can derive an approximate
anti-correlative measure for the total number of stem
cell divisions per stem cell in a tissue, denoted by Hypo-
Score, by taking the average DNAm over these 678
CpGs. We note that this is directly analogous to our pre-
vious epiTOC model, where we took an average over
385 PRC2-marked CpGs [15]. By analogy with epiTOC,
the HypoScore in sample s of tissue type x must satisfy
the following relation:

1-HypoScore(s, x) ~ A(s)R(s, x)

Observe that since the HypoScore is defined in
terms of the average DNAm over solo-WCGWs, a de-
crease in the score must reflect increased deviations
with age, which is why in the above equation we sub-
tract the score from 1. It follows that the age-
adjusted HypoScore, HypoScore [AgeAdj], obtained by
first dividing by the chronological age of the individ-
ual, and then taking the median estimator, should
yield an anti-correlative measure of the intrinsic rate
of stem cell division in the tissue, i.e..:
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1-HypoScore|AgeAd)|(x) = <
~ IR(x)

1-HypoScore(s, x)
Age(s) s

where <*>; denotes the median over all samples. As with
epiTOC2, in datasets where chronological age was not
available, we used Horvath’s epigenetic clock to obtain
DNAm-based surrogates [59].

Of note, because the age-adjusted HypoScore is derived
from taking the average DNAm level over the 678 solo-
WCGWs and then dividing by age, it does not yield a
direct estimate of the stem cell division rate, but only an
anti-correlative estimate. It is therefore justified to re-
scale the age-adjusted HypoScore by a common scale fac-
tor, in order to preserve the original dynamic range of
the HypoScore values. Assuming the vector of HypoScore
values is denoted by hypoSC.v and the corresponding
vector of age-adjusted HypoScore values is denoted by
hypoSCaa.v, then the overall transformation used is

1-hypoSC.v— max(1-hypoSC.v)—y max(hypoSCaa.v)
~+y hypoSCaa.v

where y= (max(hypoSC.v)-min(hypoSC.v))/(max(hypoS-
Caa.v)-min(hypoSCaa.v)). Importantly, this same linear
transformation must be applied to all samples over
which the resulting values are being compared. For in-
stance, in the cross-tissue analyses, the transformation is
performed over all tissues together, to allow meaningful
cross-tissue comparison.

Normal adjacent and cancer lllumina 450k datasets from
TCGA

We downloaded and processed level 3 Illumina 450k
and RNA-SeqV2 data from the TCGA [49], as described
by us previously [60]. In total, we considered 16 cancer
types for which corresponding IR estimates in normal
tissue could be found: BLCA (bladder urothelial carcin-
oma, nN =19, nC =204), BRCA (breast invasive carcin-
oma, nN =81, nC = 652), COAD (colon
adenocarcinoma, nN = 38, nC =272), ESCA (esophageal
carcinoma, nN =15, nC = 126), HNSC (head and neck
squamous cell carcinoma, nN =45, nC=402), KIRC
(kidney renal cell carcinoma, nN = 160, nC = 299), KIRP
(kidney renal papillary carcinoma, nN =45, nC=196),
LIHC (liver hepatocellular carcinoma, nN =47, nC=
176), LSCC (lung squamous cell carcinoma, nN =41,
nC = 275), LUAD (lung adenocarcinoma, nN =32, nC =
399), PAAD (pancreatic adenocarcinoma, nN = 10, nC =
146), PRAD (prostate adenocarcinoma, nN =48, nC =
278), READ (rectal adenocarcinoma, nN =7, nC =95),
THCA (thyroid carcinoma, nN=53,nC=489), and
STAD (stomach adenocarcinoma, nN = 2, nC = 393).
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Normal (non-adjacent) tissue DNAm datasets

We obtained Illumina 450k DNAm data from studies
profiling normal tissue, not adjacent to cancer. Briefly,
we obtained normal samples from the lung (n = 21) [36],
breast (# = 171: 50 derived from [37] and 121 from [61]),
oral/buccal (n=790) [36], liver (n=26) [62], stomach
(n=61) [24], colon (n=8) [63], skin (n=19) [64],
esophagus (n=52) [28], and whole blood (n =487: 335
from Liu et al. [65] and 152 from Teschendorff et al.
[36]). In all cases, we used the normalized data as de-
scribed in our previous publications, or were normalized
de novo using the same procedure as in these previous
studies, i.e., using minfi [66] and BMIQ [67]. Further de-
tails can be found in the “Normalization of Illumina
450k/EPIC data” section.

WGBS data from purified blood cell subtypes

We obtained normalized whole-genome bisulfite se-
quencing (WGBS) data representing 6 purified blood cell
subtypes (neutrophils, monocytes, natural killer cells,
CD4+ and CD8+ T cells, and B cells) from each of 3 do-
nors, from Farlik et al. [68] (GEO: GSE87196). Because
read-depth and coverage was low, in order to be able to
call differential methylated cytosines between blood cell
subtypes over a reasonable number of sites, we pooled
data from the 3 donors together. Specifically, we only
retained CpGs with at least 5 mapped reads in at least 1
donor. For these CpGs, we pooled total and methylated
reads from all 3 donors, to define a DNAm beta value.
For each pairwise comparison of blood cell subtypes (a
total of 15 comparisons), we then defined DMCs as
those with an absolute DNAm difference of 0.2 or
greater. The total number of CpGs for which differential
methylation analysis was performed were 408,011 (B vs.
CDAT), 452,798 (B vs. CD8T), 640,384 (B vs. Monoc),
182,472 (B vs. NK), 560,658 (B vs. Neu), 502,878 (CD4T
vs. CD8T), 716,763 (CD4T vs. Monoc), 195,686 (CD4T
vs. NK), 624,790 (CD4AT vs. Neu), 800,905 (CD8T wvs.
Monoc), 215,183 (CD8T vs. NK), 695,393 (CDS8T wvs.
Neu), 289,639 (Monoc vs. NK), 1,004,611 (Monoc vs.
Neu), and 262,921 (NK vs. Neu).

Fetal tissue DNAm sets

We obtained and normalized Illumina 450k data from
the Stem-Cell Matrix Compendium-2 (SCM2) [45], as
described by us previously [15]. There were a total of 37
fetal tissue samples encompassing 10 tissue types (stom-
ach, heart, tongue, kidney, liver, brain, thymus, spleen,
lung, adrenal gland). We also obtained and normalized
[lumina 450k data from 15 cord blood samples [46]. In
all cases, data was normalized as described for the other
studies.
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Purified blood cell subtype lllumina 450k DNAm sets

We used Illumina 450k data of purified CD4+ T cell (n =
214) and monocyte samples (1 =1202), as generated by
the MESA study [69], and of CD8+ T cells (n=98) [70].
These datasets were downloaded from GEO (GSE56046
and GSE56581), and intra-array normalized with BMIQ,
as described by us previously [71]. We also analyzed Illu-
mina 450k DNAm data of matched neutrophils, mono-
cytes, and T cells from 139 individuals, generated as part
of BLUEPRINT [72], previously normalized by us in [73].

Precancerous lllumina 450k DNAm datasets

We analyzed two Illumina 450k DNAm datasets, one
profiling normal gastric mucosa (n = 61), mild intestinal
metaplasia (n=22), and intestinal metaplasia (n =108)
[24], and another profiling normal colon (n=8) and
colorectal adenomas (n =39) [63]. For the gastric data-
set, idat files were downloaded from GEO (GSE103186)
and processed with minfi. Probes with over 99% cover-
age were kept and missing values imputed using impute
R-package [74]. Subsequently, data was intra-array nor-
malized with BMIQ [67], resulting in a final normalized
data matrix over 482,975 CpGs and 191 samples. For the
colon dataset, idat files were downloaded from ArrayEx-
press (E-MTAB-6450) and processed with minfi. Only
probes with 100% coverage were kept. Subsequent data
was intra-array normalized with BMIQ, resulting in a
normalized data matrix over 485,512 CpGs and 47
samples.

Analysis of cell type heterogeneity

Using WGBS data from purified blood cell subtypes, we
called DMCs between each pair of blood cell subtypes,
as described in earlier section. We then computed the
fraction of solo-WCGWs, PMD solo-WCGWs that were
DMCs, and compared this fraction to that obtained
using all CpGs. We used a one-tailed Fisher test to as-
sess statistical significance that the fraction for solo-
WCGWs is higher than for the full set.

In the case of SCM2 data, we performed hierarchical
clustering of the 37 fetal samples over the corresponding
s0lo-WCGW or epiTOC2/epiTOC sites. In the case of
the large purified blood cell subtype datasets, we per-
formed PCA over the corresponding sites and correlated
each of the significant components of variation with
chronological age. The number of significant compo-
nents was estimated using random matrix theory [75].

Normalization of lllumina 450k/EPIC data

All Mlumina 450k/EPIC datasets analyzed in this study
have been normalized using a common procedure, as
described by us previously in the respective publications.
Very briefly, idat files were processed using minfi Bio-
conductor package [66], without background correction
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and using Illumina’s definition of beta value. Background
correction increases technical variance despite removing
bias in the U and M channels and is therefore a proced-
ure which is only advisable if U and M values are used
directly for inference (e.g., as in CNV estimation [76]).
Probes with detection P values above 0.05 were flagged,
and for studies with less than 25 samples, only probes
with no missing values were retained for further analysis.
For larger-scale studies, where imputation with k-nearest
neighbors (k=5) [74] is meaningful, we allowed probes
to contain at most 1% missing values. To correct for
type 2 probe bias, we used our BMIQ normalization pro-
cedure [67]. Inter-sample variation was assessed using a
SVD, where we correlated inferred components of vari-
ation to technical factors, including beadchip, plate, and
position. Batch effects, if present, were removed with
COMBAT [77].

Code availability

An R-script, epiTOC2.R, implementing epiTOC2, and
the list of 163 epiTOC2 CpGs and 678 constitutively
methylated solo-WCGW:s are available as an .Rd object,
dataETOC2.Rd, all freely available from https://doi.org/
10.5281/zen0do.2632938

Data availability

The main Illumina DNA methylation datasets used here
are freely available from public repositories, including
GEO (www.ncbi.nlm.nih.gov/geo), ArrayExpress (www.
ebi.ac.uk/arrayexpress), and EGA (www.ebi.ac.uk/ega/
home) (see Online Methods for relevant references). De-
tails: Hannum (656 whole blood, GEO: GSE40279);
MESA (214 purified CD4+ T cells and 1202 Monocyte
samples, GEO: GSE56046 and GSE56581); Tserel (98
CD8+ T cells, GEO: GSE59065); BLUEPRINT (139
matched CD4+ T cells, Monocytes and Neutrophils,
EGA: EGAS00001001456); Liu (335 whole blood, GEO:
GSE42861); Gastric tissue (191 normal and metaplasia,
GEO: GSE103186); Colon tissue (47 normal and aden-
oma, ArrayExpress: E-MTAB-6450); Breast Erlangen (50
normal, GEO: GSE69914); Breast2 (121 normal, GEO:
GSE101961); Liver (26 normal, GEO: GSE61258); Skin
(19 epidermal non-sun exposed, GEO: GSE51954);
Esophagus (52 normal, GEO: GSE104707); SCM2 (37
fetal tissue samples, GEO: GSE31848); Cord-Blood (15
samples, GEO: GSE72867). Blueprint-WGBS (18 sam-
ples, GEO: GSE87196). TCGA data was downloaded
from https://gdc.cancer.gov. The DNAm dataset in buc-
cal cells as well as 152 whole blood samples from the
NSHD is available by submitting data requests to
mrclha.swiftinfo@ucl.ac.uk; see full policy at http://www.
nshd.mrc.ac.uk/data.aspx. Managed access is in place for
this 69-year-old study to ensure that use of the data are
within the bounds of consent given previously by
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participants and to safeguard any potential threat to
anonymity since the participants are all born in the same
week.

Results

Construction of epiTOC2

Here, we build and improve on previous studies [15, 16,
43] to construct a novel mitotic model called epiTOC2
that can directly estimate the cumulative number of
stem cell divisions per stem cell in a tissue. epiTOC2
uses a formal mathematical model for DNA methylation
transmission between cell generations [43] at specific
CpGs that are unmethylated across many different fetal
tissue types, thus allowing definition of a proper cell type
independent “ground-state” (Methods). From this model,
we first derived a mathematical expression relating the
fraction of cells methylated at one of these CpG sites i
in a given sample, to the total number of stem cell divi-
sions (TNSC) at cell division time “#”, and to parameters
reflecting the site-specific probability of de novo methy-
lation §; and ground-state methylation (i.e., at fetal stage)
Bio (Methods, Fig. 1a). We note that TNSC factorizes as
the product of the chronological age of the sample and
an average lifetime intrinsic rate (IR) of stem cell div-
ision, i.e.,, TNSC = Age*IR (Fig. 1a, Methods). By applying
non-linear least squares to DNAm data from a large co-
hort of healthy individuals of known ages in a common
tissue type x, we can reliably estimate the above parame-
ters for hundreds of CpGs that satisfy our selection cri-
teria, as well as estimating the intrinsic stem cell division
rate IR(x) of the tissue (Methods, Fig. 1a). Using whole
blood DNAm profiles for over 656 healthy individuals
[47], we estimated the §; and S,y parameters for 163 eli-
gible CpG loci (Methods, Additional file 1: Tables S1-S2,
Fig. S1), as well as estimating the IR of stem cell division
in blood to be approximately 35 divisions per year
(Fig. 1a, Methods), i.e., cell renewal approximately every
10 days, consistent with literature-based estimates [1].
To demonstrate that the IR estimate is not an artifact,
we applied the same fitting procedure to data generated
via a simulation model, where parameters including IR
are known in advance, and which incorporates a realistic
age-dependent heteroscedastic noise term (Methods).
Resulting parameter estimates correlated well with the
true values, thus validating our procedure and confirm-
ing the identifiability of the model parameters, including
IR (Additional file 1: Fig. S2). We also obtained similar
IR and §; estimates when applying the same procedure
to 335 whole blood samples from an independent
healthy cohort [65], validating the robustness and stabil-
ity of the estimation (Additional file 1: Fig. S3a-b). J;
parameter estimates across loci were also correlated be-
tween different blood cell subtypes (Additional file 1:
Fig. S3c), as estimated by applying our fitting procedure
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Fig. 1 The epiTOC2 model. a epiTOC2 is based on a DNAm transmission model between cell-generations, from which a mathematical expression
can be derived that relates the measured DNAm fraction at a given CpG site / at cell division time t, S, to the site’s de novo methylation
probability 6; and ground-state (i.e, fetal stage) methylation B, as well as the chronological age of the individual and the intrinsic annual rate of
stem cell division per stem cell (IR), which is CpG independent. These parameters can be estimated using a large cohort of healthy individuals for
which DNAm at specific CpG sites (the epiTOC2-CpGs) has been measured in a common tissue (we do this for blood). An example of an
epiTOC2 CpG demonstrating a reasonably good fit to the model is shown together with the estimated parameters. The 3-dimensional bar chart
displays the number of epiTOC2-CpGs from a total of 163 (z-axis, count) with particular estimated de novo methylation probabilities (x-axis, delta
6) and intrinsic stem cell division rate estimates (y-axis, IR), as derived by fitting the epiTOC2 model to 656 whole blood samples. The bar chart
reveals a clear mode at IR = 35, which we take as an estimate of the intrinsic rate of stem cell division of blood. b With the &; and B,y parameters
estimated in a, which are assumed to be approximately tissue independent, one can estimate the total number of stem cell divisions in any
given tissue x of an individual s, TNSC(sx), from the measured DNAm fraction over the 163 epiTOC2 CpGs. If the age of the person is known, one
can estimate the average lifetime rate of stem cell division per stem cell of the person, and for large cohorts of healthy individuals, the intrinsic
rate of tissue type x can be estimated by taking the average or median over all samples s

to DNAm profiles of purified monocytes and CD4+ T
cells [69]. Thus, assuming the parameters §; and f5; are
to a large extent tissue- and cell-type independent, by
measuring DNA methylation across the same 163 loci in
an independent sample s from an arbitrary tissue type x,
one can estimate the total number of stem cell divisions
TNSC(s,x) (Methods, Fig. 1b) as

2 BiswyPio
TNSC(s,x) = ;;&(l—ﬁm)

where 7 = 163 and i) is the methylation beta value at
CpG i in sample s of tissue type x. We verified that the

163 epiTOC2 CpGs exhibit highly stable and uniform
unmethylation across different fetal tissue types (Add-
itional file 1: Fig. S4a) and that clustering of these fetal
samples over the sites did not segregate samples accord-
ing to tissue type (Additional file 1: Fig. S5a), confirming
that S, is largely independent of tissue type [15, 30]. Of
note, the above formula means that epiTOC2 subsumes
our previous epiTOC model [15] (Methods).
Importantly, if the chronological age of the individual
s is known, the above formula allows estimation of the
average lifetime rate of stem cell division in tissue type x
of individual s, denoted by R(s,x) as R(s,x) = TNSC(s,x)/
A(s). For sufficiently large cohorts of healthy individuals
for which DNAm has been profiled in the same tissue
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type x, we can estimate the intrinsic rate of stem cell
division in that tissue type, IR(x), by taking the median
or average of R(s,x) over all samples s (Methods, Fig. 1b).

Validation of epiTOC2 in normal tissue

Using epiTOC2, we obtained IR estimates in the normal
adjacent samples from The Cancer Genome Atlas
(TCGA) [78] (Methods) and compared these to inde-
pendent stem cell division rate estimates for bladder,
breast, colon, esophagus, oral, kidney, liver, lung, pan-
creas, prostate, rectum, and thyroid tissue, as obtained
from the literature (Methods) [1, 50]. This revealed a re-
markably good correlation between epiTOC2 and
literature-based estimates (R*=0.85, PCC =0.92, P=3e
-6, Fig. 2a). Because tissues exhibit a wide range of IR
values, we also assessed the correlation in a log basis,
which effectively assigns more weight in the regression
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to tissues with lower turnover rates: although the R
value dropped, we still observed a statistically significant
correlation (R*=0.51, PCC=0.71, P=0.004, Add-
itional file 1: Fig. S6a). Interestingly, epiTOC2 estimates
were always larger than the ones derived from the litera-
ture (Fig. 2a). A plausible explanation for this could be
that the normal tissue found adjacent to cancer is
already characterized by significant DNAm alterations
and a marginally increased mitotic-rate, as suggested by
previous studies [15, 37].

To investigate this further, we collected independent
DNAm profiles from normal tissue specimens that were
not adjacent to cancer and from individuals that were
deemed healthy, whenever this was possible (Methods,
Additional file 1: Table S3). Importantly, we included
more tissue types with high or intermediate cell turnover
rates, including stomach, skin, and blood. In this second

a) epiTOC2: Norm-Adj (TCGA)
— 2 - td
— — rd
8 o R“=0.85 * .
2 g - €
Z -~ P=3e-06 - # Bfadder(n=19)
[ P # Breast(n=81)
Q 8 — - < 4 Colon(n=38)
a4 - Esoph(n=15)
Q o - @ Oral(n=45)
8 © | ¢ P # KidneyR(n=160)
7 ‘ ¢ KidneyP(n=45)
T o ,/ ® Liver(n=47)
= < L LungSq(n=41)
£ '\ LungAd(n=32)
= o _| Pancreas(n=10)
7] N # Prostate(n=48)
L
4 Rectum(n=7)
o - Thyroid(n=53)
I I I I I | I
0 20 40 60 80 100 120
Stem-cell division rate (SCDR) per year
c) HypoClock: Norm-Adj (TCGA)
— 4 Bladder(n=19)
@ Breast(n=81)
© R2:009 ¢ Colon(n=38)
% (0 — Esoph(n=15)
o = # Oral(n=45)
<q§ P=0.286 @ KidneyR(n=160)
o)) @ KidneyP(n=45)
< — & Liver(n=47)
[0 LungSq(n=41)
S < L * LungAd(n=32)
(% © - ’ - <@ - Pancreas(n=10)
(o) o = - - ’ @ Prostate(n=48)
o ’, - ~’§ | ® Rectum(n=7)
:E- | “Thyroida=53) 1]
o
©
© I I I I I I I
0 20 40 60 80 100 120

Stem-cell division rate (SCDR) per year

adjusted HypoScore derived from it

Fig. 2 Cross-tissue comparison of mitotic clock rate estimates with experiment-derived stem cell division rates. a Scatterplot of the estimated
epiTOC2 stem cell division rate per stem cell per year (y-axis, automatically age-adjusted) versus the corresponding literature based estimate for
normal tissues (x-axis) profiled as part of the TCGA, as indicated. R? and P value from a linear regression are given. For each normal tissue, we
provide the number of independent samples, and each datapoint represents the median value over these samples. b As a, but now for epiTOC2
stem cell division rate estimates obtained in normal tissue samples not adjacent to cancer. ¢, d As a, b but now for the HypoClock and the age-

b) epiTOC2: Normal Non-Ad,.

- ) P
Cd
5 o | RP=085 o Coan”
2 0
> P=4e-04 o
g o | _ ~Stomach
o @ -
)] . -
=3 Skin Blood(n=1143)
8 © L 4 6 ,I Esophagus @ Breast(n=171)
. ¢ Ora @ Colon(n=8)
8 2 ‘ L“WeT' Blood Esophagus(n=52)
© ~ - /‘ Breast # Liver(n=26)
€ ung Lung(n=21)
2 & 4 @ Oral(n=790)
LI(’J) @ Skin(n=19)
Stomach(n=61)
o

I I I I I I I
0 20 40 60 80 100 120

Stem-cell division rate (SCDR) per year

HypoClock: Normal Non-Adj.

£

2 Blood(n=1143)
o . R“=0.11 ® Breast(n=171)
= «© Sﬁn # Colon(n=8)
z > = Esophagus(n=52)
S ° P=0.39 # Liver(n=26)
5 4 Breast Lung(n=21)
< 1 @ Oral(n=790)
[ # Skin(n=19)
B © [~ - L Oral Stomach(n=61)
o = A =~ -~ < ¢Blood
o © - < -
S Lung ~o-Stomach
- : Esophagu - o
T @ Liver —Sopnagus # Colofr -~
N
~
© T T T T T T T

0 20 40 60 80 100 120

Stem-cell division rate (SCDR) per year




Teschendorff Genome Medicine (2020) 12:56

analysis, we also observed a strong correlation between
epiTOC2 and literature-based IR estimates (R*=0.85,
PCC=0.92, P=4e-4, Fig. 2b), which remained signifi-
cant using a log basis (R* = 0.55, PCC = 0.73, P =0.023,
Additional File 1: Fig. S6b). In this second analysis, epi-
TOC2 estimates were also consistently larger than the
literature-based ones (Fig. 2b), suggesting that the higher
estimates from epiTOC2 in the normal adjacent tissues
from TCGA is not due to their proximity to cancer cells.

Validation of epiTOC2 in inflammatory and precancerous
conditions

To further test the validity of epiTOC2, we applied it to
a condition characterized by chronic inflammation, since
this is known to increase the turnover rate of a tissue [5,
79]. We investigated this in the context of gastrointes-
tinal metaplasia, where inflammation (driven by factors
such as H. pylori infection) is known to drive metaplasia
and the risk of gastric cancer [6, 24]. Using epiTOC2,
we estimated the rate of stem cell division in 61 normal
gastric specimens, in 22 exhibiting a mild form of

Page 11 of 17

intestinal metaplasia (“MildIM”), and in 108 with high-
risk intestinal metaplasia (“IM”), all for which Illumina
DNAm 450k profiles had been generated [24]
(Methods). Confirming the validity of epiTOC2, the esti-
mated stem cell division rate was markedly increased in
the MildIM and IM samples (linear regression P=1le
-30, Fig. 3a), allowing almost perfect discrimination of
normal and metaplasia (MildIM+IM) samples (AUC =
0.94 (95% CI 0.91-0.97) (Fig. 3a).

We also investigated whether epiTOC2 would predict
an increased mitotic rate in colorectal adenoma, a well-
known precursor lesion of colorectal cancer [63]. Al-
though less frequently associated with inflammatory
conditions such as ulcerative colitis and Crohn’s disease
[80], its incidence increases with age [81], suggesting
that it may also be driven by increased cellular turnover.
The stem cell division rate (SCDR) estimated by epi-
TOC2 was significantly higher in the adenomas com-
pared to normal colon (Wilcox rank-sum test P =1e-7,
Fig. 3b) and highly accurate in discriminating normal
from adenoma tissue (AUC=0.98 (95% CI 0.95-1),
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Fig. 3 Epigenetic mitotic clock rate estimates in precancerous inflammatory conditions. a Left panel: Estimated stem cell division rate (SCDR)
from epiTOC2 (y-axis) against the progression stage in gastric metaplasia (x-axis, N = normal gastric mucosa, MildIM = mild intestinal metaplasia,
IM = advanced intestinal metaplasia). The number of samples in each group is indicated. P value at top, denoted by P(LR), is derived from a linear
regression of SCDR against progression stage. Other P values derive from one-tailed Wilcoxon-rank sum tests comparing neighboring progression
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Fig. 3b). We point out that all these associations are
already automatically adjusted for age, since the esti-
mated cell division rates were obtained by dividing the
estimated total number of stem cell divisions by chrono-
logical age or, if not available, by DNAm-based chrono-
logical age surrogates obtained from Horvath’s
epigenetic clock [59], which we point out is not a mitotic
clock [15, 59]. We further note that while similar find-
ings were obtained using our previous epiTOC model
(Additional file 1: Fig. S7), only epiTOC2 yields direct
mitotic count estimates. For instance, using epiTOC2,
we have estimated that in mild intestinal metaplasia each
adult stem cell undergoes 168 divisions per year, in com-
parison to the 82 average for the normal gastric samples,
a near 2-fold increase. In colorectal adenoma, the me-
dian SCDR was 185, compared to 99.6 for normal colon,
a ratio also close to 2. Of note, this ratio is smaller than
the drift ratio of 3 to 4 observed when comparing colon
carcinoma to normal colon tissue [27], consistent with
colon carcinoma being more proliferative than adenoma.

A considerable fraction of solo-WCGW sites are cell type-
specific markers

In order to benchmark epiTOC2, we compared it to a
recently proposed mitotic model based on taking the
average methylation over a large number of solo
WCGW CpGs [17]. However, as with the epiTOC?2 sites,
we first decided the check the implicit and unproven as-
sumption that solo-WCGW:s are not confounded by cell
type heterogeneity [41, 42]. Using whole-genome
bisulfite-sequencing (WGBS) data from 6 purified blood
cell subtypes from each of 3 different donors (thus
matched for age and genotype) [68], we observed that
solo-WCGWs were approximately twice more likely to
be differentially methylated between blood cell subtypes
compared to a randomly selected set of CpGs (Fig. 4a,
Additional file 1: Fig. S8, Methods), a result which was
robust to the choice of thresholds for calling significant
differential DNAm (Additional file 1: Fig. S9). Of note,
this bias of solo-WCGWs towards being cell type-
specific DNAm markers became stronger when restrict-
ing to solo-WCGWs that mapped to PMDs (Add-
itional file 1: Fig. S10). Overall, we estimated that at least
20 to 30% of solo-WCGWs may be prone to confound-
ing by cell type heterogeneity, in contrast to only 10%
when considering all CpGs in the genome (Fig. 4a, Add-
itional file 1: Figs. S8—10).

We confirmed the cell type specificity of solo-
WCGWs by an independent analysis, whereby we clus-
tered the same set of 37 fetal samples from 10 different
tissue types considered earlier [45], but now, over the
6214 solo-WCGWs with representation on Illumina
HM450k beadarrays. This resulted in perfect segregation
of samples according to tissue type, in stark contrast to
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the substantial inter-mixing of tissue types when cluster-
ing over epiTOC2 CpGs (Fig. 4b). To quantify this fur-
ther, we observed that the DNAm values of the 6214
solo-WCGW:s across the 37 fetal samples were not sta-
bly methylated (Additional file 1: Fig. S4b) and that 83%
of the solo-WCGWs exhibited DNAm changes across
fetal tissue types that were greater than 20% (Fig. 4c).
Approximately 28% of the solo-WCGWs exhibited
DNAm differences greater than 50%. We note that such
large changes in DNAm between fetal tissue types would
be hard to attribute to differences in mitotic age, and are
much more likely to reflect cell type-specific DNAm, as
indeed cell type composition is generally the main driver
of DNAm variation across normal samples [41]. Remark-
ably, even when restricting to a subset of 678 solo-
WCGWs which exhibited uniformly high methylation
across all fetal samples, these samples still segregated ac-
cording to tissue type (Additional file 1: Fig. S5b). Thus,
solo-WCGW:s appear to be highly cell type specific.

Hypomethylation at solo-WCGWs does not correlate with

mitotic age

We next compared epiTOC2 to a mitotic clock based on
taking the average methylation over the 678 solo-
WCGWs that are least confounded by cell type hetero-
geneity (termed “HypoClock,” Methods), which is thus
mathematically analogous to our previous epiTOC
model based on taking the average methylation at spe-
cific PRC2-marked CpGs [15]. The mitotic age score
from the HypoClock (termed “HypoScore”) did not ex-
hibit an association with stem cell division rate estimates
across normal tissues, even after adjustment for chrono-
logical age (Fig. 2¢, d, Additional file 1: Fig. S11). To ex-
plore this further, we reasoned that top principal
components (PCs) derived from a PCA over solo-
WCGWs and over a large collection of healthy individ-
uals representing different age groups, all profiled in the
same tissue type, should correlate with chronological
age, since in such cohorts mitotic age should be propor-
tional to chronological age. In order to reduce the con-
founding effect of cell type heterogeneity, we once again
restricted analysis to the subset of 678 solo-WCGW's
and focused on genome-wide DNAm studies profiling
purified cell types. Using DNAm data from Blueprint,
encompassing Illumina 450k data for monocytes, neu-
trophils, and T cells from 139 individuals [72], we con-
firmed that top PCs over the solo-WCGWs did not
correlate with age, in stark contrast to those obtained
from epiTOC2 CpGs (Additional file 1: Fig. S12a). We
analyzed an additional 3 large DNAm datasets profiling
purified monocytes (n=1202), CD4+ (n=214), and
CD8+ T cells (n=98) [69, 70] with near identical results
(Additional file 1: Fig. S12b-c). Similar results were ob-
tained when correlating the average DNAm over the
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exception of colon (Additional file 1: Fig. S14). In con-
trast, the cumulative total number of stem cell divisions
estimated with epiTOC2 did correlate with age for 5 dif-
ferent tissue types (Additional file 1: Fig. S15). Of note,
the only 3 tissues for which there was no association of

respective epiTOC2 or solo-WCGW sites to chrono-
logical age (Additional file 1: Fig. S13). Moreover, aver-
age DNAm levels over solo-WCGWs, as assessed in 8
different normal adjacent tissue cohorts from TCGA,
did not anti-correlate with chronologic age, with the
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epiTOC2 with chronological age were breast, prostate,
and thyroid, ie., hormone-responsive tissues (Add-
itional file 1: Fig. S16), suggesting that for these tissues
external hormonal factors may play a more important
role than chronological age in dictating their mitotic
age. In summary, all these data suggest that solo-
WCGWs, unlike epiTOC2 CpGs, do not track mitotic
age in a normal physiological context.

epiTOC2 identifies precancerous lesions better than
HypoClock

Next, we assessed the ability of HypoClock to discrimin-
ate precancerous lesions from normal tissue, using the
previous DNAm data from gastrointestinal metaplasias
and colorectal adenomas. Although the HypoClock-
score was able to discriminate metaplasias from normal
gastric mucosa (Fig. 3c) and colorectal adenomas from
normal colon (Fig. 3d), discriminatory power was much
reduced compared to epiTOC2 (Fig. 3a, b). We observed
that these results held true in other tissue types (Add-
itional file 1: Figs. S16—17). For instance, epiTOC2 could
discriminate normal breast tissue adjacent to breast can-
cer from normal breast from healthy women with an
AUC = 0.65 (Wilcox test P =0.007), whereas HypoClock
could not (AUC = 0.48, Wilcox P =0.38) (Additional File
1: Fig. S16). In lung tissue, epiTOC2 could discriminate
normal lung tissue from lung carcinoma in-situ (LCIS)
with an AUC=0.76 (Wilcox test P=0.005), whereas
with HypoClock the association was only marginal
(AUC=0.66, Wilcox P=0.07) (Additional file 1: Fig.
S17). Interestingly, using DNAm data from the TCGA
to compare normal and cancer tissue revealed a similar
pattern, with both clocks being predictive, but with epi-
TOC2 a much stronger and consistent discriminator
than HypoClock (Additional file 1: Figs. S18-S19).

Discussion

The results presented here provide strong evidence
that dynamic DNAm changes can be used to approxi-
mate the mitotic age of a tissue. The formulation of a
concrete mathematical model for how DNAm is
transmitted through cell generations allowed us to de-
rive a novel formula relating measured DNAm over
specific CpGs to the underlying cumulative number
of stem cell divisions. The resulting epiTOC2 model
yielded stem cell division rate estimates in normal tis-
sues that correlated remarkably well (Pearson correl-
ation ~0.92) with their expected turnover rate, as
determined by independent experimental methods.
While this strong correlation was observed within
each of two separate collections of normal tissues,
epiTOC2 estimates were also consistently higher than
experimentally derived ones. This offset however was
relatively small, and the epiTOC2 estimates were of
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the same order of magnitude than the experimental
ones, which attests to the overall validity of the epi-
TOC2 model. Furthermore, a relatively small offset is
inevitable and could easily arise due to a number of
factors. For instance, tissues like lung or colon con-
tain a substantial amount of stromal cells, notably im-
mune cells (ICs) [82]. Thus, measuring an average
DNAm over all the cell types in a tissue would cor-
respond to taking an average over the division rates
of each major cell type in the tissue. While this may
explain why IR estimates were higher for low-
turnover tissues like lung or bladder, it is unclear
why for a very high turnover tissue like colon, the es-
timated IR value was not lower. Other factors that
make a direct comparison of absolute division rates
difficult include (i) selection bias in sample collection,
since for most epithelial tissues, normal specimens
are more likely to be collected from high-risk individ-
uals; (ii) the assumption that the stem cell division
rate is constant throughout life, when for most tissues
the rate is significantly higher during development
and childhood; and (iii) the relative simplicity of the
epiTOC2 model, as the model ignored stem cell pool
size and the hierarchical organization of tissues which
include various progenitor cell populations. Neverthe-
less, epiTOC2 was further validated in the context of
chronic inflammation within colon and gastric tissue,
as well as in high-risk breast and lung tissue samples,
thus confirming its potential use for cancer risk pre-
diction applications.

Importantly, our results have also revealed a profound
difference depending on the specific CpGs used to con-
struct the mitotic clock model. epiTOC2 is based on
hypermethylation of PRC2-marked sites that are
unmethylated across a wide range of different fetal tissue
types, whereas the HypoClock model is based on solo-
WCGWs, which are normally methylated at a fetal stage
and which would gradually lose methylation due to in-
complete maintenance in late-replicating regions. While
HypoClock is supported by an attractive mechanistic
model, the data presented in this work suggests that this
mode of methylation loss may only operate or is only
significant in highly proliferative cells, but not in stem
cells undergoing normal tissue turnover. Indeed, unlike
epiTOC2, HypoClock estimates did not correlate with
known stem cell division rates of normal tissues and did
not correlate with chronological age in large cohorts
representing healthy individuals. In addition, HypoClock
performed consistently worse than epiTOC2 at identify-
ing precancerous lesions and cancer itself. These results
indicate that solo-WCGW: s do not faithfully track cumu-
lative cell division numbers in normal adult tissue.

While these findings appear to contradict those of
Berman and colleagues [17], we offer a number of
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plausible explanations as to why solo-WCGW:s are not
suitable for measuring mitotic age in normal adult tis-
sues. First, using WGBS data we have seen that approxi-
mately 20-30% of the 3.7 million solo-WCGWs
considered by Berman and colleagues [17] are subject to
confounding by cell type heterogeneity. Thus, comparing
average DNAm over solo-WCGWs must be interpreted
with caution, as DNAm differences could arise because
of variations in cell type proportions and not because of
differences in mitotic age. Indeed, variations in the cellu-
lar milieu between fetal samples and those from later de-
velopmental stages could easily drive the observed
gradual decrease in average DNAm levels over solo-
WCGWs in early development [17]. Although Berman
and colleagues did not address the confounding posed
by cell type heterogeneity, we did address it here by fo-
cusing on a subset of solo-WCGWs which were least af-
fected by cell type heterogeneity. However, even for this
subset, estimated mitotic rates did not correlate with
known estimates across normal tissues. In this regard,
we emphasize that a key advantage of the epiTOC2
model is that it is based on CpGs which, at the fetal
stage, are not cell type specific, thus avoiding the con-
founding effects of cell type heterogeneity.

A second reason why in normal (adult) tissue Hypo-
Clock performs substantially worse than epiTOC2 could
be the selection procedure of solo-WCGW:s: these sites
were identified by comparing normal to cancer tissue
across many different cancer-types [17] and therefore
may not be suitable for tracking cell division during nor-
mal tissue turnover. Indeed, cancer cells are under high
replicative stress, which may explain the observed en-
richment of solo-WCGWs in late-replicating regions
[17]. Assuming cell type heterogeneity is not a con-
founder, this would also explain why solo-WCGWs hy-
pomethylation is observed in early development when
cells are also under high replicative stress. Thus, Hypo-
Clock is not a good mitotic model for normal adult tis-
sues, but it can correctly predict an increased mitotic
count in high-replicative stress conditions such as cancer
and early development.

A potential caveat to our interpretation is that most of
our analyses were restricted to a reduced subset of solo-
WCGWs with representation on methylation beadarrays.
However, all the key analyses by Berman and colleagues
[17] that were performed in normal adult cells were also
restricted to the same HM450k beadarrays, with the au-
thors not concluding that this restriction was a limita-
tion. All HypoClock results presented here were also
independent of whether we focused on the 6214
HM450k solo-WCGWs, or the subset of 678 solo-
WCGWs that were least confounded by cell type hetero-
geneity. While we cannot exclude the existence of a
small subset of solo-WCGWs which may track mitotic
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age independently of cell type composition and other
confounders, the most likely explanation for the discrep-
ant results obtained in adult normal tissue is that spe-
cific results presented in Zhou et al. [17] are indeed
confounded by cell type heterogeneity or batch effects
[83]. Based on our data, we would argue that averaging
DNAm over 3.7 million solo- WCGWs (or 1.8 million
PMD solo-WCGWs) to approximate mitotic age is un-
justified, not only because of cell type heterogeneity and
the potentially biased selection method, but also because
averages taking over such large numbers of CpGs could
be easily driven by different subsets in different condi-
tions. Such an assay would also appear infeasible in
practice. Instead, cumulative hypermethylation at a rela-
tively small number of 163 epiTOC2 CpGs appears to
be a much better and robust mitotic age clock for adult
tissues, and so we propose that measurement of DNAm
at these sites in adult pre-neoplastic lesions, potentially
in serum cell-free DNA [19], could provide the basis for
building feasible pre-diagnostic or cancer risk assays.

Conclusions

In summary, we have presented a novel epigenetic mi-
totic clock epiTOC2 that can yield approximate esti-
mates of the cumulative number of stem cell divisions in
normal adult tissue. epiTOC2 outperforms epigenetic
mitotic clocks based on hypomethylation of solo-
WCGW:s within PMDs and late-replicating regions.
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