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Pancreatic ductal adenocarcinoma is currently one of the deadliest cancers with low overall survival rate. This disease leads to an
aggressive local invasion and early metastases and is poorly responsive to treatment with chemotherapy or chemoradiotherapy.
Several studies have shown that pancreatic cancer stem cells (PCSCs) play different roles in the regulation of drug resistance
and recurrence in pancreatic cancer. MicroRNA (miRNA), a class of newly emerging small noncoding RNAs, is involved in the
modulation of several biological activities ranging from invasion tometastases development, as well as drug resistance of pancreatic
cancer. In this review, we synthesize the latest findings on the role of miRNAs in regulating different biological properties of
pancreatic cancer stem cells.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is currently the
fourth leading cause of cancer death in the United States
and the seventh worldwide, with low overall survival rate
[1, 2]. Surgical resection remains the only curative therapeutic
treatment for this aggressive disease, although theminority of
the patients can undergo resection as consequence of tardive
diagnosis [3, 4]. PDAC leads to an aggressive local invasion
and early metastases, and it is noted that this disease is poorly
responsive to treatment with chemotherapy or radiation
therapy [5–7]. To date, gemcitabine is the best chemothera-
peutic agent used for pancreatic cancer treatment, although
patients showed drug resistance over the time [8–11]. In
order to improve PDAC prognosis and to bypass the problem
of pancreatic tumor chemoresistance, many alternative treat-
ments have been proposed [12]. Unfortunately, the results are
not very encouraging, since the overall survival of patients

was not significantly improved. Emerging studies showed
that cancer stem cells (CSCs) regulate several mechanisms
underlying drug resistance, carcinogenesis, and metastases
development in various types of cancer including pancreatic
cancer, highlighting the possibility that these cells could
represent valid candidates to ameliorate pancreatic cancer
prognosis [13, 14].

CSCs were identified for the first time in acute myeloid
leukemia [15, 16] and then in the solid tumors, including
pancreatic cancer [17–19]. These cells are able to differentiate
into several cancer cell types [20] and are involved in the
initiation, the propagation, and the therapeutic resistance of
various types of human cancer [21–25]. Pancreatic cancer
stem cells (PCSCs) show the same properties of normal stem
cells and can regulate pancreatic tumorigenesis. It has also
been demonstrated that these cells can play several roles
in the regulation of chemoresistance in pancreatic cancer
[22, 26, 27], although the underlying mechanisms are not
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completely elucidated. Recent studies dissected the role of
microRNAs (miRNAs) and PCSCs on the modulation of
pancreatic cancer etiology and progression, shedding light
on their importance as potential therapeutic targets for
pancreatic cancer [17, 28–31]. In this review, we synthesize
the latest findings on the role of miRNAs in regulating key
biological properties of pancreatic cancer stem cells.

2. Characteristics of Pancreatic Cancer
Stem Cells (PCSCs)

PCSCs, also named tumor-initiating pancreatic cancer stem
cells, were described by Li et al. [22], through the generation
of a mouse model of human pancreatic adenocarcinoma.The
authors isolated these subsets of cells as CD24+CD44+ESA+
(epithelial specific antigen), which, despite accounting for less
than 1%of all pancreatic cancer cells, showed a highly tumori-
genic potential respect to noncarcinogenic cancer cells. Later
on,many studies based on several xenograftmodels identified
other markers for pancreatic cancer stem cells such as CD133,
c-Met, ALDH1 (aldehyde dehydrogenease-1), Lgr5 (leucine-
rich repeat-containing G-protein coupled receptor 5), and
DclK1 (doublecortin-like kinase 1) (Figure 1) [17, 47–54],
although further studies will be necessary to better define the
cell surface markers of PCSCs.

3. Signaling Pathway Involved in
the Regulation of Pancreatic Cancer
Stem Cells (PCSCs)

The properties of PCSCs have been investigated by dissecting
the underlying signaling pathways and regulatory genes
such as Wnt/𝛽 catenin, Notch, c-myc, Sonic Hedgehog, and
Bmi-1 [32, 47, 55, 56] (Table 1). The Hedgehog signaling
(Hh) pathway plays a key regulator role in the embryonic
development and patterning [33, 57] and it is activated by a
complex mechanism of interaction between three Hedgehog
(Hh) ligand proteins (Sonic, Indian, and Desert Hh) and
cell surface receptors patched (Ptch1 and Ptch2) [13]. It is of
note that Hh signaling is necessary for the PCSCs renewal
and the maintenance of stemness [58–63]. Notch signaling
controls pancreatic self-differentiation by acting on the self-
renewal process [64]. Moreover, it has been demonstrated
that Notch-1 is involved in the epithelial-mesenchymal tran-
sition (EMT) of Aspc-1 pancreatic cancer cell line [65] and
in the maintenance of the cancer stem cell population [34].
These studies suggest that Notch signaling is essential for the
pancreatic CSC formation. Another signaling involved in the
organogenesis of the pancreas is theWnt-𝛽-catenin signaling
pathway. It has been demonstrated that Wnt signaling is
associated with EMT process in colorectal cancer [66]. Other
studies proved that different pathways are involved in the
maintenance of pancreatic CSCs such as NF-𝜅B [67] and
mTOR pathway [68].

Altogether, these results suggest that different signaling
pathways are involved in the self-renewal and the mainte-
nance of pancreatic cancer stem cells.
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Figure 1: The role of cancer stem cells markers during pancreatic
cancer development. The cartoon recapitulates the role of cancer
stem cells markers during pancreatic cancer development and the
signaling pathways involved.

4. The Biogenesis of MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small noncoding RNAs involved
in the regulation of gene expression at posttranscriptional
level by binding to the 3-untranslated regions (3UTRs)
or the open reading frames of target genes. This leads to
the repression of mRNA translation or to the degradation
of target mRNAs [69]. miRNAs are single-stranded, 18–25
nucleotides long. In animals, they are transcribed as long
primary transcripts (pri-miRNA) by RNA polymerase II,
which are processed in the nucleus by RNase III Drosha into
70–100-nucleotide-long precursor named hairpin miRNAs
(pre-miRNAs) [70]. Then, pre-miRNAs are exported to the
cytoplasm by Exportin-5 [71–73] and further cleaved in a
complex composed of RNase III enzyme, Dicer, and the
transactivating response RNA-binding protein (TRBP) into
complex named miRNA:miRNA∗ [74–77]. The complemen-
tary star strand (miRNA∗) is usually degraded, even if it
has been suggested that when it is not degraded, it may
have some relevant biological functions [78, 79]. The other
strand is chosen as a guide strand that recognizes target
mRNAs on the basis of complementarity of sequence. This
mature miRNA is loaded into an Argonaute protein within
the RNA-induced silencing complex (RISC), which then
regulates targets repression by promoting destabilization or
inhibiting translation of target mRNA [80–83]. Experimental
data showed that miRNAs bind to the open reading frame or
to the 5UTR [84, 85].The biogenesis of miRNA is showed in
Figure 2.
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Table 1: Self-renewal pathways in PCSCs.

Signaling pathways Effects on tumorigenesis and drug resistance Targets Reference
Hedgehog Proliferation ALDH+ CD44+CD24+ESA+ [32–34]
ALK4 Invasion and metastasis CD133+ [35]
Notch Proliferation ALDH+ [34]
c-Met Drug resistance c-Met+, CD133+ [36]
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Figure 2: The miRNAs biogenesis.

RNA polymerase II transcribes miRNA genes together
with specific transcription factors (TF), as long primary
transcripts (pri-miRNA). These transcripts are processed in
the nucleus by the RNA polymerase III enzyme Drosha, in
complex with DGCR8, into pre-miRNAs. These transcripts
are exported into the cytoplasm by Exportin-5. Pre-miRNAs
are processed by the RNase III enzyme Dicer, in complex
with TRBP, into a duplex of a guide strand (miRNA) and
passenger star strand (miRNA∗). The guide stand miRNA is
loaded into the RISC and is able to recognize target mRNAs
on the basis of sequence complementarity.TheRISC regulates
target repression.

5. The Regulatory Functions of miRNAs on
PCSCs Properties

Many studies demonstrated that miRNAs play critical roles
in the regulation of CSCs in different types of malignant
tumors including pancreatic cancer and have been con-
sidered potential targets for cancer therapy, since they are
involved in the initiation, the propagation, and the regulation
of EMT of cancer stem cells [39, 43, 86–92]. Several miRNAs
show different expression profiles in various types of cancer,
including pancreatic cancer [93, 94]. Moreover, there is a
difference between the miRNA complement of cancer cells
and those of nontumor cells. miRNAs can be classified in
two different groups based on their role on the progression
of human cancer and their expression profile: (1) the onco-
genic miRNAs (miR-21, miR-155, miR-17-5p, etc.) that are

upregulated in tumor cells [65, 95]; (2) the tumor suppressor
miRNAs (miR-34, miR-15a, miR-16-1, let-7, etc.), which are
downregulated in pancreatic cancer [43, 96].

Regarding the role of oncogenic miRNAs on PCSCs
properties, interesting studies provided evidence that miR-21
modulates the proliferation and the chemoresistance of pan-
creatic cancer cells [37, 38]. In addition, Giovannetti et al. [97]
showed that there is a correlation between miR-21 expression
and the clinical outcome of patients with pancreatic cancer
through involvement of PI3K/AKT pathway.

On the other hand, other studies showed that upregulated
expression of miR-34, which is classified as tumor suppressor
miRNA and is regulated by p53, leads to the inhibition of
human pancreatic cancer tumor-initiating cells, indicating
that miR-34 is involved in the self-renewal process of PCSCs
[43, 44].

Hasegawa et al. [46] provided evidence that the overex-
pression ofmiRNA-1246 is associatedwithCCNG2-mediated
chemoresistance and stemness in pancreatic cancer.

Studies performed on the expression of various types of
miR-200, classified with tumor suppressor miRNAs, demon-
strated that these miRNAs can regulate cell maintenance and
EMT (by reducing levels of EMT markers) of PCSCs [40].

It has been reported that DCLK1 (a putative marker
for pancreatic and intestinal cancer stem cells) regulates
EMT in human pancreatic cancer cells through a mechanism
dependent on miR-200a [41]. In this paper, the authors
demonstrated that DCAMKL-1 expression was upregulated
in human pancreatic adenocarcinoma tissue and in a KRAS
transgenic mouse model of pancreatic cancer.

Experimental research proved that Zinc finger E-box
binding homeobox 1 (ZEB1) is a crucial EMT promoter and
inhibits expression of the microRNA-200 (miR-200) family
and miR-203, resulting in the maintenance of stemness and
EMT activation in colorectal and pancreatic cancer [42].

Pancreatic cancer cell growth can be inhibited also by a
complex mechanism of regulation mediated by two tumor
suppressor miRNAs, miR-143 and miR-145. Pramanik et al.
[45] demonstrated that restoration of miR-143/145 levels,
using a systemic nanovector, is able to inhibit pancreatic can-
cer cell growth in mice.This process seems to be mediated by
a negative feedback loop in KRAS/RREB1-miR-143/145. The
regulatory functions of miRNAs on the biological properties
of PCSs are summarized in Table 2.

Deregulation of miRNAs is also associated with the
renewal and the differentiation of stem cells into cancer stem
cells, as reported by Garg et al. [98, 99]. Moreover, some
important regulators of the stem cell pluripotency (such as
Sox9 and Nanog) and miRNAs targets have been described
by Ahmed et al. [100].
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Table 2: The regulatory functions of miRNAs on PCSCs properties.

Upregulation of onco-miRNAs Downregulation of tumor suppressor
miRNAs Potential targets Biological PCSCs behavior Reference

miR-21 PI3K/AKT Proliferation and chemoresistance [37–39]
miR-200a/c n-cadherin, ZEB 1 EMT, stemness maintenance [40–42]
miR-34 BCL2 Self-renewal [43, 44]

miR-143/miR-145 Kras Cancer cell growth [45]
miR-1246 CCNG2 Chemoresistance and stemness [46]

An experimental approach based on microarray analysis
demonstrated a linkage between clusters of miRNAs and
clusters of stem cell-associated miRNAs in cancer stem cells
[101]. Bao et al. [102] demonstrated that metformin inhibits
cell proliferation, migration, and invasion of drug resistant
pancreatic cancer cells by attenuating CSC function. This
process ismediated by deregulation ofmiRNAs (let-7a, let-7b,
miR-26a, miR-101, miR-200b, and miR-200c) in pancreatic
cancer cells.

Altogether, these data suggest that a better comprehen-
sion of the regulatory feedback loop between miRNAs and
CSC in pancreatic cancer could lead to the development of
novel strategies in the treatment of pancreatic cancer patients
by CSCs elimination.

6. Conclusions

Emerging data summarized in this review showed that miR-
NAs can function as oncogenes or tumor suppressors, playing
important roles in the modulation of several biological
activities of PCSCs. Despite these encouraging results, more
studies on the function of miRNAs in PCSC biology will be
needed in the future in order to improve pancreatic cancer
treatments by using miRNAs, as innovative approach.
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