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ABSTRACT

SCovid (http://bio-annotation.cn/scovid) aims at pro-
viding a comprehensive resource of single-cell data
for exposing molecular characteristics of coron-
avirus disease 2019 (COVID-19) across 10 human tis-
sues. COVID-19, an epidemic caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2),
has been found to be accompanied with multiple-
organ failure since its first report in Dec 2019. To
reveal tissue-specific molecular characteristics, re-
searches regarding to COVID-19 have been carried
out widely, especially at single-cell resolution. How-
ever, these researches are still relatively indepen-
dent and scattered, limiting the comprehensive un-
derstanding of the impact of virus on diverse tis-
sues. To this end, we developed a single-cell atlas of
COVID-19. Firstly we collected 21 single-cell datasets
of COVID-19 across 10 human tissues paired with
control datasets. Then we constructed a pipeline for
the analysis of these datasets to reveal molecular
characteristics of COVID-19 based on manually anno-
tated cell types. The current version of SCovid docu-
ments 1 042 227 single cells of 21 single-cell datasets
across 10 human tissues, 11 713 stably expressed
genes and 3778 significant differentially expressed
genes (DEGs). SCovid provides a user-friendly inter-
face for browsing, searching, visualizing and down-
loading all detailed information.

INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
is an ongoing global health threat since the beginning of
the outbreak in late 2019 and has infected more than 190

million people worldwide as of 21 July 2021 (1). Research
on isolating, sequencing and cloning the virus, development
of diagnostic kits, and the testing of candidate vaccines are
rapidly proceeding (2–6). However, key questions remain
about the pathophysiology of COVID-19 (7).

With the in-depth case studies of COVID-19, accumulat-
ing evidence indicates that COVID-19 could not only re-
sult in acute respiratory distress syndrome but also mul-
tiorgan involvement. SARS-CoV-2 binds to angiotensin
converting enzyme 2 (ACE2) receptors presented in vas-
cular endothelial cells, lungs, heart, brain, kidneys, intes-
tine, liver, and other tissues, which directly injures these or-
gans (8). For example, emerging data from autopsy studies
demonstrated that COVID-19 is accompanied by acute in-
terstitial pneumonia (AIP), diffuse alveolar damage (DAD)
and microvasculature involvement with pulmonary vessel
hyaline thrombosis, haemorrhage, vessel wall oedema, in-
travascular neutrophil trapping and immune cell infiltra-
tion (9–11). In addition, gastrointestinal symptoms asso-
ciated with COVID-19 vary widely but can include loss
of appetite, nausea, vomiting, diarrhoea and generalized
abdominal pain (12). ACE2 expression in cardiac tissue
is also significantly elevated, which may potentially facil-
itate myocarditis caused by viral infection (13–15). To re-
veal tissue-specific molecular characteristics, researches re-
garding to COVID-19 have been carried out widely, espe-
cially at single-cell resolution. Triana et al. identified a sub-
group of enterocytes as the prime target of SARS-CoV-
2 and found the lack of positive correlation between in-
fection susceptibility and ACE2 expression using single-
cell RNA sequencing of SARS-CoV-2-infected colon and
ileum organoids, which indicates that SARS-CoV-2 sup-
presses the immune response (16). Moreover, Arunacha-
lam et al. revealed that various cell types exhibit unique
pro- and anti-inflammatory responses by analyzing the pe-
ripheral blood mononuclear cells (PBMCs) of COVID-19
patients (17).
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Figure 1. Overview of SCovid database.

Since the rapid development of COVID-19 has led to the
imminent researches on COVID-19, numerous COVID-19-
related databases have emerged. GISAID (18), Nextstrain
(19), GESS (20) and European Nucleotide Archive (21)
collected SARS-CoV-2 strains of different patients all
around the world and provided tools to analyse sequences.
CORD-19 (22), LitCovid (23) and BioRxiv & MedRxiv
summarized the literature about the latest progress in
COVID-19 research. DrugBank (24), DockCoV2 (25) and
COVID19 Drug Repository (26) predicted drugs with po-
tential therapeutic effects and were well cross-linked to ex-
ternal databases, which provided the possibility to speed
up the discovery of therapeutic drugs. Coronavirus3D (27),
CoV3D (28) and RCSB PDB (29) annotated and visual-
ized structures of coronavirus proteins and their complexes
with high resolution. Besides, various types of single-cell
databases such as CancerSEA (30), CellMaker (31), TISCH
(32) and so on are emerging in endlessly. However, none
of these databases focuses on molecular characteristics of
COVID-19 patients. Therefore, we developed SCovid, a
single-cell atlas for exposing molecular characteristics of
COVID-19 across 10 human tissues. This database could be
freely available at: http://bio-annotation.cn/scovid.

DATA COLLECTION AND DATABASE CONTENT

We manually searched COVID-19 related single cell RNA-
seq (scRNA-seq) datasets in electronic databases, including
Sequence Read Archive (SRA) (33) and Gene Expression

Omnibus (GEO) (34), based on the keywords: (‘COVID-
19’ OR ‘SARS-CoV-2’) AND (‘single cell’ OR ‘single-cell’)
AND (‘transcriptomics’ OR ‘transcriptome’ OR ‘scRNA-
seq’ OR ‘scRNA seq’). Meanwhile, we also systemati-
cally searched electronic databases, including PubMed, Na-
tional Library of Medicine of the National Institutes of
Health, BioRxiv and MedRxiv preprint services operated
by Cold Spring Harbor Laboratory, through searching for
the keywords such as ‘single cell sequencing’, ‘scRNA-seq
& COVID-19’ and ‘transcriptomics & COVID-19’. Litera-
ture and host data on COVID-19 were manually extracted
from publications. Finally, a total of 21 COVID-19 re-
lated scRNA-seq datasets involving 10 tissue types were ob-
tained. All datasets were collected before July 2021.

Considering the technical noise of assay, we removed low
quality cells and lowly expressed genes of each COVID-19
related scRNA-seq datasets for further analysis, using the
following strategy: (i) cells that had fewer than 200 genes,
as well as genes expressed in fewer than three cells; (ii)
liver cells that contained greater than 50% of mitochon-
drial genes, as well as other tissue cells that contained >20%
of mitochondrial genes. For each dataset, we used the R
package ‘Seurat’ (v3.2.3) (35) for data integrating, cluster-
ing, dimensionality reduction, and visualization. For these
analyses, the function ‘SCTransform’ was used to integrate
and scale data. Then, PCA analysis was performed using
variable feature genes, and the principal components (PCs)
identified by the function ‘ElbowPlot’ were used to cluster
the dataset. Next, each cluster annotation was confirmed
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Figure 2. Number of genes in each dataset. Each color represents a different cell type. (A) Number of significant DEGs in each dataset. (B) Number of
stably expressed genes in each dataset.
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Figure 3. The most frequently occurring significant DEGs in cell types of these 21 datasets. The area of the sector represents the proportion of cell types
where this gene is significant DEG in the dataset.

by our previous knowledge of known cell type-specific gene
markers, which were obtained from DE genes of each clus-
ter by ‘FindMarkers’ function. Subsequently, we performed
UMAP to reduce the dataset into two-dimension, and fi-
nally the cells were visualized on the website. We also per-
formed analysis of scRNA-seq expression, including DE
genes and gene pathway. First, for each cell type, MAST
(v1.16.0) (36) was used to calculated differentially expressed
genes (DEGs) between the cells from samples with COVID-
19 and the cells from controls. Then, up/down-regulated
genes with top 5% |Log2FC| and P value <0.05 were re-
garded as significant DEGs, which were visualized by vol-
cano plot. Next, the GO pathways of each cell type were
enriched using these up/down-regulated significant DEGs
by R package clusterProfiler (37).

Overview of SCovid database is shown in Figure 1. The
current version of SCovid documents 1 042 227 single cells
of 21 single-cell datasets across 10 human tissues (including
intestine, blood, pancreas, lung, brain, airway, heart, kid-
ney, liver and lymph node), 11 713 stably expressed genes
(217 495 associations) and 3778 significant DEGs (8898 as-
sociations). Each dataset in SCovid contains detailed infor-
mation of data source, sample source, grouping informa-
tion, single-cell number and cell types. Each entry of DEGs
contains Log2FC, P value and visual information. Figure 2
shows the number of genes in each dataset. Figure 3 shows
the most frequently occurred significant DEGs that might
be potential cell-type specific markers in these 21 datasets.

USER INTERFACE

We provided a user-friendly web interface to visualize the
datasets by a few flexible steps as shown in Figures 4 and 5.
All datasets are organized according to tissues types. Users
can browse datasets by clicking the corresponding tissue

icon or ‘Tissue’ hyperlinks in the ‘Home’ page or clicking
specific tissue name in the navigation menu in the ‘Browse’
page (Figure 4A and B). After selecting a dataset, for ex-
ample, ‘Delorey TM. (Liver)’, all the detailed and visual in-
formation, including ‘Detailed description’, ‘UMAP’, ‘Cell
proportion’, ‘DEGs in cell types’ and ‘Expression profile’,
would be retrieved.

• Detailed description. The ‘Detailed description’ section
contains dataset name, tissue type, accession number,
number of cells, cell types, sample source and relevant
publication information (Figure 4C). Additionally, acces-
sion number and publication title contain hyperlinks the
clients can follow.

• UMAP. Visualization of the selected dataset using
UMAP analysis is displayed in the ‘UMAP’ section with
colorful points representing different cell types (Figure
4D).

• Cell proportion. The ‘Cell proportion’ section displays a
bar plot to show the cell-type proportion across samples
(Figure 4E). Each bar represents a sample and different
colors represent different cell types.

• DEGs in cell types. In the ‘DEGs in cell types’ section,
users can select the interested cell type to browse the inter-
active information including a volcano plot, a table and
Gene ontology (GO) (38) enrichment bar plots (Figure
4G and H). When positioning the mouse on any bubbles
of the volcano plot showing all stably expressed genes, the
detailed information including gene symbol, Log2FC, P
value and change status would be popped up. The result
table is used to display the statistically significant DEGs
between COVID-19 and control in the selected cell type
of this dataset. In the result table, clicking the ‘detail’ link
of a row would lead to the detailed plots including a vio-
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Figure 4. Browse page and results of SCovid. (A) Home page of Scovid. (B) The tree browser of SCovid in Browse page. (C) Detailed description of this
dataset. (D) Two-dimensional UMAP plot. The colors of points represent the cell types which cells belong to. (E) Cell proportion plot that displays the
proportion of each cell types per sample in the selected dataset. (F) The heatmap that shows the expression profile of high-variance genes in different
cell types. (G) The volcano plot that shows the statistically significant DEGs between COVID-19 and control and GO enrichment bar plots of up/down-
regulated. In the GO enrichment bar plots, the vertical axis shows the names of clusters of GO terms, and the horizontal axis displays the − Log10 (P
value). A P value <0.05 was used as a threshold to select significant GO terms. (H) The table that shows statistically significant DEGs between COVID-19
and control. (I) The violin plot of a specific gene in COVID-19 and control and UMAP projection for a specific gene.
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Figure 5. Search page and results of SCovid. (A) Search page of SCovid. (B) The table that shows statistically significant DEGs between COVID-19 and
control in different tissues. (C) The violin plot of a specific gene in COVID-19 and control and UMAP projection for a specific gene. (D) The table that
shows statistically significant DEGs between COVID-19 and control. (E) The volcano plot that shows the statistically significant DEGs between COVID-
19 and control and GO enrichment bar plots of up/down-regulated. In the GO enrichment bar plots, the vertical axis shows the names of clusters of GO
terms, and the horizontal axis displays the − Log10 (P value). A P value <0.05 was used as a threshold to select significant GO terms.
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lin plot and a UMAP projection plot for the specific gene
(Figure 4I). The GO enrichment bar plots displaying GO
classifications of up/down-regulated genes, in which hov-
ering over any bars would pop up detailed information
including ontology aspect, term ID, term description, P
value and genes’ symbol.

• Expression profile. The ‘Expression profile’ section pro-
vides the heatmap that shows the expression profile of
high-variance genes in different cell types (Figure 4F).
The individual tiles in the heatmap are scaled with a range
of colors proportionate to gene expression values. The
gene sequences correspond to the rows of the matrix and
the cells correspond to the columns.

• Data search. In the ‘Search’ page, SCovid offers two sec-
tions involving ‘Search DEG in all tissues’ and ‘Search
cell type’ (Figure 5A). For a gene, SCovid allows users to
input its symbol to query its related DEG information in
all tissues and cell types and a table will be returned as
described above on the Browse page (Figure 5B and C).
By selecting cell type, users will query its detailed DEGs
and enriched GO terms in a tissue based on one dataset
(Figure 5D and E).

• Data download. In addition, all data in SCovid can
be downloaded in the ‘Download’ page, containing the
DEGs’ expression profile, variation information of all
stably expressed genes and DEGs.

SUMMARY AND FUTURE PERSPECTIVES

Since the outbreak of COVID-19 in Dec. 2019, databases
about the literature collection, SARS-CoV-2 genome se-
quencing or proteins’ structures, and drug prediction ap-
peared subsequently, while none of them focuses on molecu-
lar characteristics of COVID-19 patients. Given the high ac-
curacy and cellular specificity of single-cell sequencing, we
collected 21 single-cell datasets of COVID-19 across 10 hu-
man tissues paired with control datasets to reveal molecular
characteristics of COVID-19 based on manually annotated
cell types. We further developed a database system SCovid
to provide a user-friendly interface for browsing, search-
ing, visualizing and downloading stably expressed genes,
significant DEGs and functional analysis of these signifi-
cant DEGs based on cell types across tissues. The current
version of SCovid documents 1 042 227 single cells of 21
single-cell datasets across 10 human tissues, 11 713 stably
expressed genes and 3778 significant DEGs. Each dataset
in the SCovid contains detailed information of data source,
sample source, grouping information, single-cell number
and cell types. Each entry of DEGs contains Log2FC, P
value and visual information.

SCovid is a powerful and high-quality database for
molecular characteristics of COVID-19. Biologist can ac-
cess the variation information of genes of interest on spe-
cific cell types of different tissues, and the enrichment path-
ways of differential genes on specific cell types of different
tissues. Bioinformatician can use machine learning methods
to predict tissue-specific driver genes and therapeutic drugs
of COVID-19. Although there is limited single-cell data of
COVID-19 currently, research on COVID-19 will increase
largely, since there is no effective way to completely inhibit
the spread of the virus now. Meanwhile, the research focus

has gradually shifted from virus strains to molecular char-
acteristics of COVID-19 patients, which means genomics,
epigenomics and proteinomics data of COVID-19 will con-
tinue to emerge. Therefore, we will focus continuously on
the latest data and construct unified analysis pipelines, so
as to continuously update our database.

DATA AVAILABILITY

This database could be freely available at: http://bio-
annotation.cn/scovid. The code is available at https://
github.com/ChangluQi/scovid.
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