
1Scientific RepoRts | 7: 2362  | DOI:10.1038/s41598-017-02450-4

www.nature.com/scientificreports

Analytical consideration of liquid 
droplet impingement on solid 
surfaces
Yukihiro Yonemoto1 & Tomoaki Kunugi2

In industrial applications involving spray-cooling, combustion, and so on, prediction of the maximum 
spreading diameter of a droplet impinging on a solid surface permits a quantitative estimation of 
heat removal and energy consumption. However, although there are many experimental studies 
regarding droplet impingement behaviour, theoretical models have an applicability limit for predicting 
the maximum spreading diameter. In the present study, we have developed an analytical model for 
droplet impingement based on energy conservation that considers adhesion energy in both horizontal 
and vertical directions at the contact line. The theory is validated by our experiment and existing 
experimental data possessing a wide range of Weber numbers. We demonstrate that our model can 
predict βm (i.e., the maximum spreading diameter normalised in terms of initial droplet diameter) for 
various Newtonian liquids ranging from micro- to millimetre-sized droplets on different solid surfaces 
and can determine the transition between capillary and viscous regimes. Furthermore, theoretical 
relations for scaling laws observed by many researchers are derived.

Droplet impingement on solid surfaces is of great importance to ink-jet printing1, spray-cooling2, 3, combustion4,  
and coating processes5. The physics of droplet impingement are related not only to fluid dynamics but also to 
the respective interfacial properties of the liquid and solid. Droplet impingement is especially important for 
spray-cooling and combustion applications, whereby heat transfer from solid surfaces to droplets influences their 
impingement behaviour. This gives rise to key problems such as surface coverage efficiency and reducing fuel or 
coolant consumption. Quantitative estimation of heat transfer between the solid and the liquid film resulting 
from droplet impingement is important for the design of an efficient heat exchanger. The diameter of this film 
is mainly characterised by the maximum spreading diameter. In other applications, such as pesticide deposition 
on plant leaves, it is important to achieve maximum coverage of the target materials with the minimum amount 
of liquid. Therefore, the maximum spreading diameter is considered to be the most important factor for droplet 
impingement on solid surfaces.

When a droplet impinges on a solid surface, it spreads rapidly in a radial fashion. The maximum spreading 
diameter (dmax) depends on the impinging velocity of the droplet, as well as the properties of the liquid and solid. 
This behaviour is mainly governed by the inertia of the droplet and the capillary and viscous forces. After the 
impingement, the spreading droplet breaks up if the capillary force is weak and the inertia dominates6. These 
forces are expressed by non-dimensional numbers; namely the Weber number, We(We = ρlu2d0/σlg; where ρl, u, d0 
and σlg represent the liquid density, impinging velocity, initial droplet diameter and surface energy density of the 
liquid, respectively), and the Reynolds number, Re (Re = ρlud0/μl; where μl is the viscosity of the liquid). When 
considering droplet impingement behaviour, the maximum spreading diameter of a droplet is typically normal-
ised with respect to its initial diameter (d0) as the dimensionless maximum spreading diameter, βm = dmax/d0

7–10. 
Subsequently, the breakup behaviour of the droplet impinging on the solid surface is mainly discussed using Re 
and We to identify the thresholds between the spreading and the breakup behaviours7, 11–14. To understand the 
detailed mechanism for the droplet impingement on the solid surfaces, it is important to know the critical condi-
tion whereupon the droplet breaks up. However, even the spreading process before reaching the critical condition 
is still not completely understood. Therefore, the present study only focuses on the spreading behaviour of the 
droplet before the breakup process.
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Current knowledge of the detailed behaviour of droplet impingement derived from experimental studies has 
improved gradually with advancements in high-speed video technology15–24. Theoretical approaches, on the other 
hand, employ models that attempt to predict the maximum spreading diameter of droplet impingement based 
on energy balance, momentum balance, and empirical considerations7, 9, 10, 25–27. Existing models can be classified 
into two main categories: 1) βm as a function of Re and We (or a single parameter of Re or We)2, 17, 19, 22, 26–28 and 
2) βm as a function of Re, We, and cos θd,9, 10, 25, where θd is the dynamic contact angle (advancing contact angle). 
It is only in the latter case that the interactions between the solid and liquid are considered. Due to the difficulty 
in predicting θd theoretically, however, experimental data is often used instead. Although the studies found in 
the literature have generally reported scaling laws of βm ∝ We1/2 in the capillary region and βm ∝ Re1/5 in the vis-
cous region7, most models have an applicability limit in the extent of the We (or Re) number for predicting the 
experimental data. Therefore, the quantitative prediction of βm for a wide range of We (or Re) numbers is indeed 
a challenging problem, especially since there are few models that can accurately predict solid surface properties. 
Thus, the important open question that persists is to determine the effect of different types of solids on βm as well 
as its theoretical prediction without the applicability limit.

In this work, we present a theoretical model derived using an energy balance approach to predict βm. 
Particularly, our model considers the adhesion energy at the contact line in the vertical direction in addition 
to the horizontal direction29. The derived equation can predict βm in a wide range of We (or Re) numbers for 
Newtonian liquid droplets on solid surfaces quantitatively without the use of arbitrary fitting parameters. We 
validate our model by comparing it to existing experimental data that employ micro- to millimetre-sized drop-
lets8, 17, 22, 30, 31. In addition to these results, the transition point from the capillary regime to the viscous regime is 
theoretically determined.

Theory
The energy conservation approach9, 10 considers both kinetic and surface energies prior to droplet impingement 
as well as surface energy and viscous dissipation after impingement. We now proceed to derive the theoretical 
equation expressing βm as a function of θd, Re, and We. Although some empirical and semi-empirical models 
exist in the literature17, 22, 23, 26, those models lack a quantitative prediction of βm. Recently, the importance of the 
work done by the adhesion force at the contact line, not only in the horizontal direction, but also in the vertical 
direction29 is revealed.

From an energy conservation standpoint, the contribution of the adhesion force in the vertical component 
must also be considered. Let Ekine, Esurf, Egrav, Esprd, Evis, and Edef be the kinetic energy, initial surface energy, gravi-
tational potential of the droplet, adhesion energy, viscous dissipation, and deformation energy after the impinge-
ment, respectively. Then, the following energy conservation holds:
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In Eqs (2–7), ρl, μl, σlg, V0, d0, and u are the density of the liquid [kg m−3], viscosity of the liquid [Pa s], surface 
energy density of liquid [J m−2], initial droplet volume [m3], initial droplet diameter [m], and impinging velocity 
[m s−1] in the vertical direction, respectively. rm (i.e., dmax/2) is the maximum spreading radius [m], while hm, and 
tm refer to the droplet height [m], and time [s] at which rm is reached, respectively. uR and heff are the radial veloc-
ity [m s−1] of the liquid along the solid surface after droplet impingement and the effective height [m] in the liquid 
film that is a distance from the wall, respectively. In Eq. (5), the first and second terms correspond to the adhesion 
energy in the horizontal and vertical directions at the contact line, respectively, and θ  is the simple averaged con-
tact angle [°] of the static and dynamic contact angles. Of course, there exist a range of differences in droplet 
shapes ranging from a spherical cap to a flattened sphere. A quite low We number implies a spherical cap shape 
after impingement (gently depositing on the solid surface), whereas a large We number implies a flattened shape. 
Although it is well-known that the dynamic contact angle depends on We and Re, an exact determination of the 
contact angle is very difficult because of the scale differences that exist such as micro- and macro-contact angles32. 
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In the present study, we assume that the exact value of the contact angle in the spreading process exists in the 
range between the contact angle at a quite low We value (θlowWe) and that at a large We value (θhighWe). Here, with 
respect to θlowWe, the fluid motion is negligible small in the quite low We situation at constant temperature. In such 
the case, we assume that the value of θst can be used as θlowWe. Here, θst is determined by measuring the static con-
tact angle of the droplet. Then, we consider θhighWe to be θd at the maximum spreading diameter. Finally, the simple 
averaged values of θst and θd are used to give θ  = (θst + θd)/2. Moreover, in the deformation term of Eq. (7), the 
exact evaluation of the surface area is also very difficult. Therefore, the deformed surface (Sdef) is defined as the 
harmonic average of the droplet surface of the spherical cap (Scap) and of the disk (Sdisc), given as

=
+

S
S S

S S
2
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In most energy conservation approaches9, 10, the initial impinging velocity (u) is used to evaluate the viscous 
dissipation. However, since shear stress occurs in the liquid film that spreads along the solid surface, the radial 
liquid velocity along the solid surface (uR) to evaluate the viscous dissipation term is more appropriate. When 
the liquid velocity reaches zero (i.e., kinetic energy is zero), the droplet diameter realizes its maximum spreading 
diameter. The treatment of the dissipation term is very difficult in this kind of analytical approach because the 
exact velocity distribution or profile is not known during the spreading process. However, it may be important 
to postulate a velocity profile for the evaluation of the viscous dissipation term. When the droplet impinges on 
the solid surface, the droplet shape initially becomes a bell shape owing to a recoil force from the solid surface, 
and then reaches the maximum spreading diameter caused by the surface tension33. This surface tension acts on 
the top of the bell-shaped droplet and pushes the liquid toward the solid surface, which then generates the radial 
liquid flow. This situation is like a wall jet along a solid surface34–36. Based on this assumption, the dissipation term 
can be evaluated using the velocity profile of wall jet.

The wall jet type velocity profile is non-linear and the peak of the velocity (i.e., maximum velocity) is located 
near the wall. From an experimental study of the wall jet35, it was found that the velocity peak is located at around 
one quarter of the effective height of the wall jet flow. However, in the case of the droplet impingement, the height 
is restricted by the droplet volume. If the liquid flow is confined by the wall and the liquid film surface (i.e., 
between parallel plates), however, the velocity profile becomes a parabolic shape where the peak of the velocity 
is located at half of the height. Thus, we postulate that the peak of the velocity profile in the case of the droplet 
impingement would be somewhere between these two situations of the wall jet flow and the parallel plate flow. 
Consequently, the effective height in Eq. (6) can be obtained by taking the harmonic average as follows:
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Therefore, in the present model, the maximum velocity is characterized at the effective height of Eq. (11). As a 
next step, to evaluate uR in Eq. (6) we need to calculate the initial radial velocity. However, the exact calculation is 
very difficult because the droplet shape is very complicated, as mentioned above. Thus, we estimate the initial 
radial-mean velocity uR

0, which is defined by assuming a cylindrically-shaped droplet of diameter d0 on the solid 
surface before spreading, as shown in Fig. 1. This assumption is used only for the analytical evaluation of the ini-
tial radial-mean velocity of the liquid. The droplet volume and velocity before impingement are denoted as V0 and 
u, respectively. At the moment of impingement on the solid surface, the liquid flows out from the cylindrical 
surface with an initial velocity of uR

0. Here, an equivalent height l of the cylindrical droplet is calculated as
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Combining Eqs (12) and (13) yields the following relation:

= .u u3
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0

Because it is difficult to obtain a detailed velocity profile in the liquid, if the relationship between the maxi-
mum velocity umax and the mean velocity umean satisfies umax ≈ u2 R

mean, then uR
max ,0 as characterised by the effective 

height of Eq. (11) becomes
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≈ = .u u u2 3
4 (15)RR

max ,0 0

As mentioned before, because the liquid velocity is zero when the droplet diameter reaches the maximum 
spreading diameter, the liquid velocity decreases from uR

max ,0 to zero. For the sake of simplicity, the motion of the 
liquid film can also be characterised by a velocity that changes from uR

max ,0 to zero. If the radial velocity in the 
radial direction of the spreading liquid film is known, the radial-mean velocity can be evaluated by
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where, r represents the spreading radius of liquid film, and u r( )R
max  represents the maximum velocity that changes 

from uR
max ,0 at r = r0 to zero at r = rmax. Again, because it is difficult to determine the exact function of u r( )R

max  in 
the case of droplet impingement, we assume that u r( )R

max  linearly decays with respect to the spreading radius as 
(rm − r)uR

max ,0/(rm − r0). Eventually, uR of Eq. (16) can be calculated as 3 u/8 in the present study. Then, in the 
viscous dissipation term (Eq. (6)), tm is the time when the kinetic energy Ekine is completely converted into the 
adhesion energy Esprd, the viscous dissipation Evis and so on. Therefore, tm is given by rm/u. The viscous dissipation 
term can be calculated by substituting tm = rm/u, Eq. (11) and the relation of uR = 3 u/8 into Eq. (6) as follows:
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Finally, by substituting Eqs (2–5), (7) and (17) into Eq. (1), we arrive at the following equation:
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In this equation, hm is calculated as (see Supplementary Information)
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Figure 1. Simplified model to evaluate the radial velocity uR in the viscous dissipation term. In the schematic, u, 
V0, d0, uR

0 and l represent the initial impinging velocity, droplet volume, droplet diameter, initial radial velocity 
and initial radial height.
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In Eq. (18), the first, second, and fifth terms represent the non-dimensional kinetic energy ⁎E( )kine , the viscous 
dissipation ⁎E( )vis , and the gravitational potential ⁎E( )grav  respectively, while the third and fourth terms combined 
represent the adhesion energy ⁎E( )sprd . The sixth and seventh terms represent the initial surface energy ∗E( )surf  and 
the surface energy of the deformed surface ⁎E( )def , respectively. By using the definition of the Ohnesorge number 
(Oh = μl/(ρld0σlg)1/2 = We1/2Re−1), Eq. (18) can be solved for We1/2.

From Eq. (18), we can derive two limiting solutions for the capillary and viscous regions. In the capillary 
region, the viscous dissipation is negligible. Thus, we obtain the following relation:
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From this relation, we obtain a scaling law of βm ∝ We1/2. In the viscous region, on the other hand, the kinetic 
energy and the viscous dissipation dominate, which leads to the following relation derived from Eq. (18):
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This relation gives rise to a scaling law of βm ∝ Re1/5 6, 12.

Methods
In this work, we used two liquids – purified water (Wako Pure Chemical Industries, Ltd., Osaka, Japan) and pure 
ethanol (99.5% pure, Kenei Pharmaceutical Co. Ltd., Osaka, Japan) in order to understand droplet impinge-
ment for high- and low-surface energy liquids, whose densities (ρ), dynamic viscosities (μ), and surface ten-
sions (σlg) are given as follows: ρw = 998.2 kg m−3, μw = 10−3 Pa s, σlg,w = 72.8 × 10−3 N m−1, ρetha = 789.2 kg m−3, 
μetha = 1.2 × 10−3 Pa s, and σlg,etha = 21.1 × 10−3 N m−1. The solids used were silicone rubber (SR) and polycar-
bonate (PC), which were 30 mm × 30 mm in size and 1 mm thick. Using an optical profilometer (NewView 5032, 
Zygo), we measured the mean values of the surface roughness (Ra) to be 0.109 μm and 0.015 μm for SR and PC, 
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(a) z = 10 mm (We=3.2)

(b) z = 100mm (We=32.1)

(c) z = 700 mm (We=172.5)
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θd
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Maximum spreading

Figure 2. Images of a water droplet impinging on silicone rubber at varying initial drop heights. Images whose 
drops initially possess (a) We = 3.2 (z = 10 mm), (b) We = 32.1 (z = 100 mm), (c) We = 172.5 (z = 700 mm). 
Time progresses from the left image to the right image, where the far-right column of images represents drops 
exhibiting maximum spreading.
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respectively. We released 1.1-µL droplets using a microsyringe from ten different heights, z = 1.5 to 700 mm. The 
droplet can be regarded as a free-falling object in all experiments. A high-speed video camera (HX-5, NAC image 
technology, Ltd., Japan) with a microscope (Leica Microsystems, Wetzlar, Germany), captured images of the 
droplet behaviour after striking the solid surfaces; the frame rate is 20,000 fps. We measured the impinging veloc-
ity u, droplet diameter d0, and the maximum spreading diameter dmax based on the captured images. The values 
of We in our experiments ranged from 0.3 to 230. For high We number conditions, we used existing experimental 
data8, 17, 22, 30, 31 to verify the present model. All experiments were performed three times and conducted within 
temperature and humidity ranges of 21.0–23.0 °C and 51.0–55.0%, respectively.
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Figure 3. Relationships between βm and non-dimensional numbers. (a1,a2 and a3) Plots of βm versus We for 
purified water droplets on silicon rubber (SR) and on polycarbonate (PC), and ethanol on SR, respectively. 
(b1,b2 and b3) Plots of βm versus Re for purified water droplets on SR and on PC, and ethanol on SR, 
respectively. The black and blue solid lines in each figure correspond to analytical results calculated by 
Roisman’s27 and Pasandideh-Fard et al.’s10 model, respectively. The blue and black dashed lines are the limiting 
solutions of the capillary (Eq. (22)) and viscous (Eq. (23)) regimes obtained by the present model. Here, V0 is the 
droplet volume and θ  is the averaged contact angle of θst and θd. Red circles (⚬) represent the experimental data 
obtained in this study. White diamond (⬦) and inverted triangle (▿) markers represent water on an Al substrate 
and a superhydrophobic surface, respectively17. Black circle (⦁) and triangle (▴) markers represent existing 
experimental results for high-viscosity liquids (silicone oils) of μ = 20 mPa s and 300 mPa s, respectively17.
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Results and Discussion
Figure 2 shows images of the water droplet impinging on the SR substrate from varying heights of z = 10, 100 
and 700 mm, where the time advances from the left image to the right image. As the time advances, the droplet 
deforms and the droplet diameter reaches its maximum spreading state. From these images, it can be seen that 
the droplet shape initially becomes bell shaped and then reaches a disk shape at its maximum spreading diameter. 
The top surface of the bell-shaped droplet pushes the liquid down into the droplet.

Figure 3-a1,a2 and a3 illustrate the relationships between βm and We for purified water on SR and on PC, and 
pure ethanol on SR, respectively. The static contact angle and dynamic contact angle at the maximum spreading 
dimeter are θst = 116.6 [deg.] and θd = 128.2° for water on SR, θst = 87.0° and θd = 102.8° for water on PC, and 
θst = 34.5° and θd = 66.4° for ethanol on SR, respectively. Figure 3-b1,b2 and b3 illustrate the relationships between 
βm and Re for the same combinations of liquids and solids shown in Fig. 3-a1,a2 and a3. In each figure, the solid 
red lines represent our model given by Eq. (18), while the solid black and blue lines correspond to existing models 
developed by Rosiman27, βm = 0.87Re1/5 − 0.4Re2/5We−1/2, and Pasandideh-Fard et al.10, βm = (We + 12)1/2/(3(1 
− cosθd) + 4(WeRe−1/2))1/2, respectively. We used the value of θd measured in our study for the model given by 
Pasandideh-Fard et al.10. The red circles denote experimental data that we collected in this study, while the white 
inverted triangles and diamond markers signify existing experimental data17, 22. Our model provides a better fit 
for the experimental data in each figure as compared to the two existing models, especially at low We numbers, 
where the two existing models deviate significantly from the experimental data. This result indicates the impor-
tance of considering adhesion energy in the vertical direction, in addition to the horizontal, in the capillary 
region. In each figure, the dashed blue and black lines are the limiting solutions corresponding to the capillary 
and viscous regions, respectively. Existing experimental data in Fig. 3-b1,b2 and b3 for high viscous liquids (black 
circles and triangle markers)17 are in good agreement with the limiting solutions in the viscous regime (Eq. (23)).

Figure 4 depicts the transition between different droplet impingement conditions by taking a water droplet on 
SR as an example. Figure 4-a2 shows the distribution of kinetic energy ⁎Ekine (red line), adhesion energy ⁎Esprd (blue 
line), viscous dissipation ⁎Evis (green line), gravitational potential ⁎Egrav (black line), initial surface energy ⁎Esurf  (red 
dashed line), and surface energy of deformed surface ⁎Edef  (blue dashed line) with respect to the We number. In 
the region to the left of line A in Fig. 4-a2, which is the capillary region, ⁎Ekine is comparable to ⁎Esprd. Between lines 
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Figure 4. Energy transition from capillary to viscous regimes of a water droplet on SR. (a1) Plot of βm versus 
We. Red circles (⚪) represent the experimental data obtained in this study. White diamonds (⬦) and inverted 
triangles (▿) represent water on an Al substrate and a superhydrophobic surface, respectively17. (a2) Plot of non-
dimensional energy versus We. The solid red, black, blue, and green lines represent kinetic energy 
( ⁎Ekine = We/3), gravitational potential ( ⁎Egrav = 2ρlgr0hm/(3σlg)), adhesion energy ( ⁎Esprd = (1 − cos θ ) 
βm
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represent initial surface energy ( ⁎Esurf  = 4) and surface energy deformed surface ( ⁎Edef  = Sdef/(πr0

2)). (b1) Plot of Er 
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A and B, which is the capillary-to-viscous region, the effect of viscous dissipation gradually appears until line B, 
at which point ⁎Evis exceeds ⁎Esprd in the viscous region. While the scaling law of βm ∝ We1/4 17 may potentially cor-
respond to the intermediate region between lines A and B, we did not observe a scaling law of βm ∝ We1/4 in our 
theoretical model. From Fig. 4-a2, the droplet condition of ⁎Evis > ⁎Esprd signals the onset of the viscous region. 
Thus, we can define the ratio of Er = ⁎ ⁎E E/vis sprd (Eq. (A8) in Supplementary Information) in order to pinpoint the 
onset of the viscous region. The reason of the choice of ⁎Esprd in Er instead of − +⁎ ⁎ ⁎E E Esprd surf def  is that the 
spreading process is directly affected by the wetting behaviour. When Er > 1, the droplet falls under the viscous 
region. Figure 4-b1 presents the relationship between Er and We. The intersection of Er = 1 and line B represents 
the transition point T. Figure 4-b2 displays the relationships between Er and impact numbers P = We/Re4/5 and 
P = We/Re2/5 7, 17, 37. Two types of impact numbers are displayed in the figure. Although there is no consensus with 
respect to P, P = 1 is generally accepted as the boundary separating the capillary and viscous regions. However, 
our model indicates that both values of P cannot predict the transition point T. Strictly speaking, the point Q1, 
which is evaluated by P = We/Re4/5, is in the viscous region after the point T, whereas the point Q2, which is eval-
uated by P = We/Re2/5, is in the intermediate region between lines A and B. Here, the values of P = We/Re4/5 and 
We/Re2/5 are 0.2 and 6.5, respectively, when Er = 1.

Figure 5-a1 and a2 compare our model with existing experimental data19, 22. Figure 5-a1 displays the results for 
ethanol on Al substrate. In this case, we used a droplet volume of 8.2 μL and reported value of θd = 35.2°. The static 
contact angle is not reported in the literature. Therefore, we estimate the static contact angle as θst = 18.3° where 
the ratio of θst/θd = 0.52 evaluated by our experimental results in the case of ethanol on SR is used. Thus, the value 
of θ  is 26.8°. Our model provides a better agreement with the experimental data than the other two existing mod-
els. Figure 5-a2 offers additional results that illustrate the relationship between βm and We for a water droplet 
undergoing gentle film boiling on a heated silicon wafer. “Gentle film boiling” describes a situation where the 
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Figure 5. Comparison of our theory with existing experimental data. (a1) Plots of βm versus We. The white 
circle represents ethanol on Al. The solid red, blue, and black lines represent analytical results from our theory, 
Pasandideh-Fard et al.10, and Roisman27, respectively. The droplet volume V0 is 8.2 μL. The values of θ  for 
ethanol used is 26.8° for our model. θd for Pasandideh-Fard et al. is 35.2°. (a2) Plots of βm versus We for a water 
droplet on a heated substrate. The black circles represent the existing experimental data for water undergoing 
gentle film boiling on a heated silicon wafer19. The solid red, blue, and black lines represent the results of our 
model, and those of Pasandideh-Fard et al.10 and Roisman27, respectively. In our model, droplet volume is set to 
6 μL. The same value of θ  as the water on SR case (θ  = 122.6°) is used in our experiment for each analytical result 
since the value of the dynamic contact angle was not reported. θd for Pasandideh-Fard et al. is also the same 
value of θd as the water on SR case (θd = 128.2°).
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vapour layer is thick and prevents the liquid from touching the surface. However, this vapour layer has a 
non-uniform thickness, being thicker at the centre and thinner at the perimeter of the contact area19, 38. Thus, the 
liquid may come in contact with the surface of the solid at this perimeter, and the interaction between the solid 
and liquid at this perimeter would affect the spreading behaviour of the droplet. Our model captures the trend set 
by the experimental data, although, strictly speaking, we should also account for the temperature dependency of 
the physical properties. This result indicates that our model has the potential to predict and understand droplet 
impingement behaviour, including thermal effects. In this case, we used the same value of θ  used for the case of a 
water droplet on SR, owing to the lack of available contact angle data in literature19. In the case for the model 
given by Pasandideh-Fard et al.9, the value of θd = 128.2° is used.

We validated our model against existing experimental data for micro-sized droplet impingement on solid 
surfaces, as shown in Fig. 6. In this figure, both the white and black circles represent the existing experimental 
data from Visser et al. for micro-sized water droplets, d0 = 48 μm and 50 μm, respectively, on a glass plate8, 30. In 
the We <100 region, we used data reported in ref. 30, and in the We >100 region, we used data reported in ref. 8 
because the accuracy of the data in the We >100 region in ref. 30 is reportedly poor. The solid red, blue, and black 
lines represent the theoretical results evaluated by our model, by Pasandideh-Fard et al.10, and by Rosiman27, 
respectively. From the image presented in ref. 30, we estimated the value of θd to be approximately 90°. The static 
contact angle θst is estimated as 79.2° using the ratio of θst/θd = 0.88 which is averaged value of the water droplets 
on SR and PC in our experiment. Thus, the value of θ  is estimated as 84.6°. Although the result by Roisman shows 
good agreement with the experimental data in the high We number region, the results demonstrate that our 
model shows fairly good agreement with the experimental data from the low We number to the high We number 
region.

The white and black triangles represent the existing experimental data31 for water droplets, d0 = 213 μm and 
618 μm, respectively, on a coal surface. The corresponding static contact angle is reported to be 57°. The dynamic 
contact angle is estimated as 64.8° using the ratio of θst/θd = 0.88. Thus, the value of θ  is estimated as 60.9°, which 
we have adopted in our model (red and green dashed line). Our model was also successful in predicting the 
experimental data for droplets impinging on a coal surface.

Conclusion
In this article, we have presented experimental and theoretical considerations of droplet impingement on solid 
surfaces. Our model accurately predicts the impinging behaviour of several kinds of liquids on various solid sur-
faces. According to the equations that we derived based on our theoretical considerations, βm observes a scaling 
law of βm ∝ We1/2 (∝Re) in the capillary region and βm ∝ We1/10 (∝Re1/5) in the viscous region. In addition, the 
contribution of each energy component to the variation of βm indicates that impact numbers, such as P = We/
Re4/5 and P = We/Re2/5, cannot predict the transition point between the capillary and viscous regimes. Instead, 
our theory proposed using Er instead of P to identify the boundary between the capillary and viscous regions. 
The present work, however, mainly considers a large-density ratio situation where the effect of the surround-
ing gas is negligible. To confirm the validity of our model, the low-density ratio situation must be considered 
because some vortex motions of the surrounding fluid may affect the impinging behaviour. In addition, we did 
not address non-Newtonian fluids in this study. To do so, the viscous term would have to be reconsidered to 
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Figure 6. Comparison of our theory with existing experimental data for micro-sized water droplets at very 
high velocity. The black and white circles represent the existing experimental data for micro-sized water droplet 
impingement on a glass plate at very high velocity8, 30. The solid red line represents the theoretical results of Eq. 
(18) for d0 = 48 μm and θ  = 84.6°. The dashed red and green lines represent the analytical results of Eq. (18) for 
d0 = 213 μm and θ  = 60.9°, and for d0 = 618 μm and θ  = 60.9°, respectively. The solid blue and black lines 
represent the analytical results given by Pasandideh-Fard et al.10 and by Roisman27, respectively, for d0 = 48 μm 
and θd = 90°. The white (▵) and black (▴) triangles represent the existing experimental data for water droplets, 
d0 = 213 μm and 618 μm, respectively, on a coal surface. The reported static contact angle is 57°31. The white (⚬) 
and black (⦁) circles represent the existing experimental data for water droplets of d0 = 48 μm and 50 μm, 
respectively, on a glass plate. The contact angle was not reported.
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reflect the different expressions for the shear stress as compared to that of a Newtonian fluid. Nevertheless, the 
theoretical model that we presented in this paper has the potential of becoming a powerful tool to analyse droplet 
impingement behaviour. In particular, for inkjet droplets in precision engineering applications, such as soldering 
of electronics and microarrays for semiconductor components, our model can guide the development and precise 
fabrication of nano- and microstructures used in high-performance systems and devices.
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