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ABSTRACT

Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sus-
tainable agriculture. However, their global distribution, overall diversity and application potential remain unknown.
Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published
between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic
analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population
density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships
exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil,
reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More
than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only
2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions,
providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils.
Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.

Key words: agricultural sustainability, biogeography, phosphate-solubilizing microorganism, plant yield, population size,
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I. INTRODUCTION

Phosphorus (P) is one of the six elements that are essential for
all organisms on Earth (Westheimer, 1987; Schlesinger,
1997; Elser, 2012). A huge amount of P is necessary to sustain
Earth’s life (Cordell, Drangert & White, 2009). On a geolog-
ical timescale, the primary supply of P to the biota is largely
from the weathering of P-containing rock (Walker &
Syers, 1976). However, microbes also play a crucial role in
the P cycle in the biosphere (Rodrıǵuez & Fraga, 1999; Falk-
owski, Fenchel & Delong, 2008), as a majority of P in soil is
present in insoluble forms that cannot be taken up directly
by plants without assistance from microbes (Rodrıǵuez &
Fraga, 1999; Vitousek et al., 2010; Richardson &
Simpson, 2011).

The discovery of phosphate-solubilizing microbes (PSMs),
which are able to solubilize insoluble phosphates into free
orthophosphate (Rodrıǵuez & Fraga, 1999; Falkowski
et al., 2008), dates back to 1908 (Sackett, Patten &
Brown, 1908; Gerretsen, 1948). However, little attention
was given to PSMs until the late 1980s (Goldstein, 1986;
Rodrıǵuez & Fraga, 1999). The past three decades have seen
a dramatic rise in interest in PSMs for two reasons. One is the
increasing depletion of extractable P rocks (Cordell
et al., 2009). The other lies in the fact that an estimated 5.7
billion hectares of arable land worldwide contain too little
free orthophosphate to achieve optimal crop production
(Batjes, 1997; Hinsinger, 2001).

Several recent reviews have aimed to summarize major
research achievements in the field of PSMs since the 1990s
(Rodríguez et al., 2006; Sharma et al., 2013; Alori, Glick &
Babalola, 2017; Pradhan et al., 2017a). For example, Rodrí-
guez et al. (2006) integrated diverse information on a wide
range of genes that encode enzymes responsible for microbial
solubilization of either insoluble organic phosphates
(e.g. appA, encoding phytase) or insoluble inorganic phos-
phates (e.g. gcd, encoding glucose dehydrogenase). However,
many other important aspects of our current knowledge of
PSMs have not yet been synthesized. First, no reviews have
focused on the population density of PSMs in different habi-
tats and the factors that influence this, despite the importance
of such information for a better understanding of the role of
PSMs in the biogeochemical cycling of P (Wang, Houlton &
Field, 2007b). Second, there is no summary available of the
overall diversity of PSMs, although a large number of PSM
strains have been reported separately (e.g. Oliveira
et al., 2009). Third, no efforts have been made to provide

the comprehensive data compilation and synthesis that is
needed for quantitative evaluation of the application poten-
tial of PSMs as P biofertilizers in different experimental set-
tings, despite the wide range of laboratory and field
experiments conducted to date (e.g. Zabihi et al., 2011).
Additionally, little attention has been given to systematic
screening of potentially promising PSM taxa for improving
crop growth or yield by identifying microbial genotypes with
genes that encode microbial enzymes responsible for phos-
phate solubilization, although the exponentially increasing
availability of data on genome-sequenced microbes now
allows such screening (Zimmerman, Martiny & Allison, 2013;
Dunivin, Yeh & Shade, 2019).
Here, we present the first synthesis of the biogeography,

diversity and utility of PSMs. To this end, we synthesize data
from 399 papers published between 1981 and 2017, the
results of a nationwide field survey in China consisting of
367 soil samples, and a genetic analysis of nearly 13000
genome-sequenced prokaryotic strains. Our findings provide
a solid basis not only for further studies on basic aspects of
PSMs but also for those addressing applied aspects of PSMs.

II. METHODS

(1) A global literature survey

To construct a comprehensive database of PSMs, we con-
ducted a literature search on 31st December 2017 in the
ISI Web of Science using the following combination of key
words: phosphate-solubilizing microbe OR phosphate-
solubilizing microorganism OR phosphate-solubilizing
bacteria OR phosphate-solubilizing bacterium OR phosphate-
solubilizing fungi OR phosphate-solubilizing fungus. We
restricted our research to articles written in English and
published between 1980 and 2017. We retrieved 761 hits.
After an initial assessment based on careful reading of the
abstracts, 646 full-text articles were downloaded for further
analysis.
To be included in our database, articles were required to

match at least one of the following three criteria: (i) present-
ing data on the population density of PSMs (phosphate-
solubilizing bacteria, fungi or both) in environmental samples
from a particular study site; (ii) reporting at least one new
PSM strain and classifying it to genus or species; and (iii)
determining the efficiency of a given PSM strain classified
to genus or species in improving plant growth or yield in a
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laboratory or field experiment or both. A total of 399 papers
matched our criteria.

For the papers matching the first criterion, we collected
information on place name, geographic location (latitude
and longitude), mean annual precipitation (MAP) and mean
annual temperature (MAT) of the study sites, sample type
(bulk soil, rhizosphere soil, sediment, etc.), and the popula-
tion density of the PSMs (expressed as the number of
colony-forming units per gram or per millilitre sample,
i.e. CFU g−1 or CFU ml−1), pH, and total and available P
of the samples. We focused on these geographic, climatic
and environmental parameters, as they are potentially
important factors influencing the population density of PSMs
in the environment (Kucey, 1983; Crowther et al., 2019).
Note, however, that full information on these parameters
was generally presented in only a proportion of the targeted
papers. Where this information was not provided, approxi-
mate values for the geographic and climatic factors were
derived from Google Earth 7.0 (free version) and/orWorldClim

by geocoding the place names of the study sites (Hijmans
et al., 2005). In cases where a given sample type for a study site
consisted of samples collected at different time points, we
combined all the data on the microbial and environmental
parameters for different time points and calculated their
averages for that sample type and study site. For example,
if the ‘bulk soil’ of a study site comprised samples collected
at three different time points, we calculated an average pop-
ulation density of PSMs for the ‘bulk soil’ based on those
averages of the corresponding samples collected at the three
time points (because the raw data for individual samples col-
lected at each time point were generally not available in the
literature), and we recorded these as three data points
(n = 3 in our database; see online Supporting Information,
Table S1) for the population density of PSMs in the ‘bulk
soil’ of that study site. However, for study sites where samples
of a given sample type were collected at only one time point,
data points for a sample type are equal to the sample size of
that sample type (these values were always presented in the
literature). In cases where the population densities of both
phosphate-solubilizing bacteria and fungi were determined,
we considered their sum as the population density of PSMs.
We plotted the information on sample type and the number
of data points on a world map using the R package ggplot2
(Wickham, 2016). A post-hoc multiple-comparison Tukey’s
HSD test was carried out to explore significant differences
between sample types in the population density of PSMs.
Rock and municipal solid waste were not included in this
multiple comparison, as there were data for only one study
site for each of these two sample types. To investigate the
effects of geographic, climatic and environmental parameters
on the population density of PSMs in the environmental sam-
ples, we analysed the relationships between these parameters
and the population density of PSMs by using univariate lin-
ear regressions. Data on water samples were excluded from
the regression analysis, given that the physical nature of
water differs greatly from that of solid samples. The normal-
ity of all data was evaluated using the shapiro.test function in R,

and a log transformation was performed to increase normal-
ity when necessary.

For the papers matching the second criterion, we collected
information on species name (for strains that were classified
only to the genus level, the genus name plus ‘sp.’ was
recorded), strain name, domain name (i.e. archaea, bacte-
rium or fungus), habitat type, growth medium for isolation
of the strain, and the presence of inorganic or organic phos-
phate in the growth medium. To provide an overview of
the diversity of the PSM strains identified in the literature,
we counted the total number of these strains and the number
of species/genera they represented. In addition, we divided
these strains into subgroups according to their domain
(i.e. archaea, bacterium or fungus) or their ability to solubi-
lize different types of phosphates (i.e. insoluble organic or
inorganic phosphates or both) and counted the number of
species/genera represented by the corresponding strains
within individual subgroups. To show the genera represented
by the identified prokaryotic strains of PSMs, the representa-
tive full-length 16S ribosomal RNA (rRNA) gene sequences
of these genera (one sequence per genus) retrieved from the
SILVA database (release 138.1; Quast et al., 2012) were used
to construct a phylogenetic tree with RAxML
(Stamatakis, 2006). Similarly, the representative full-length
18S rRNA gene sequences retrieved from the SILVA data-
base were used to construct a phylogenetic tree for the fungal
genera represented by the identified fungal strains of PSMs.
The contributions of individual genera to the total number
of identified PSM strains or to the total number of identified
PSM strains that can solubilize both inorganic and organic
phosphates (hereafter referred to as PSMI&O) were calcu-
lated and then visualized on the phylogenies using iTOL v4
(Letunic & Bork, 2019).

For the papers matching the third criterion, we collected
information on the strain name, species name and domain
name of each PSM strain under investigation, experiment
type (field or laboratory), plant name (Latin and cultivar
names were recorded when applicable), pH, total and avail-
able P of the plant growth substrate used in the experiment,
and the effect of each PSM strain on plant growth or yield
(compared to the non-inoculated control). To obtain infor-
mation about the factors influencing the performance of the
tested strains, we divided the reported experiments into sub-
groups in a stepwise manner according to experiment type,
plant type (crop or non-crop) and measure of effect (edible
part or non-edible part for crops and biomass for non-crop
plants). In cases where more than one measure of effect was
available, we used only the one that was most relevant to
the shoot biomass of non-crop plants or the yield of crops
(edible parts). For example, when shoot and root biomasses
of wheat (Triticum aestivum) were determined as measures of
the effect of a given PSM strain in an experiment, we used
shoot biomass as the measure of the effect of that strain on
wheat in that experiment. We calculated the proportions of
different effect types (i.e. positive, negative, or no effect)
of experiments for the finest-level subgroups under consider-
ation. In cases where it was not clear whether a difference
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between an inoculated treatment and its non-inoculated con-
trol in plant growth or yield was statistically significant, we
considered a decrease or increase no greater than 10% com-
pared to the control as ‘no effect’. Regarding ‘positive effect’
cases for each of the finest-level subgroups, we further calcu-
lated an average improvement (%) (i.e. the arithmetic mean
of the increases observed in all relevant cases). The average
improvement of all field experiments showing a positive
effect was calculated and compared with that of all labora-
tory experiments showing a positive effect based on an inde-
pendent sample t-test. To obtain a better understanding of
the application potential of PSM strains, the results from field
experiments were selected for further analysis. We compared
soil pH and available P between the experiments showing a
positive effect and those showing a negative effect with a Stu-
dent’s t-test. In cases where data on available P were not pre-
sent in mg kg−1, they were transformed assuming that soil has
a bulk density of 1.3 g cm−3. This analysis was not done for
total soil P, as only 11 experiments reported this parameter.
We also calculated the percentages of positive effect cases
for individual subgroups of experiments divided according
to crop type [i.e. wheat, maize (Zea mays) and chickpea (Cicer
arietinum)]; other crops were not considered, as the number of
experiments for each of these were <10) or PSM type
(i.e. bacteria and fungi; data on archaea were not available).

(2) A nationwide field survey

To obtain more insights into the biogeography of PSMs, a
nationwide field survey of the population density of PSMs
in soil was conducted in China from July to August 2018.
Forty sites distributed across 22 provinces (Table S2) were
selected to be representative of the geographic, climatic and
edaphic variations present across China. At each site, two
to three representative habitats that were approximately five
kilometres apart were chosen for the collection of soil sam-
ples. In sum, four desert (Gobi) regions, nine grasslands,
27 forests, 29 farmlands and 40 mined lands were sampled.
We paid considerable attention to mined lands, as they are
widespread in China and pose serious threats to soil quality
and functioning (Chen et al., 2014a). For each habitat, four
soil samples were collected at a depth of 0–20 cm. Each soil
sample consisted of three subsamples, which were collected
from three randomly distributed locations. To avoid the
potential effects of plants, soils located approximately 1 m
away from the plant rhizosphere were sampled. After sam-
pling, we recorded the geographic parameters (coordinates
and elevation) of each habitat and transported the samples
to laboratories as soon as possible.

Phosphate-solubilizing bacterial and fungal populations in
our soil samples were enumerated according to methods
described previously (Leaungvutiviroj et al., 2010). As described
in Section II.1, we considered the population density of PSMs to
be the sum of those of the densities of phosphate-solubilizing
bacteria and fungi. Note that 15% of our soil samples failed to
form clear zones on the plates used for counting PSM colonies
within an incubation period of 7 days, of which nearly 80%

were soil samples from mined lands. This is in agreement with
the well-known observation that the edaphic conditions of
mined lands are generally unfavourable for soil microbes
responsible for soil nutrient cycling (Sheoran, Sheoran &
Poonia, 2010). As a result, a total of 367 soil samples whose
PSM populations could be counted after 7 days of incubation
were included for further analysis. Selected soil properties,
including pH, electrical conductivity (EC), total and available
(Olsen) P, nitrate-nitrogen (NO3

−-N), ammonia-nitrogen
(NH4

+-N), dissolved organic carbon (DOC), and water-soluble
organic carbon (WSOC), were determined using standard
methods (Sparks & Sparks, 1996).
We compared the population density of soil PSMs among

habitat types using a post-hoc multiple-comparison Tukey’s
HSD test. The climatic parameters (MAP and MAT) for each
habitat were obtained fromWorldClim by using its geographic
coordinates. To explore the effects of geographic, climatic and
edaphic parameters on the population density of soil PSMs,
univariate linear regressions were used to analyse the relation-
ships between these parameters and the population density of
soil PSMs. The shapiro.test function in R was employed to eval-
uate the normality of the data. Where necessary, data were
log-transformed to increase their normality.

(3) A systematic genetic analysis

To assess the genetic potential of cultured and whole genome-
sequenced prokaryotic microbes for phosphate solubilization,
we performed a phylogenomic analysis to retrieve genes
encoding orthologous proteins of acid phosphatase (AP), alka-
line phosphatase (ALP), phytase and glucose dehydrogenase
(GCD) from all 12986 complete bacterial and archaeal
genomes from NCBI GenBank (updated on 3rd May 2019).
These four enzymes were selected as they are considered the
major enzymes responsible for organic and inorganic phos-
phate solubilization by microbes (especially prokaryotes;
Rodríguez et al., 2006). One representative protein sequence
for each gene family, AP (phoN, aphA and olpA), ALP (phoD,
phoX and phoA), phytase (appA and phy) and GCD (gcd), was
retrieved from KEGG according to its corresponding KEGG
Ontology (KO) number. The homologues of each gene family
were obtained through an initial BLASTp search against 2764
manually curated representative genomes of prokaryotes with
a broad range of phylogenetic diversity (e-value cut-off 1e-15;
Wang & Wu, 2017). The sequences of each gene family were
aligned usingMAFFT v7.427 (Katoh et al., 2002) and trimmed
using ZORRO (Wu, Chatterji & Eisen, 2012). A phylogenetic
tree of each gene family was constructed using FastTree 2.1.10
(Price, Dehal & Arkin, 2010) and was manually inspected to
resolve orthologues and potential paralogues into different
subfamilies. A hidden Markov model was built for each sub-
family using HMMer 3.2 (Eddy, 1998).
Selecting the proper HMM search threshold is key to

obtaining orthologous proteins for each gene family at a large
scale. Instead of using arbitrary thresholds as in previous
studies (e.g. Dunivin et al., 2019), we calibrated the threshold
from known orthologous sequences for each gene family. We
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performed an HMM search using the orthologous HMM of
each gene family against the known orthologous proteins in
the 2764 representative genomes from manual tree inspec-
tion. The lowest bitscore of all hits was recorded as the
threshold for all orthologous matches of the gene family. A
full HMM search was performed for each gene family using
all of its orthologous and paralogous HMMs against the pro-
tein sequences of all 12,986 genomes. Protein sequences that
showed the best hit with the orthologous HMMwith (i) a bit-
score greater than the calibrated threshold for the gene fam-
ily, and (ii) more than 90% sequence coverage, were retained
as the orthologues for each gene family.

The numbers of orthologous proteins for each gene family
among all 12986 genomes were tabulated. For each of the four
enzymes, the proportion of enzyme-positive genomes within a
given genus to all genomes within that genus was calculated.
Given the important role of pyrroloquinoline quinone
(PQQ, a cofactor of GCD) in the microbial solubilization of
inorganic phosphates (Rodríguez et al., 2006), only genomes
with gcd plus at least one gene encoding PQQ (pqq) were con-
sideredGCD-positive genotypes. Genes encoding orthologous
proteins of PQQ were retrieved from the 12986 genomes
according to themethod described above. For each of the four
enzymes, we also assessed the contribution of each genus to the
total enzyme-positive genotypes by dividing the number of
enzyme-positive genomes within each genus by the total num-
ber of enzyme-positive genomes of all 12986 genomes. The
phylogenetic distribution of the two measurements mentioned
above and the genera with enzyme-positive genomes were
visualized in iTOL v4 (Letunic & Bork, 2019). The phyloge-
nies were constructed as described above.

III. RESULTS

(1) Global patterns of the population density of
PSMs in the environment

We found 63 studies quantifying the population density of
PSMs in a total of 1053 environmental samples collected
from 117 geographical locations distributed across 19 coun-
tries around the world (Fig. 1A, Table S1). On average, rhi-
zosphere and bulk soils harboured more PSMs than
sediments and water bodies (P < 0.05, Fig. S1A) but not
more PSMs than composts and plant roots. The population
density of PSMs in the environmental samples was positively
related to the total P and MAT of the study site (P < 0.05,
Fig. 1B, D) but was not correlated with pH, available P, lati-
tude, longitude or MAP (P > 0.05, Fig. 1C, Fig. S1B–E).

(2) Continental patterns of the population density of
soil PSMs

Our nationwide field survey including 367 soil samples (Fig. 2A,
Table S2) showed that both farmland and forest soils exhibited
a higher PSM population density than those from the other
habitats (P < 0.05, Fig. S2A). Positive relationships were found

between the population density of soil PSMs and total P,
available P, NO3

−-N, DOC, MAT, MAP and longitude of
the study sites (P < 0.05, Fig. 2B, C, E–G, Fig. S2E, G). Nega-
tive relationships existed between the population density of soil
PSMs andEC, latitude and elevation (P< 0.05, Fig. S2B, F,H).
The population density of soil PSMs was not correlated with
pH, NH4

+-N or WSOC (P > 0.05, Fig. 2D, Fig. S2C, D).

(3) Overall diversity of PSMs isolated worldwide

More than 20 archaeal, 398 fungal and 2286 bacterial strains
were identified as PSMs (Fig. 3A, Table S3). Five fungal and
25 bacterial genera were found to be rich in PSMs (i.e. >10
strains; Fig. 3C, D, Table S3). Among these, Bacillus, Pseudomo-
nas, Enterobacter, Burkholderia, Penicillium and Aspergillus individu-
ally had more than 100 identified PSM strains and thus could
be considered significant PSM genera (Fig. 3C, D, Table S3).

At least 214 and 2580 strains were found to be able to sol-
ubilize organic and inorganic phosphates (hereafter
referred to as PSMO and PSMI, respectively; Fig. 3B).
Among these, only 90 strains were PSMI&O, the majority
of which were affiliated with Paenibacillus, Bacillus, Pseudomo-
nas, Lactococcus, Enterobacter and Alcaligenes (Fig. 3C). These six
genera, of which three overlapped with those containing
>100 PSM strains, were also considered significant PSM
genera. The resultant nine main PSM genera belonged to
three bacterial phyla and one fungal phylum (Fig. 3C, D).

(4) Performance of PSMs in improving plant growth
and yield

A total of 724 records on the performance of individual PSM
strains in improving plant growth and yield were reported in
185 studies (Fig. 4A, Table S4). Regardless of plant type and
measure of effect, the proportion of positive effect cases
(records) in laboratory-based experiments was nearly 80%,
which was much higher than that of field-based experiments.
When only positive effect cases were taken into account, the
average improvement observed in laboratory-based experi-
ments was 91.7%, which was 2.37 times higher than that of
field-based experiments (P < 0.01, Fig. 4A).

The average soil pH of field-based experiments showing a
positive effect of PSMs was 7.23, which was higher than that
showing no effect (P < 0.05, Fig. 4B). Lower available soil P
was recorded in field-based experiments showing a positive
effect of PSMs (P < 0.001, Fig. 4C). A total of 76.5% of
field-based experiments conducted with wheat showed a posi-
tive effect of PSMs, which was much higher than for experi-
ments with maize and chickpea (Fig. 4D). A total of 37.5%
of experiments focusing on fungi reported a positive effect,
which was almost equal to that of bacteria (P > 0.05, Fig. 4E).

(5) Promising PSMs revealed by genetic analysis

Among the 12986 prokaryotic genomes, 4367, 6377, 2401
and 1524 were found to have AP-, ALP-, phytase- and
GCD-positive genotypes, respectively (Tables S5–S8). We
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focused on the genera rich in enzyme-positive genotypes,
each of which had no less than 30 sequenced genomes, and
≥50% of the sequenced genomes contained at least one gene
encoding an enzyme of interest. In this context, 17, 29, nine
and eight genera were found to be rich in AP-, ALP-,
phytase- and GCD-positive genotypes, respectively (Fig. 5,
Tables S5–S8). We identified six genera rich in both GCD-
positive and AP-/ALP-/phytase-positive genotypes
(i.e. with genetic potential for solubilization of both inorganic
and organic phosphates) as promising PSM genera (Fig. 5).
Remarkably, Klebsiella and Xanthomonas were the only two
genera rich in genotypes for all four enzymes. For Klebsiella,
99.5, 99.0, 98.1 and 91.3% of genomes were AP-, ALP-,
phytase- and GCD-positive, respectively.

IV. DISCUSSION

The roles of PSMs in driving the biogeochemical cycling of P
and mediating plant uptake of P are comparable to those of

nitrifying microbes in the N cycle (Rodrıǵuez &
Fraga, 1999; Crowther et al., 2019). However, research on
PSMs has lagged far behind that on nitrifying microbes. This
is especially the case for the past decade, when great advances
have been made in the study of nitrifying microbes (Kuypers,
Marchant & Kartal, 2018). In comparison, the number of
studies currently available on PSMs is tiny (Alori, Glick &
Babalola, 2017; Kuypers, Marchant & Kartal, 2018). More
surprisingly, these studies have not yet been synthesized
either at a global scale or in a quantitative way, representing
a major constraint on the development of PSM research.

(1) Factors determining the geographic distribution
of PSMs

The population density of PSMs in environmental samples
and its determinants are critical to understanding not only
their population ecology but also their roles in regulating
the biogeochemical cycling of P and mediating the plant
uptake of this element (Goldstein, 1986; Rodrıǵuez &

Fig 1. Global patterns of the population density of phosphate-solubilizing microbes (PSMs) in the environment. (A) Locations of the
117 sites at which the population density of PSMs in environmental samples was determined. Sample types are indicated by coloured
circles. The numbers of data points for the indicated sample types are given in parentheses in the key. The size of a circle on the map is
proportional to the number of data points for a given sample type at that site. Circles with more than one colour indicate that more
than one type of sample was collected from these sites. Some sites are close to each other, leading to overlaps among circles. (B–D)
Effects of total P (B), pH (C) and mean annual temperature (D) of the study sites on the population density of PSMs. Colour
coding of symbols is as in A. See Table S1 for source data.
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Fraga, 1999). Indeed, due to its strong association with soil P
solubilization potential (e.g. Hu et al., 2009), the population
density of soil PSMs can be used as a proxy to represent the

overall function of soil microbial communities responsible
for P cycling. While a growing body of evidence suggests that
exploring the functional biogeography of soil microbial

Fig 2. Patterns of the population density of soil phosphate-solubilizing microbes (PSMs) across China. (A) Locations of the 40 sites at
which the population densities of soil PSMs were investigated in our field survey. Habitat types are indicated by coloured circles. The
numbers of soil samples for the indicated habitat types are given in parentheses in the key. The area of a circle on the map is
proportional to the number of soil samples for a given habitat type at that site. Circles with more than one colour indicate that soil
samples were collected from more than one type of habitat at these sites. Some sites are close to each other, leading to overlaps
between some circles. (B–G) Effects of total P (B), available P (C), pH (D), nitrate-nitrogen (NO3

−-N, E), dissolved organic carbon
(DOC, F) and mean annual temperature (G) of the study sites on the population density of soil PSMs. See Table S2 for source data.
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communities can improve the predictions of global biogeo-
chemical models for C and N (Crowther et al., 2019), little
is known about the biogeography of the population density

of soil PSMs. To our knowledge, there has been only one
prior study that determined the population density of PSMs
in environmental samples at a spatial scale larger than the

Fig 3. Overall diversity of phosphate-solubilizing microbes (PSMs) reported in the literature. (A, B) The number of taxa of PSM
subgroups divided according to domain (A) and substrate preference for phosphate solubilization (B). PSMO and PSMI represent
microbes that can solubilize organic and inorganic phosphates, respectively; PSMI&O represents those that can solubilize both
organic and inorganic phosphates. (C, D) Phylogenies showing genera represented by all 2704 identified PSM strains. The genera
with more than 10 PSM strains are highlighted with red branches in the phylogenies. The two rings outside the phylogenies
indicate the contributions of individual genera to the total identified PSM (inner ring) and PSMI&O strains (outer ring). Seven
bacterial and two fungal genera (each with >100 identified PSM strains or >5 identified PSMI&O strains) considered the main
PSM genera are identified with numbers on the outermost ring. See Table S3 for source data.
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plot level. In that study, the population density of phosphate-
solubilizing fungi in 29 soils collected from 17 sites located in
southern Alberta, Canada, was found to be positively corre-
lated with total soil P but was not related to available soil P
(Kucey, 1983). In agreement with this pattern, we showed
that at a global scale, there was a positive relationship
between the population density of PSMs in environmental
samples and total P in the environment, but not with avail-
able P (Fig. 1B, Fig. S1B). We speculate that the lack of cor-
relation between the population density of PSMs and
available P is likely attributable to: (i) the sample size of the
study conducted in southern Alberta was too small to capture
sufficient variation in available soil P at that spatial scale, and
(ii) different analysis methods were used to determine avail-
able P in the environment of about half of the 117 sites syn-
thesized in this study (Table S1), with the variations in
available P arising from different analysis methods likely
obscuring any correlation. Intriguingly, these suggestions
are supported by the results of our nationwide field survey
in which we analysed available P in soils across China using
a uniform method and found a positive relationship between
the population density of soil PSMs and available soil P
(Fig. 2C). This finding reinforces the importance of PSMs
as a driver of the biogeochemical cycling of P (Rodrıǵuez &
Fraga, 1999; Falkowski et al., 2008).

A common pattern revealed by our global literature
review and nationwide field survey is that the population
density of PSMs is not correlated with pH (Figs 1C and
2D), indicating a wide range of pH values over which PSMs
can thrive. This finding appears reasonable, as a major

mechanism underlying microbial solubilization of insoluble
phosphates is that PSMs can acidify their extracellular envi-
ronment by secreting organic acids (Rodrıǵuez &
Fraga, 1999). By contrast, the relative abundance of
Nitrospirae (a major group of microbes governing the biogeo-
chemical cycling of N) in the global topsoil microbiome was
reported to increase with soil pH (Bahram et al., 2018). This
differential response of PSMs and Nitrospirae to environmen-
tal pH could be interpreted as pH-related niche partitioning
between these two important functional microbial groups.
On the other hand, we obtained the first evidence for syner-
gistic interactions between PSMs and nitrifying microbes and
potentially those driving C cycling: the population density of
soil PSMs across China was positively correlated with not
only soil NO3

−-N but also soil DOC (Fig. 2E, F).
In addition to confirming the positive effect ofMAT on the

population density of PSMs (Figs 1D and 2G), our nation-
wide field survey showed further that the population density
of soil PSMs across China was positively correlated with
MAP and longitude but negatively correlated with latitude
(Fig. S2E–G). It is thus clear that soil PSMs tended to reach
larger population sizes and thereby likely a higher metabolic
activity responsible for P cycling in warm and moist regions
than in dry and cold regions. Similar patterns have been
observed for microbes governing the biogeochemical cycling
of N and C (Bahram et al., 2018; Crowther et al., 2019).
Taken together, these findings provide further evidence for
functional coupling between soil PSMs andmicrobes govern-
ing soil nitrification and organic matter degradation
(Crowther et al., 2019).

Fig 4. Performance of phosphate-solubilizing microbes (PSMs) in improving plant growth or yield. (A) Overview of reported
experiments addressing the performance of PSMs in improving plant growth or yield. The number of experiments for a given
subgroup according to experiment type, plant type or measure of effect is given in parentheses. (B–E) Important factors
influencing the performance of PSMs on crop growth or yield in field experiments. (B, C) There are significant differences between
experiments showing positive effects of PSMs and those showing no effects for soil pH (B) and available P (C). (D, E) Potential
effects of crop and PSM types on the performance of PSMs. In A–C the results of a Tukey’s HSD test and a Student’s t-test are
shown: *, ** and *** represent P < 0.05, 0.01 and 0.001, respectively. Numbers above the bars in B–E indicate the numbers of
experiments for the respective subgroups. See Table S4 for source data.
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(2) Are we observing the whole picture of PSM
diversity?

A traditional viewpoint has been that rhizosphere soil will
have a higher population density of PSMs than bulk soil

(Goldstein, 1986). However, the results from our global-scale
literature review (Fig. S1A) do not support this viewpoint.
This discrepancy may be attributed at least partly to the con-
siderable variations in population density of PSMs among
the studies synthesized herein. These variations could be

(Figure legend continues on next page.)
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derived from complex sources. For example, plant identity
was reported previously to have a considerable effect on the
population density of PSMs in rhizosphere soil
(Leaungvutiviroj et al., 2010). Additional studies focusing on
pairwise comparisons of the population density of PSMs
between the rhizosphere and bulk soil from the same plant
species are needed to examine the generality of this finding,
as such studies remain relatively rare.

Although a large proportion of early efforts to isolate
PSMs were focused on rhizosphere soil (Goldstein, 1986),
an increasing number of PSM strains have been isolated from
a wide range of other habitats (including bulk soil, water, sed-
iment, rock, compost, plant tissue and even animal tissue;
Table S3). Here, for the first time, we provide a comprehen-
sive list of all PSM strains reported in the literature. The total
number of PSM strains (i.e. 2704) was somewhat smaller
than expected, which could partly be due to exclusion of
strains without genus- level taxonomic information available.
The six main PSM genera (Bacillus, Pseudomonas, Enterobacter,
Burkholderia, Penicillium and Aspergillus; each with >100 PSM
strains) identified herein have also frequently been men-
tioned in previous reviews (e.g. Rodrıǵuez & Fraga, 1999;
Alori et al., 2017). However, we showed also that the number
of bacterial genera rich in PSM strains and their contribution
to the total number of PSM strains far exceeded the corre-
sponding values for fungal genera (Fig. 3). These results clar-
ify a popular misconception regarding the numerical
predominance of fungal PSM genera (Alori et al., 2017).
The great difficulty in culturing archaea is likely a major rea-
son for the finding that only 20 archaeal strains belonging to
11 genera were able to solubilize inorganic phosphates.
Nonetheless, it is interesting to explore whether archaea
can solubilize organic phosphates, considering that their phy-
logenetic and functional diversities are much higher than
previously thought (Schleper, Jurgens & Jonuscheit, 2005).

Remarkably, 90 strains were found to have the ability to
solubilize both inorganic and organic phosphates
(i.e. PSMI&O strains; Fig. 3B), of which 93.3% were bacteria.
Among the 19 bacterial genera containing PSMI&O strains,
Paenibacillus, Bacillus, Pseudomonas, Lactococcus, Enterobacter and
Alcaligenes together contributed 70% of the total number of
PSMI&O strains. To date, they have received much less atten-
tion than they deserve, especially considering the widespread
cooccurrence of inorganic and organic insoluble phosphates

in the environment (Walker & Syers, 1976; Vitousek
et al., 2010) and that many members of these genera
(e.g. Bacillus) show a broad spectrum of antagonistic activity
against phytopathogens (Fira et al., 2018). Despite the exis-
tence of these main PSMI&O genera and those rich in PSM
strains, it is often observed that different strains from the
same species can have strong, weak or even no ability to sol-
ubilize phosphates (e.g. Baldan et al., 2015; Brígido, Glick &
Oliveira, 2017). In agreement with this, a previous phyloge-
netic analysis revealed that the average level of phylogenetic
conservation for genes encoding ALP was less than the spe-
cies level (Zimmerman et al., 2013). These findings raise
another key question about the relative importance of verti-
cal inheritance and other factors for a given strain to acquire
the ability to solubilize either inorganic or organic phos-
phates. Indeed, our recent study provided evidence that
phage-related horizontal gene transfer can assist some soil
microbes in acquiring new genes encoding GCD (Liang
et al., 2020). Nonetheless, the polyphyletic nature of PSM
strains makes it difficult to develop a universal molecular tool
for analysing all PSMs in environmental samples.

(3) Determinants of PSM performance in improving
plant growth and yield

The importance of field experiments in evaluating the appli-
cation potential of PSM strains as P biofertilizers has long
been recognized (Goldstein, 1986). To date, however, there
are only 95 such experiments (Fig. 4A), among which
70 strains were tested. Nonetheless, these experiments have
several critical implications for further estimation of PSM
strain efficiencies in improving crop growth or yield under
field conditions. First, regardless of the different experimen-
tal conditions used, laboratory experiments overestimated
the actual efficiencies of PSM strains in field experiments by
an average of 237%. Second, PSM strains were more likely
to exhibit positive effects in alkaline P-deficient soils (average
pH of 7.23 and an average available P of 6.16 mg kg−1;
Fig. 4B, C). This appears reasonable, given that acidification
of their surrounding environment is a major mechanism for
phosphate solubilization by PSMs (Rodrıǵuez &
Fraga, 1999) and that a soil available P level lower than
10 mg kg−1 is considered insufficient to meet the growth
demands of many crops (Syers, Johnston & Curtin, 2008).

(Figure legend continued from previous page.)
Fig 5. Phylogenetic distribution of prokaryotic genomes with the genetic potential for phosphate solubilization. Genera represented
by prokaryotic genomes with (A) acid phosphatase (AP)-, (B) alkaline phosphatase (ALP)-, (C) phytase- and (D) glucose dehydrogenase
(GCD)-positive genotypes, respectively. The genera rich in genotypes of interest (i.e. groups of genera that contain no less than
30 sequenced genomes individually, and 50% of these genomes contain genes encoding an enzyme of interest) are highlighted by
red branches in the phylogenies. Singletons (i.e. genera with only one genome containing genes encoding an enzyme of interest)
were excluded from our analysis and are not shown in the phylogenies. The inner ring with blue bars surrounding the phylogenies
indicates the proportion of enzyme-positive genomes of a given genus to the total sequenced genomes of that genus. The outer
ring with brown bars indicates the contribution of individual genera to the total enzyme-positive genotypes of interest. Six genera
rich in AP/ALP/phytase-positive and GCD-positive genotypes (i.e. genomes with genetic potential for both organic and inorganic
phosphate solubilization), considered promising PSM genera, are marked by numbers in the outermost ring. See Tables S5–S8 for
source data.
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Third, the benefits of using inoculation with PSM strains
seem to be higher for wheat than for maize and chickpea
(Fig. 4D). This phenomenon may be attributed partly to
the higher P requirement of wheat compared to the other
two crops (Rose, Hardiputra & Rengel, 2010; Singh
et al., 2016), while other possible reasons remain to be
explored. Another remarkable issue is that only five field-
based observations of the positive effects of PSM strains on
crop yield (edible part, Fig. 4A) have been reported,
highlighting the urgent need for more such experiments.
To that end, PSMI&O strains deserve more attention, given
the preliminary evidence that the probability of the occur-
rence of an increase in crop yield driven by PSMI&O strains
is higher than that of PSMI and PSMO strains (12.5% vs.
6.45%; Table S4).

(4) New hopes from previously unknown PSMs

In an attempt to identify promising microbial taxa for future
research, we found that bacteria with the genetic potential
for solubilization of organic phosphates outnumbered those
of inorganic phosphates (Fig. 5, Tables S5–S8). This result
is in contrast to the numerical inferiority of PSMO strains
identified in the literature (Fig. 3B), indicating that a large
number of PSMO strains exist that remain to be character-
ized. More importantly, six promising genera rich in geno-
types of PSMI&O strains were revealed by our systematic
genetic analysis (Fig. 5). Among these, Klebsiella andXanthomo-
nas were the most remarkable, as they were rich in genotypes
with genes encoding all four enzymes of interest (Fig. 5).
While most Xanthomonas strains are plant pathogens (Ryan
et al., 2011), Klebsiella should be a priority for future research.
This is especially the case, given that many strains of this
genus were reported to enhance plant growth by producing
indole acetic acid (e.g. Sachdev et al., 2009). However, only
five PSMO and 56 PSMI strains from this genus have been
reported, with no PSMI&O strains identified to date
(Table S3), perhaps explaining why Klebsiella has received lit-
tle attention in recent reviews (e.g. Alori et al., 2017). On the
other hand, although the other four of our promising genera
are well recognized in the literature (e.g. Alori et al., 2017),
the potential of their members as PSMI&O strains has been
poorly explored (especially for Acinetobacter and Serratia).

V. CONCLUSIONS

(1) Taking advantage of a comprehensive quantitative
synthesis approach, this study provides the most com-
plete picture of the biogeography, diversity and utility
of PSMs to date.

(2) We revealed that the population density of PSMs in
environmental samples at continental to global scales
is regulated by total P rather than pH, presenting novel
evidence for pH-related niche partitioning between
PSMs and nitrifying microbes.

(3) The significant positive relationships between the pop-
ulation density of soil PSMs and available P, NO3

−-N
and DOC in soil suggest functional couplings between
soil PSMs and microbes driving soil nitrification and
organic matter degradation.

(4) PSMs tend to occur at a higher population density in
warm and moist regions than in dry and cold regions.

(5) We compiled an inclusive list of PSMs, which included
2704 strains characterized by their polyphyletic
nature.

(6) We showed that currently available field-based exper-
iments conducted to estimate the application potential
of the reported PSM strains are still limited but pro-
vide evidence for a tendency of PSMs to have positive
effects on wheat growing in alkaline P-deficient soils.

(7) Six promising genera for future research were identified
by our systematic genetic analysis (Klebsiella, Xanthomo-
nas, Enterobacter, Serratia, Acinetobacter, and Pseudomonas).
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Martıńez-Molina, E. & Velazquez, E. (2001). Growth promotion of chickpea
and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum
under growth chamber conditions. Soil Biology and Biochemistry 33(1), 103–110.

*Pereira, S. I. A. & Castro, P. M. L. (2014). Phosphate-solubilizing rhizobacteria
enhance Zea mays, growth in agricultural P-deficient soils. Ecological Engineering 73,
526–535.
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Table S5. Occurrence of the genetic potential to produce
acid phosphatase among prokaryotic genera.
Table S6. Occurrence of the genetic potential to produce
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