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A B S T R A C T

Purpose: To evaluate the accuracy of a deep learning software (DLS) in the discrimination between phyllodes
tumors (PT) and fibroadenomas (FA).
Methods: In this IRB-approved, retrospective, single-center study, we collected all ultrasound images of histo-
logically secured PT (n= 11, 36 images) and a random control group with FA (n= 15, 50 images). The images
were analyzed with a DLS designed for industrial grade image analysis, with 33 images withheld from training
for validation purposes. The lesions were also interpreted by four radiologists. Diagnostic performance was
assessed by the area under the receiver operating characteristic curve (AUC). Sensitivity, specificity, negative
and positive predictive values were calculated at the optimal cut-off (Youden Index).
Results: The DLS was able to differentiate between PT and FA with good diagnostic accuracy (AUC=0.73) and
high negative predictive value (NPV=100%). Radiologists showed comparable accuracy (AUC 0.60–0.77) at
lower NPV (64–80%). When performing the readout together with the DLS recommendation, the radiologist’s
accuracy showed a non-significant tendency to improve (AUC 0.75–0.87, p=0.07).
Conclusion: Deep learning based image analysis may be able to exclude PT with a high negative predictive value.
Integration into the clinical workflow may enable radiologists to more confidently exclude PT, thereby reducing
the number of unnecessary biopsies.

1. Introduction

Phyllodes tumor (PT) of the breast are rare breast lesions, ac-
counting for less than 1% of all breast tumors. They are typically seen in
women aged 35 to 55 years at presentation and are mostly large with a
median size of 4 cm [1]. Histologically, they are characterized by “leaf-
like” lobulations, from which the name is derived (Greek phullon leaf),
with more abundant and cellular stroma than that of fibroadenoma
(FA). PT are commonly classified into categories of benign, borderline,
or malignant on the basis of histological parameters such as mitotic
count, cellular atypia, stromal cellularity and overgrowth, and the
nature of tumor borders [2]. Histologically, benign PT can be mistaken
for FA, whereas at the other end of the spectrum, malignant PT show
overlapping features with primary breast sarcomas or spindle cell me-
taplastic carcinoma. However, regardless of their histology, all PT can
recur, where an increased risk of local recurrence is correlated with
larger size and malignancy [3–5].

FA is the most common benign tumor of the breast in women under
35 years of age. They present as well-defined, mobile masses that can

increase in size and tenderness in response to high levels of estrogen
(e.g. during pregnancy or prior to menstruation). Histologically, they
are made up of both glandular breast tissue and stromal tissue. In
contrast to PT, risk of cancer is usually not increased in FA [6].

In addition to their histopathological similarities, FA are usually
indistinguishable from PT on a macroscopic level. Both fibroepithelial
tumors are often detected as fast growing breast lumps, and distin-
guishing PT from FA by means of physical exam is extremely difficult.
With increased public awareness and screening, most of the breast tu-
mors are being discovered at earlier stages, when both tumors share a
substantial overlap in sonographic features and size [7,8]. Furthermore,
sonography cannot distinguish between malignant, borderline and be-
nign PT. Diagnostic evaluation is therefore often extended to the use of
invasive diagnostic procedures, such as core-needle biopsies. However,
even with the help of histology, diagnosis can be complicated due to
sampling errors.

The diagnosis has wider implications that also influence the ther-
apeutic approach to these tumors. Although conservative management
is an acceptable strategy in FA, malignant PT should be completely
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enucleated with clear margins due to the high recurrence rate of up to
30% [9] with metastases and death being observed in 22% [2]. Without
re-excision, the recurrence rates can be as high as 43%, necessitating an
additional operation [10].

Traditionally, patients with breast masses that cannot clearly be
identified as FA or PT will usually undergo complete surgical excision
or mastectomy, for the fear of overlooking a potentially malignant
tumor. Therefore, accurate identification and differentiation of PT
preoperatively is critical to appropriate surgical planning, avoiding
operative complications resulting from inadequate excision or surgical
overtreatment. Most FA do not need surgical treatment at all. In these
cases, biopsies are essentially an unnecessary physical, psychological
and financial burden for the patient [11].

Deep learning is a type of machine learning that was inspired by the
structure and function of the brain. It imitates the mammalian visual
cortex in processing data using artificial neural networks (ANNs) that
contain hidden layers. The deep learning software (DLS) learns to ex-
tract meaningful features from images to then make inferences and
decisions on its own. “Meaningful” in this context stands for “helping to
solve the problem at hand”, in our case discriminating FA from PT. This
data-driven method has shown promising results in recent years, as
opposed to older more algorithmic approaches with hand-crafted fea-
tures, which may often yield many arbitrary features not useful for the
problem at hand. Hence, the use of deep learning in radiology as a
method of differentiating and diagnosing tumors is a rapidly growing
field [12]. Although, as with any diagnostic test, false-positive results
can occur, the sensitivity of deep learning e.g. in mammography has
reached numbers of up to 84%, equaling or surpassing the diagnostic
accuracy of seasoned specialists [13]. Deep learning can be integrated
into the assessment of sonographically detectable lesions and could be

performed in the initial evaluation of indeterminate breast tumors (il-
lustrated in Fig. 1).

In this retrospective, single-center study, we aimed to evaluate the
precision of a DLS in the discrimination between PT and FA.

2. Materials and methods

2.1. Ultrasound examination and reference standard

This retrospective study was approved by the IRB, who waived the
need for informed consent. All patients from a two-year period (July
2013 – July 2015) were reviewed for the presence of PT with histology
as a reference standard (n= 11). From the remaining patients, a
random subset with histologically secured diagnosis of a FA was taken
(n= 15). Due to the low number (n= 4), FA with histopathological
phyllodes features were counted towards one of the other groups. Since
the management at our institution for those lesions is surgical excision,
they were counted as PT. Median lesion diameter (long axis) was
21.5 mm (interquartile range 18–26mm) for FA and 26.0mm for PT
(19–37mm, p= 0.25). Lesion volume as calculated with all three dia-
meters and the ellipsoid formula was also not significantly different
(13.6 vs. 24.3 cm3, p=0.55). Mean age± 95% confidence interval was
33.6 ± 15.2 years. All examinations were performed on the same type
of ultrasound device (Logiq E9, GE Healthcare, Chicago, IL, USA) with
the same reconstruction setting (“Breast”). For large lesions, multiple
focus points were used. Functional ultrasound images were not con-
sistently acquired and hence not included for analysis (i.e. with doppler
or elastography overlay). For lesions depicted in multiple images, all
available data was used, resulting in a total of 50 images of FA and 36
images of PT. The raw DICOM images were converted into lossless,

Fig. 1. Proposed integration of a deep learning based software into the clinical workflow. Deep learning image analysis has the ability to evaluate features, which are
not perceptible to the human reader and may thus augment the evaluation of the radiologist.
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monotone jpeg for further processing.

2.2. Deep learning image analysis

Image analysis was performed with a DLS originally developed for
industrial image analysis (ViDi Suite Version 2.0; Cognex Inc, Natick
MA, USA). This software takes advantage of the latest advances in deep
learning algorithms to classify anomalies in images [14–16]. It is cur-
rently used in various industries for real-time quality inspection e.g. in
defect detection of metal surfaces, traffic analysis or appearance based
product identification. It is currently not FDA approved but has recently
shown promising results for detecting cancer in a dual-center mam-
mography study [17]. The exact architecture of the deep networks in
ViDi Suite is proprietary, however, a comprehensive review about the
broader topic can be found in [16]. All computations were performed
on a GeForce GTX 1080 graphics processor unit. In a first step, the
images were cropped to the actual lesion by using the supervised ViDi
Detection Tool, the architecture of which is optimized for anomaly lo-
calization in homogeneous patterns (i.e. subcutaneous fat). In a second
step, the cropped lesions were analyzed using the ViDi Classification
Tool, which in turn is optimized for image classification. A randomly
chosen subset of images (n= 53) was used for the training of the
software (training set), and the remaining images (n=33) were

withheld from the software and solely used to validate the resulting
model after training (validation set). The split was performed on a per-
patient basis.

2.3. Radiologist’s readout

The cropped lesions were exported and presented to four radi-
ologists in random order (INITIALS BLINDED FOR REVIEW: Board
certified radiologists with 8, 3 and 2 years of experience in breast
imaging, as well as a PGY-3 resident, referred to as reader 1–4, re-
spectively). The readers were blinded to the study design as well as the
clinical information of the patients. The images were rated on a 5-point
Likert-like scale reflecting the confidence of the reader in his or her
diagnosis (1=definitely FA, 5=definitely PT). After a four-month
waiting period to avoid memory bias, the radiologists rated the lesions
of the validation set again. This time, the DLS rating was shown below
the image and the radiologists were asked to take it into consideration
as well.

2.4. Statistical analysis

The statistical analysis was performed in R version 3.3.1 (R
Foundation for Statistical Computing, Vienna, Austria). Continuous
variables were expressed as median and interquartile range, categorical
variables as counts or percentages. Interreader agreement was assessed
pair-wise with the weighted Cohen’s Kappa [18]. Kappa values (κ) were
interpreted after the suggestion of Altman [19]:< 0.20, poor,

Fig. 2. When comparing the performance of human readers and DLS on the
validation data set, the complimentary performance of the DLS with high
sensitivity (p < 0.05 for all readers) but lower specificity is already evident
(AUC reader 1 [red]= 0.60, reader 2 [green]=0.77, reader 3 [dark blue]=
0.75 and reader 4 [light blue]= 0.74). Readers 1 to 4 represent radiologists
from highest to lowest levels of experience, respectively.

Table 1
Diagnostic performance (area under the ROC curve + 95% CI) and sensitivity, specificity, positive and negative predictive value (NPV) of the DLS for all cases as well
as the validation set separately, and each reader (all data).

AUC Sensitivity Specificity NPV PPV

DLS (All) 0.89 (0.83–0.95) 0.78 (.66–.9) 1 1 0.77 (.68–.88)
DLS (Valid.) 0.73 (0.59–0.87) 0.5 (.27–.72) 1 1 0.5 (.41–.65)
Reader 1 0.73 (0.62–0.84) 0.47 (.31–.64) 0.92 (.84–.98) 0.71 (.64–.78) 0.81 (.65–.95)
Reader 2 0.77 (0.68–0.87) 0.78 (.64–.91) 0.66 (.52–.78) 0.8 (.71–.91) 0.62 (.53–.73)
Reader 3 0.73 (0.63–0.83) 0.72 (.58–.86) 0.64 (.52–.76) 0.76 (.67–.86) 0.59 (.50–.70)
Reader 4 0.6 (0.48–0.71) 0.67 (.52–.80) 0.44 (.30–.81) 0.64 (.51–.77) 0.46 (.38–.54)

Table 2
Pairwise interreader agreement measured by weighted Cohen’s Kappa (95%-CI
in brackets).

Reader 1 Reader 2 Reader 3 Reader 4

R1 1 0.3 (0.05–0.56) 0.21 (−0.01 to
0.43)

0.21 (−0.03 to
0.44)

R2 0.3 (0.05–0.56) 1 0.47 (0.22–0.71) 0.31 (0.07–0.55)
R3 0.21 (−0.01 to

0.43)
0.47
(0.22–0.71)

1 0.36 (0.14–0.58)

R4 0.21 (−0.03 to
0.44)

0.31
(0.07–0.55)

0.36 (0.14–0.58) 1

Table 3
Confusion matrices of the reader’s performances.

All Valid.

Reference FA PH FA PH

Reader 1 FA 46 19 19 7
PH 4 17 3 4

Reader 2 FA 32 10 13 3
PH 18 26 9 8

Reader 3 FA 33 8 14 3
PH 17 28 8 8

Reader 4 FA 22 12 8 1
PH 28 24 14 10
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0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80, good and 0.81–1.0 very
good agreement.

Diagnostic performance was assessed with a receiver operating
characteristic (ROC) analysis for the computer test and the human
readers. Diagnostic accuracy was expressed as the area under the re-
ceiver operating characteristic curve (AUC) and compared with
DeLong’s nonparametric test for paired data [20]. Sensitivity, specifi-
city, positive and negative predictive values were calculated at the
optimal cut-off (Youden-Index). A p-value< 0.05 was considered in-
dicative of significant differences. All tests were two-tailed.

3. Results

3.1. Deep learning image analysis

The DLS showed an excellent AUC of 0.89 on the whole data set,
and an AUC of 0.73 on the validation data, indicating some overfit to be
present in our rather small data set. In order to demonstrate the gen-
eralizability to new cases, Fig. 2 depicts the performance on the vali-
dation data only. On both training and validation data the DLS ex-
hibited a high specificity of 1.0 (summarized in Table 1).

Fig. 3. Example of a true positive in both the DLS and readers. This large lesion exhibited irregular internal structure with cystic components and indistinct margins,
which lead to the correct diagnosis of this PT by both the DLS and all 4 readers.

Fig. 4. Example of a false positive of the DLS and a true negative from experienced readers. The ultrasound image depicts a FA that the DLS falsely interpreted as a
PT, possibly due to the acoustic shadowing at the borders. Three readers identified this image as a probable, and one reader as a definite FA.

Fig. 5. Example of a true negative from the DLS and false positive from the readers. This FA from the validation set (i.e. withheld during training of the DLS) was
correctly identified by the DLS, however, the readers falsely interpreted it as a probable PT (and one reader rated it as indeterminate).
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3.2. Radiologist readout

Table 2 demonstrates that overall, interreader agreement was rated
as fair (0.21–0.40) or moderate (0.41–0.60). Reader 1 showed the
lowest interreader agreement (0.3, 0.21 and 0.21, respectively). Reader
2 and 3 exhibited the highest interreader agreement of 0.47 (moderate).
The level of agreement for reader 4 gradually increases for each reader
(0.21 for reader 1, 0.31 for reader 2 and 0.36 for reader 3). Readers 2,
3, and 4 show very similar AUCs (0.77, 0.75, and 0.74), while reader 1
showed the lowest AUC of 0.60. In the validation set (Fig. 2), reader 4
exhibited highest specificity and reader 3 the highest sensitivity. The
confusion matrices with the readers’ ratings vs. reference standard are
summarized in Table 3.

3.3. Comparison of diagnostic performance

Diagnostic performance (AUC) was not significantly different be-
tween the DLS (validation data) and any of the readers (p-values 0.31,
0.80, 0.66, 0.87; example case shown in Fig. 3). However, at the op-
timal cut-off, the DLS was more sensitive than the readers, resulting in
some false positives (example shown in Fig. 4) but consistently ex-
hibited higher NPV and specificity (example case shown in Fig. 5).

In the second readout, three out of the four readers showed a non-
significant tendency of improved performance (p=0.07), with reader
1 improving the most (from 0.61 to 0.77), and reader 2 slightly de-
creasing (from 0.77 to 0.75). Readers 3 and 4 moderately improved
(0.75 to 0.87 and 0.74 to 0.84). In general, there was a higher gain in

specificity than in sensitivity as can be seen in the ROC curves in Fig. 6.

4. Discussion

In this pilot study, we have investigated whether a DLS can extract
meaningful features from ultrasound image data and learn to distin-
guish PT from FA. We found that the software may be able to exclude
PT with a high negative predictive value. Furthermore, we were able to
show that combining the DLS estimate with the radiologist’s impression
leads to significantly better diagnostic performance.

The most widespread diagnostic and screening management of
breast masses include physical examination, radiographic assessment
(ultrasonography or mammography), and, if indicated, tissue specimen
analysis (fine-needle aspiration or core needle biopsy). However, these
diagnostic tests often fall short in differentiating PT from FA. Our re-
sults reflect the current controversy among radiologists in diagnosing
PT and FA based on ultrasound images, evident by the poor interreader
agreement in Table 1. Although MRI findings can be used to help de-
termine the histological grade of known breast PT, MRI findings have
been reported to be insufficient for reliable differentiation between FA
and PT [21–23]. In this study, we show that deep learning image
analysis can use ultrasound images to discriminate PT from FA with a
specificity and negative predictive value that surpasses that of experi-
enced radiologists. Furthermore, the software reached a diagnostic
performance of 0.73 in the validation set, with the readers reaching
comparable performance. Interestingly, the diagnostic performance of
the radiologists did not correlate with their years of experience,

Fig. 6. ROC curves of Readers 1–4 (top left to bottom right) showing a non-significant tendency of improved performance in three out of the four readers
(pmin= 0.07) when taking the DLS prediction into consideration (solid line), compared to the radiologists’ judgement alone (dashed line).
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illustrating the ambiguity and lack of distinctive characteristics for ei-
ther tumor. Furthermore, this could be due to the fact that the incidence
of PT is very low and the radiologists had not been exposed to a high
absolute number of cases despite years of experience (Table 2). Inter-
reader agreement decreases for each reader, which may be explained by
the gradually decreasing level of experience between readers (8, 3 and
2 years, and PGY-3 resident, respectively). Therefore, it is not surprising
that reader 1 and 4 - the most experienced and the most inexperienced
reader - show the lowest interreader agreement, and that readers 2 and
3 - with only 1 year difference training - demonstrate the most similar
results.

When compared to DLS, the results show that the radiologists
achieve higher readout specificity and thus positive predictive value -
the ability to correctly identify PT - whereas deep learning image
analysis showed the strongest performance in its negative predictive
value - the ability to correctly exclude patients without PT. Hence,
augmenting the reader’s impression with the DLS estimate led to a
significant increase in diagnostic accuracy. This improvement indicates
that supplementation of deep learning image analysis into the diag-
nostic workup can enhance the accuracy in differentiating PT from FA.
DLS is already integrated into routine diagnostics with a level of com-
petence comparable to radiologists [17]. These results are in line with
other fields outside of medical imaging: In chess, the combination of
computer and amateur chess player outperforms either computer or
chess grand master alone [24].

One of the limitations of our study design was that we only trained
the software to distinguish between two different types of breast
masses, PT and FA. This means that it cannot detect other lesions, such
as invasive cancers or scars that may be important differential diag-
noses. Furthermore, the software in its current form showed a high
specificity and negative predictive value, meaning that it would cor-
rectly identify unaffected patients but not reliably identify patients who
need treatment. This shortcoming seemed to be offset to a certain de-
gree by using the software as a supplement to the radiologist’s decision.
Therefore, the momentary software would mostly be suitable as an
adjunct tool to supplement a radiologist’s diagnosis. Future studies and
refinements of the software might allow deep learning to act as a
screening tool for all types of breast lesions.

Further limitations of our study are the small sample size, the ret-
rospective design as well as the restricted experimental setting. In the
clinical routine, FA are far more common than PT. Since the software
was trained on a cohort with a high prevalence of PT, it would possibly
overestimate the occurrence of PT in the clinical routine. However, the
high NPV should theoretically prevail or even increase.

DLS is novel method that has not yet been approved by the FDA or
any other regulatory body. Furthermore, the cost-effectiveness of a DLS
implementation has not yet been examined. These are some of the many
questions that must be addressed before its broader use.

In conclusion, computer-assisted diagnosis in the form of deep
learning image analysis is a useful tool to differentiate patients with PT
and FA. A decision by the examining radiologist supplemented by the
aid of DLS provides the highest diagnostic performance, and its in-
tegration into clinical routine may enable doctors to more confidently
exclude PT, resulting in less unnecessary biopsies.
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