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Abstract: In this review, we discuss the nature of the different physicochemical factors affecting the
valence isomerism between 2H-pyrans (2HPs) and 1-oxatrienes, and we describe the most versatile
synthetic methods reported in recent literature to access to 2HPs, with the only exception of 2HPs
fused to aromatic rings (i.e., 2H-chromenes), which are not included in this review.

Keywords: 2H-pyran; heterocycles; synthesis; valence isomerism; 1-oxa-triene; dienone;
oxa-electrocyclization; Knoevenagel; propargyl Claisen; cycloisomerization

1. Introduction

The 2H-pyran (2HP) ring constitutes a structural motif present in many natural products
(Figure 1) [1] and is a strategic key intermediate in the construction of many of these structures [2,3]. In
spite of their importance, the literature of 2HPs is relatively scarce [4–9], mainly due to the instability
associated with the heterocyclic ring, which makes these heterocycles establish an equilibrium with
their opened isomeric forms (Scheme 1). Fusion of a 2HP to an aromatic ring confers stability to these
heterocycles. Thus, while simple 2HPs are difficult to synthesize as pure and isolated compounds,
many of their benzo derivatives (i.e., 2H-chromenes) constitute stable molecules, with a broad spectrum
of biological activities and a widespread representation in the higher plants (Figure 1). Because the
chemistry and reactivity of 2H-chromenes have been already previously revised [1,10–15], they will
not be included in this review. Instead, we will focus on the recent advances on accessing 2HPs, either
as simple and stable monocyclic structures or as part of fused polycyclic structures, excluding the
2H-chromene system.
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1. Introduction 

The 2H-pyran (2HP) ring constitutes a structural motif present in many natural products (Figure 
1) [1] and is a strategic key intermediate in the construction of many of these structures [2,3]. In spite 
of their importance, the literature of 2HPs is relatively scarce [4–9], mainly due to the instability 
associated with the heterocyclic ring, which makes these heterocycles establish an equilibrium with 
their opened isomeric forms (Scheme 1). Fusion of a 2HP to an aromatic ring confers stability to these 
heterocycles. Thus, while simple 2HPs are difficult to synthesize as pure and isolated compounds, 
many of their benzo derivatives (i.e., 2H-chromenes) constitute stable molecules, with a broad 
spectrum of biological activities and a widespread representation in the higher plants (Figure 1). 
Because the chemistry and reactivity of 2H-chromenes have been already previously revised [1,10–
15], they will not be included in this review. Instead, we will focus on the recent advances on 
accessing 2HPs, either as simple and stable monocyclic structures or as part of fused polycyclic 
structures, excluding the 2H-chromene system. 
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Scheme 1. Valence tautomerism of 2H-pyrans (2HPs). Scheme 1. Valence tautomerism of 2H-pyrans (2HPs).
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Figure 1. Examples of natural products containing the 2HP motif. 

2. Dienone/2HP Equilibrium 

2HPs are prone to undergo spontaneous valence isomerization [16] to the corresponding 1-
oxatrienes through a reversible pericyclic oxa-6π-electrocyclization process (Scheme 1) [17]. This 
valence tautomerism determines the chemistry of these heterocycles, which commonly exist as a 
mixture of valence tautomers (isomers) [1]. In this sense, it is important to take into account that 
because this interconversion is fast in the majority of cases, the method of synthesis used to access 
these structures does not determine the valence tautomer obtained. 

Although this valence isomerization was invoked to explain some enigmatic results found in 
earlier examples with these molecules, the first clear-cut example of it came from the irradiation of 
trans-β-ionone (1) (Scheme 2) [18]. Authors found that the irradiation afforded a mixture of cis-β-
ionone (2) and 2HP 3, with a value for the equilibrium constant K = 4.61 at 327 °K (K = 1.52 at 386 °K), 
and values for k1 = 1.4 × 10−3·s−1 and k−1 = 1.3 × 10−4·s−1. In addition, measurements at different 
temperatures gave activation energies (Ea) of 20 Kcal/mol for the cis-dienone to 2HP reaction, and 27 
Kcal/mol for the reverse process [19]. 

 
Scheme 2. Valence isomerism of cis-β-ionone (2) and 2HP 3. 

Further studies on the conformation of conjugated dienones allowed the establishment of some 
general patterns for these dienone/2HP equilibria (Scheme 3) [20]. It was observed that steric 
destabilization of the dienones shifted the equilibria toward the 2HPs. This was the case for 
tetrasubstituted dienones 4 and 5, which fully isomerized to the corresponding 2HPs. On the other 
hand, simpler dienones 8–12, which could adopt a stable planar conformation, existed in the opened 
form. Likewise, trisubstituted dienones 6–7, which are representative examples of dienones featuring 
non-stable planar conformations, preferred their closed forms. Along with these results, the authors 
also observed that the substitution of a δ-alkyl substituent (R5 or R6) by a substituent able to extend 
the conjugation of the π-system (e.g, vinyl group) favored the dienone form (Scheme 3). A main 
conclusion from these and other studies [20,21] is that the existence of the 2HP form depends 
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2. Dienone/2HP Equilibrium

2HPs are prone to undergo spontaneous valence isomerization [16] to the corresponding
1-oxatrienes through a reversible pericyclic oxa-6π-electrocyclization process (Scheme 1) [17]. This
valence tautomerism determines the chemistry of these heterocycles, which commonly exist as a
mixture of valence tautomers (isomers) [1]. In this sense, it is important to take into account that
because this interconversion is fast in the majority of cases, the method of synthesis used to access
these structures does not determine the valence tautomer obtained.

Although this valence isomerization was invoked to explain some enigmatic results found in
earlier examples with these molecules, the first clear-cut example of it came from the irradiation of
trans-β-ionone (1) (Scheme 2) [18]. Authors found that the irradiation afforded a mixture of cis-β-ionone
(2) and 2HP 3, with a value for the equilibrium constant K = 4.61 at 327 ◦K (K = 1.52 at 386 ◦K),
and values for k1 = 1.4 × 10−3

·s−1 and k−1 = 1.3 × 10−4
·s−1. In addition, measurements at different

temperatures gave activation energies (Ea) of 20 Kcal/mol for the cis-dienone to 2HP reaction, and
27 Kcal/mol for the reverse process [19].
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Further studies on the conformation of conjugated dienones allowed the establishment of
some general patterns for these dienone/2HP equilibria (Scheme 3) [20]. It was observed that
steric destabilization of the dienones shifted the equilibria toward the 2HPs. This was the case for
tetrasubstituted dienones 4 and 5, which fully isomerized to the corresponding 2HPs. On the other
hand, simpler dienones 8–12, which could adopt a stable planar conformation, existed in the opened
form. Likewise, trisubstituted dienones 6–7, which are representative examples of dienones featuring
non-stable planar conformations, preferred their closed forms. Along with these results, the authors
also observed that the substitution of a δ-alkyl substituent (R5 or R6) by a substituent able to extend the
conjugation of the π-system (e.g, vinyl group) favored the dienone form (Scheme 3). A main conclusion
from these and other studies [20,21] is that the existence of the 2HP form depends primarily on the
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steric destabilization of the dienone rather than on its specific substitution pattern. Thus, the design of
stable 2HPs must include, among other structural/electronic criteria, enough steric destabilization on
the dienone to penalize the valence isomerization.
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More recently, Krasnaya et al. carried out a systematic investigation on the influence of substituents
and solvents on the valence isomerization of trisubstituted α-acyl-dienones 13 (Scheme 4). In this study,
the authors quantified the equilibrium compositions of 26 differently substituted α-acyl-dienones 13
(Table 1), and determined the thermodynamic and activation parameters for some of these equilibria
(Scheme 5) [22].
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Table 1 summarizes the earlier observed importance of structural effects on the valence equilibrium,
and it confirms some general patterns:

1. The successive substitution at position C2 in the ring (Cδ on dienone) leads to an increase in the
content of 2HP (steric strain on the dienone) (compare entries 1–3 and 7–8).

2. The elongation of the conjugated system results in an increase in the content of dienone (resonance
delocalization) (compare entries 15, 25 and 17, 26).

3. Substitution at the C2-position of the ring (Cδ on dienone) with two methyl groups strongly shifts
the equilibrium toward the 2HP (entries 17, 19). In this case, it is possible to observe only the 2HP
(compare entries 7, 17 with 11, 19).

4. Aprotic polar solvent shifts the equilibrium toward the formation of the dienone.
5. Although the electronic effect of the acyl group at the C5-position of the ring (Cα in the dienone)

is masked in Table 1, other studies have shown that the presence of an electron-withdrawing
substituent(s) at the ring, preferentially at this C5-position, favors the 2HP [23–25]. Table 1 shows
that although this effect could be operative in α-acyl-dienones 13, it can be completely surpassed
by other structural/electronic effects (Table 1, entries 11–14).

Table 1. α-Acyl-dienones 13 and their equilibrium isomeric compositions.a

Entry R R1 R4 R5 R6 (E)-13 2HP 14 (Z)-13

1 EtO Me H H Me 30 30 40
2 EtO Me H H H 45 30 25
3 EtO Me H Me Me 17 68 15
4 MeO Me H H H 43 37 30
5 MeO Me H H Me 40 40 20
6 MeO Me H Me Me 26 62 12
7 Me Me H H Me 72 28 -
8 Me Me H Me Me 64 36 -
9 t-BuO Me H Me Me 18 17 65

10 EtO Arb H Me Me 84 9 7
11 EtO Ph H H Me 67 - 33
12 EtO Ph H Me Me 86 - 14
13 EtO Me H H Ph 60 - 40
14 Me Me H H Ph 100 - -
15 MeO Me Me Me Me - 83 17
16 MeO Me Me H Ph - 100 -
17 Me Me Me Me Me - 100 -
18 Me Me Me H Ph - 100 -
19 EtO Ph Me Me Me - 100 -
20 MeO Me H H c-C6H11 30 23 47
21 MeO Me Me H c-C6H11 - 100 -
22 MeO Me H –(CH2)5– 16 67 17
23 MeO Me Me –(CH2)5– - 100 -
24 MeO Me H –(CH2)4– 47 31 22
25 MeO Me Me H HC=CMe2 75 - 25
26 Me Me Me H HC=CMe2 100c - -
a The composition was determined by 1H-NMR in CDCl3 at 30 ◦C. b Ar = p-nitrophenyl. c The E and Z are topomers.

With regard to thermodynamic parameters of some of these equilibria (Scheme 5), Krasnaya et al.
found that, in all cases, the enthalpies of the α-acyl-dienones 13 were appreciably higher than those
of 5-acyl-2HPs 14, which is in full agreement with the observed increase in the dienone content with
the increase in temperature. As should be expected, the entropy contents were also higher for the
closed structures. In all the investigated cases, ∆G# values were on the order of 21.88 Kcal/mol to
22.86 Kcal/mol.
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Finally, other structural factors, such as annulation, also favor the 2HP form. It has been well
established that annulation favors the closed form by restricting conformational freedom (entropic trap),
and it has been used as a design element in the synthesis of stable 2HPs [26,27]. Scheme 6 graphically
summarizes the main conclusions of these studies. Structures 3, 15, 16 represent prototypical examples
of room temperature stable 2HPs.
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3. Synthesis of the 2HP Core

The most common route for synthesizing these heterocycles relies on the oxa-6π-electrocyclization
of dienones, the so-called 1-oxatriene pathway [28]. As already discussed in the previous section, this
methodology requires endowing the 1-oxatriene unit with structural or electronic information, or both,
to shift the valence equilibrium toward the 2HP form (Scheme 7). Thus, different synthetic pathways to
the 1-oxatriene core have been successfully explored, involving, among others, the classic Knoevenagel
condensation between active methylene compounds and α, β-unsaturated aldehydes (enals), Claisen
rearrangements of propargyl vinyl ethers, Stille coupling of vinyl stannanes and vinyl iodides, and
cycloisomerization of dienols (Scheme 7).
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3.1. The Knoevenagel/Electrocyclization Protocol

The Knoevenagel condensation constitutes the most common access to 1-oxatrienes, and most
generally involves the reaction of an enal with a 1,3-dicarbonyl compound [29]. The sequential
performance of the Knoevenagel condensation and the electrocyclization reaction generates 2HPs
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(Scheme 8). From a synthetic point of view, the whole tandem process can be considered a formal
[3 + 3] cycloaddition [2,28]. There is a plethora of examples of this strategy in the literature, mainly
in the field of total synthesis of natural products. In this review, we will pay attention exclusively to
established synthetic methods that allow or have allowed general access to these heterocycles. Specific
cases utilized to access a particular structure or a specific natural product will not be covered. We refer
the reader to the excellent published reviews covering this issue [2,3].
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Scheme 8. Knoevenagel/electrocyclization strategy.

Fusion to a ring favors the electrocyclization of the 1-oxatriene intermediate, and it has been
used as a steering element to synthesize stable 2HPs. As an earlier example, the pyridine-mediated
condensation of different cyclic 1,3-dicarbonyl compounds 17 and functionalized enals 18 generated
the stable bicyclic 2HPs 19 in good yields (Scheme 9a) [30]. Therefore, the double substitution at the
terminal position of the enal also contributed to the global stability of 2HPs 19. Using this methodology,
the same authors synthesized the alkaloid flindersine (21) in 86% yield and in just one synthetic step
(Scheme 9b).
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The iminium-mediated Knoevenagel condensation (IMKC) [31,32] has been currently used to
condense 1,3-dicarbonyl (active methylene) compounds with 2-alkenyliminiums (activated enals), and
it constitutes a very versatile route to 1-oxatrienes [2,33]. The chemical outcome of the reaction is that of
a formal [3 + 3] cycloaddition between enols and enals (see Scheme 8). The reaction is productive when
functionalized cyclohexane-1,3-diones (e.g., 21) (Scheme 10) or 4-hydroxypyrones 25 (Scheme 11) are
used as the active methylene compounds in the process. In this manner, 2HPs 23a–g were synthesized
from the functionalized cyclohexa-1,3-dione 21 and different functionalized enals 22 (Scheme 10) [34].
These 2HPs were used as key intermediates in the total synthesis of (−)-daurichromenic acid and
analogues. The use of Lewis [35] or Brønsted [36] acids, In3+ [37], or iodine [38] as catalysts resulted
complementary to the iminium formation and afforded similar reaction outcomes.
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Scheme 10. Synthesis of 2HPs 23 by iminium-mediated Knoevenagel condensation (IMKC) of
cyclohexa-1,3-dione 21 and enals 22.

This methodology is well suited for use in diversity oriented synthesis programs [39], as long as the
structural control elements are incorporated into the library design. Thus, a small and structurally varied
library of 2HPs 26 was constructed using the β-alanine-mediated IMKC between 4-hydroxypyranone
25 and different enals 24 (Scheme 11) [40]. In vitro studies of antiproliferative/cytotoxic activity with
human SH-SY5Y neuroblastoma cells showed IC50 values ranging from 6.7 to >200 µM. 2HP 26a
exhibited the highest cytotoxicity to the neuroblastome cells and necrotic effects on the human IPC
melanoma cells.

Although the use of cyclic 1,3-dienones has been beneficial for the synthesis and stability of the
resulting 2HPs, it is not a mandatory requirement, and acyclic active methylene compounds, such
as methyl acetoacetate 27, have been successfully condensed with 2-alkyl-2-enals 28 to deliver the
corresponding stable 2,3,6-trisubstituted 2HPs 29 (Scheme 12) [41].
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Scheme 12. Synthesis of 2,3,6-trisubstituted 2HPs 29 by IMKC of methyl acetoacetate 27 and enals 28.

Pyrano[3,2-c]quinolone is a core structural motif in alkaloids and is endowed with important
pharmacological and therapeutic activities. As part of a research program aimed at developing efficient
synthesis of natural product-like small molecules, a small 23-membered library focused on carbohydrate
fused pyrano[3,2-c]quinolone structures 32 was synthesized and subjected to antiproliferative activity
studies (Scheme 13) [42]. The library was synthesized using the microwave assisted pyrrolidine-AcOH
catalyzed IMKC of formyl galactal (30-Gal) and formyl glucal (30-Glu) with 4-hydroxyquinolones 31,
and although the electron donating or electron withdrawing character of groups R1, R2, R3, and R4 of
4-hydroxyquinolones significantly affected neither the yield nor the reaction completion time, the best
yields were obtained when unsubstituted 31 was used (70% with 30-Gal and 71% with 30-Glu). The
other combinations gave yields ranging from 62 to 69%.
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Scheme 13. Carbohydrate fused pyrano[3,2-c]quinolone library.

The Knoevenagel/electrocyclization strategy is suitable to be performed in water (Scheme 14) [43].
This methodology was applied to the synthesis of biologically interesting 2HPs of general structure 39,
comprising pyranocoumarin, pyranoquinolinone, and pyranonaphthoquinone derivatives along with
selected natural and non-natural products (X = CH2, O, NH). The reactions were performed by mixing
the 1,3-dicarbonyl compound 33–37 with enal 38 in water at 80 ◦C for 4–6 h. Although authors did not
specify the physical conditions of these reactions, the high hydrophobicity of the reactants suggested
that these reactions were carried out as aqueous suspensions (the so-called “on water” conditions [44],
rather than as homogeneous solutions. Solvent-free protocols have been also described for the IMKC
reaction [45,46].
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3.2. From Other Heterocycles

The condensation of methyl coumalate (40) with a wide range of active methylene compounds
41 has been implemented to access an extensive series of 2,3,5,6-tetrasubstituted 2HPs 42
(Scheme 15) [47]. The reaction involved a domino 1,6-Michael/6π-electrocyclic ring opening/[1,5]-H
transfer/(decarboxylation)/6π-electrocyclization reaction. The methyl substituent allocated at C2

position of the 2HP ring corresponds to the α-methine group alpha to the lactone in the coumalate ring
(highlighted as CH in Scheme 15).
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Scheme 15. Domino synthesis of tetrasubstituted 2HPs 42 from methyl coumalate 40.

A one pot synthesis of 2,2,4,6-tetrasubstituted 2HPs 46 has been developed using Bayllis–Hillman
carbonates 43 and β,γ-unsaturated α-oxo-esters 44 (Scheme 16) [48]. The one-pot reaction involved a
phosphine-catalyzed condensation of 43 and 44 to give intermediate 4,5-dihydrofuran 45, which, in
the presence of pyrrolidine and heat, rearranged to the 2HP 46. Authors gave a tentative mechanism
for this pyrrolidine-catalyzed rearrangement. All the examples incorporated an aromatic (heterocyclic)
substituent at R1, but the authors do not explain if this was a mandatory property of this substituent.
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Scheme 16. Synthesis of tetrasubstituted 2HPs 46 from 4,5-dihydrofurane 45.

3.3. From Allenolates

Stable 2,4,5,6-tetrasubstituted 2HPs 49 have been synthesized by the phosphine-catalyzed [3 + 3]
annulation of ethyl 5-acetoxypenta-2,3-dienoate 47 and 1,3-dicarbonyl compounds 48 (Scheme 17) [49].
The scope of the reaction was wide, tolerating a good variety of the substituents. The presence of the
ester group at the C5 position of the ring was fundamental for the stability of the 2HP 49.

Molecules 2019, 24, x FOR PEER REVIEW 10 of 17 

 

transfer/(decarboxylation)/6π-electrocyclization reaction. The methyl substituent allocated at C2 

position of the 2HP ring corresponds to the α-methine group alpha to the lactone in the coumalate 
ring (highlighted as CH in Scheme 15). 

 
Scheme 15. Domino synthesis of tetrasubstituted 2HPs 42 from methyl coumalate 40. 

A one pot synthesis of 2,2,4,6-tetrasubstituted 2HPs 46 has been developed using Bayllis–
Hillman carbonates 43 and β,γ-unsaturated α-oxo-esters 44 (Scheme 16) [48]. The one-pot reaction 
involved a phosphine-catalyzed condensation of 43 and 44 to give intermediate 4,5-dihydrofuran 45, 
which, in the presence of pyrrolidine and heat, rearranged to the 2HP 46. Authors gave a tentative 
mechanism for this pyrrolidine-catalyzed rearrangement. All the examples incorporated an aromatic 
(heterocyclic) substituent at R1, but the authors do not explain if this was a mandatory property of 
this substituent. 

 
Scheme 16. Synthesis of tetrasubstituted 2HPs 46 from 4,5-dihydrofurane 45. 

3.3. From Allenolates 

Stable 2,4,5,6-tetrasubstituted 2HPs 49 have been synthesized by the phosphine-catalyzed [3 + 3] 
annulation of ethyl 5-acetoxypenta-2,3-dienoate 47 and 1,3-dicarbonyl compounds 48 (Scheme 17) 
[49]. The scope of the reaction was wide, tolerating a good variety of the substituents. The presence 
of the ester group at the C5 position of the ring was fundamental for the stability of the 2HP 49. 

 
Scheme 17. PPh3-catalyzed synthesis of 2,4,5,6-tetrasubstituted 2HPs 49 from ethyl 5-acetoxypent-2,3-
dienoate 47 and 1,3-dicarbonyl compounds 48. 

3.4. From Alkynes  

3.4.1. From Propargyl Vinyl Ethers 

Scheme 17. PPh3-catalyzed synthesis of 2,4,5,6-tetrasubstituted 2HPs 49 from ethyl
5-acetoxypent-2,3-dienoate 47 and 1,3-dicarbonyl compounds 48.

3.4. From Alkynes

3.4.1. From Propargyl Vinyl Ethers

Propargyl vinyl ethers 50 have been successfully rearranged into stable 2,4,5,6-tetrasubstituted
2HPs 51 through a one pot procedure involving a Ag(I)-catalyzed propargyl Claisen rearrangement
followed by a tandem DBU-catalyzed isomerization/6π-oxa-electrocyclization reaction (Scheme 18) [50].
The protocol used secondary propargyl vinyl ethers (they bear only one substituent at the propargylic
position; R3), and it required the installation of an ester group at the C5 position of the ring and
substitution at the C6 position to give stability to the monocyclic 2HP 51.
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Scheme 18. One pot synthesis of 2,3,4,6-tetrasubstituted 2HPs 51 from propargyl vinyl ethers 50.

More recently, a metal-free domino strategy has been developed for the synthesis of
2,2,4,5-tetrasubstituted 2HPs 53 from propargyl vinyl esters 52 (Scheme 19) [51–53]. The strategy made
use of an imidazole-catalyzed all-pericyclic domino manifold entailing a sequential propargyl Claisen
rearrangement/[1,3]-H shift/oxa-6π-electrocyclization set of reactions. Again, the presence of an ester
functionality at the position C5 of the ring was mandatory to stabilize the final 2HP 53. The double
substitution at C2 favored the 2HP formation (steric information) and offered a wide range of optional
substitution patterns at the ring (Alk/Alk, Ar/Alk, Ar/Ar). The protocol delivered 2HP structures
endowed with different topologies, including monocycles (53-mc), 2,2-spiro-bicycles (53-sbc), and
2,2-spiro-macrobicycles (53-smbc). The main limitation arose from the presence of a tBu substituent at
the alkyne position (R1): In this case, the reaction followed a different pathway through a sequential
[1,7]-H shift/6π-electrocyclization/MeOH elimination set of reactions [54].Molecules 2019, 24, x FOR PEER REVIEW 12 of 17 
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An alternative protocol using propargyl alcohols 54 and alkyl ethylendicarboxylates 55 has
been developed (Scheme 20) [24,55]. The protocol generated 2,3,4,5,6-pentasubstituted 2HPs 56,
incorporating two identical ester functionalities at C5 and C6, and a halogen atom at C3. The protocol
used DABCO as the catalyst and N-iodosuccinimide (NIS) or N-bromosuccinimide (NBS) as the
halogenation agent to generate 2HPs 56 in moderate to good yields. In all the conditions explored in
Scheme 20, the substituents at the propargyl alcohol were aromatics (R1/R2 = Ar). The authors did not
specify if this was a limitation to the procedure, or was just an inconvenient choice of starting materials.
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3.4.2. From Diynes

The Ni(0)-catalyzed cycloaddition of diynes 57 and aldehydes 58 has been explored in the
construction of bicyclic 2HPs 59 (Scheme 21) [26,56]. Authors found that the structure of the diyne 57,
mainly the substitution at the terminal positions (R1 ,H), and the length of the chain connecting the
alkyne units, exerted a great influence on the bicyclic 2HP formation reaction. The worst yield was
observed when acetaldehyde was used as the aldehyde (28%), whereas the best was observed with
n-butanal (90%).Molecules 2019, 24, x FOR PEER REVIEW 13 of 17 
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Scheme 21. Ni(0)-catalyzed synthesis of bicyclic 2HP 59 from diynes 57 aldehydes 58.

A transition metal-free, cycloisomerization of diynols 60 to generate bicyclic 2HPs 61 has been
reported (Scheme 22) [26]. The reaction was catalyzed by a cooperative catalytic system entailing
Ca2+ catalyst (5 mol%) and camphorsulphonic acid (10 mol%), in the presence of benzaldehyde as a
mild Lewis basic electron donor. The reaction was carried out without exclusion of air and moisture,
and it tolerated a wide range of functionalities on the electron rich 2HP ring. The main limitations
arose from substituents R2/R3 at the propargylic terminal position, which only allowed the alkyl/alkyl
combination, and from R1, which had to be aromatic. The only limitation for the aromatic substituent at
R1 was the presence of a free hydroxyl group at the ortho position of the ring. As long these restrictions
were kept, excellent yields of 2HPs were obtained. The mechanistic proposal involved the formation of
a propargylic tertiary cation 61, which afforded the cyclic 1-oxa-2,4,5-triene intermediate 62, which
isomerized to 63 and rearranged into 2HP 64.
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3.4.3. From Alkenes: Tandem Stille-Oxa-Electrocyclization Reaction

Highly substituted bicyclic 2HPs 67 have been synthesized by a palladium-catalyzed tandem
Stille-oxa-electrocyclization reaction between vinyl stannanes 65 and vinyl iodides 66 (Scheme 23) [57,58].
The strategy was a convergent alternative to the known methods for constructing similar bicyclic
2HPs, and it has been used in the total synthesis of natural products [59–61]. Although it required the
prior stereoselective construction of both vinyl derivatives, the strategy had several advantages: It
was convergent, highly diastereoselective, and required mild reaction conditions with low catalyst
loadings (5 mol%). In the pattern of construction depicted in Scheme 23, the main restriction came
from the nature of the vinyl iodide 66, which had to have substituents at the vinyl (R3 , H) and allylic
positions (R/R’ , H) to stabilize the 2HP ring form by steric destabilization of the 1-oxatriene form.Molecules 2019, 24, x FOR PEER REVIEW 14 of 17 
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4. Summary and Conclusions

We have discussed the structural and electronic factors controlling the valence isomerism of 2HPs
and how they can be harnessed to design effective synthesis of 2HPs. The most common routes to
access these heterocycles relies on the 6π-electrocyclization of the corresponding 1-oxatriene isomers;
thus, the synthetic challenge translates into the synthesis of the 1-oxatriene precursor. We have
gathered the most transited routes to these species, including the proper Knoevenagel reaction, the
tandem propargyl Claisen rearrangement/[1,3]-H shift reactions hosted by propargyl vinyl ethers, the
cycloisomerization of diynes, and the Stille coupling of vinyl iodides and vinyl stannanes. From the
large number of methods reported in the literature to access these heterocycles, we have selected only
those able to generate stable rings with a convenient amount of structural/functional diversity. We
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hope that this review has filled the existing gap in literature regarding the reactivity and synthesis of
these heterocycles, and that it finds use in future applications of these heterocycles.
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