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Abstract

The SARS-CoV-2 virus has spread around the world with over 100 million infections to date,

and currently many countries are fighting the second wave of infections. With neither suffi-

cient vaccination capacity nor effective medication, non-pharmaceutical interventions

(NPIs) remain the measure of choice. However, NPIs place a great burden on society, the

mental health of individuals, and economics. Therefore the cost/benefit ratio must be care-

fully balanced and a target-oriented small-scale implementation of these NPIs could help

achieve this balance. To this end, we introduce a modified SEIRD-class compartment

model and parametrize it locally for all 412 districts of Germany. The NPIs are modeled at

district level by time varying contact rates. This high spatial resolution makes it possible to

apply geostatistical methods to analyse the spatial patterns of the pandemic in Germany

and to compare the results of different spatial resolutions. We find that the modified SEIRD

model can successfully be fitted to the COVID-19 cases in German districts, states, and

also nationwide. We propose the correlation length as a further measure, besides the

weekly incidence rates, to describe the current situation of the epidemic.

Introduction

The SARS-CoV-2 virus was first detected in China in late 2019, and then rapidly spread

around the world. By March 2020, COVID-19, the disease caused by SARS-CoV-2, was offi-

cially declared a pandemic by the World Health Organization [1]. To date, the pandemic has

resulted in devastating consequences to life, health, and national economies. The novelty of

the SARS-CoV-2 virus, coupled with the comparative lack of clinical research on coronavi-

ruses in general, has left Non-Pharmaceutical Interventions (NPIs), such as masks, lockdowns,

and social distancing measures, as the main weapons in the fight against COVID-19. Indeed,

NPIs have so far played an important role in modulating the dynamics of the pandemic [2].
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In Europe and other regions, NPIs during the first wave of COVID-19 were typically imple-

mented at the national level or at the state level in some federations. In Germany for example,

the first COVID-19 case was reported on 2020–01-27 and the first NPIs were imposed on

2020–17-03, with a lockdown of most public places, including school closures. This was fol-

lowed two weeks later by a ban on meeting with too many people outside of one’s own house-

hold, and the number of people simultaneously allowed in supermarkets was restricted. These

measures were largely effective [3], and the first COVID-19 wave peaked in Germany at the

beginning of April 2020. Relaxations of the nationwide NPIs began by the third week of April,

and by May 2020, the first wave in Germany was effectively over. While this type of broad-

scale NPI deployment strategy was successful, it was also extremely costly and brought with it

many unintended consequences. For example, schools and universities across Germany were

completely closed during the lockdown [4]. Additionally, the price and calendar adjusted GDP

shrank by 9.7% in the second quarter of 2020 relative to the same period in 2019 [5].

Europe is currently engulfed in a second wave of COVID-19, and despite many advances

since the first wave crested, definitive solutions, such as sufficient vaccination capacity, remain

elusive. At the same time, the devastating economic, social, and political consequences of

nationwide lockdowns have become increasingly apparent. Uncoordinated smaller scale mea-

sures failed to keep the virus in check in the fall of 2020. The result has been the reimplementa-

tion of nationwide lockdowns. On the one hand, this failure could be interpreted as evidence

against the efficacy of local measures. On the other hand, it provides an opportunity to develop

more comprehensive strategies for applying NPIs at different scales (e.g., local, regional,

national), and for identifying the conditions which require ramping control efforts up to larger

scales.

It is therefore imperative that we learn as much as possible about the scale-specific effects of

strong NPIs from the first COVID-19 wave. A key limitation is that many analyses so far have

focused on the national German level [3, 6], and thus have not been able to resolve local trends.

An example for such a local or regional trend is the city of Jena which was the first district to

implement mandatory mask-wearing. This measure seems to have effectively and very early

stopped the disease [7]. Another example is the largest superspreader event in Germany to

date in a meat processing plant, which mainly affected only two districts [8]. Here, we leverage

data from the Robert Koch Institute (RKI) [9], reported for each of the 412 administrative dis-

tricts (i.e., counties) in Germany, to quantify local effects of NPIs from the first COVID-19

wave and the time immediately thereafter. Specifically, we fit modified SEIRD-class compart-

ment models to the RKI data at the district level, and quantify changes in the estimated contact

rate for each district across time periods defined by the start and end dates of the various NPIs

that were implemented. So far, the studies that have modeled the COVID-19 epidemic in Ger-

many on a district level have focused on evaluating the predictive capabilities of the model

itself [10–12]. Whereas we use the more granular data to also facilitate the analysis of the

dynamics of spatial patterns of infection clusters, which can yield additional insights into how

COVID-19 in Germany responded to NPIs. Finally, our framework also permits a direct, mul-

tiscale comparison to highlight how the inferences about NPI effectiveness that can be gleaned

depend on the scale of analysis.

Materials and methods

In Germany, the RKI is responsible for gathering and publishing data on COVID-19. Germany

is divided into 401 districts, of which one is Lake Constance and has no residents. The RKI fur-

ther divides the most populous district of Berlin into its 12 boroughs. For simplicity, these 412

areas for which the RKI publishes data will be called districts from now on. The German

PLOS ONE Data driven high resolution modeling and spatial analyses of the COVID-19 pandemic in Germany

PLOS ONE | https://doi.org/10.1371/journal.pone.0254660 August 18, 2021 2 / 14

the Saxon Ministry for Science, Culture and

Tourism (SMWK) with tax funds on the basis of the

budget approved by the Saxon State Parliament.

This work was also partially funded by the

Where2Test project, which is financed by SMWK

with tax funds on the basis of the budget approved

by the Saxon State Parliament (grant number

100525661).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0254660


reporting obligation of all positive COVID-19 tests to the RKI and the fact that these data are

published on the district level makes it possible to model the epidemic at this comparatively

high spatial resolution. The population size of the districts is taken from the Federal Statistical

Office of Germany [13].

The COVID-19 epidemic in Germany is modeled using a compartmental epidemiological

model [14] on the district level. Within each district, the population is divided into Susceptible,

Exposed, Infectious, Recovered, and Dead compartments, with the total population being the

sum of the individuals in the compartments minus the COVID-19 related deaths N = S + E + I
+ R. To keep the number of parameters as low as possible, the exposed individuals and the

asymptomatic cases are handled together in one compartment. The modified SEIRD model is

formulated as

_S ¼ �
bj

N
IS ð1Þ

_E ¼
bj

N
IS � ðaþ kÞE ð2Þ

_I ¼ aE � ðgþ mÞI ð3Þ

_R ¼ kEþ gI ð4Þ

_D ¼ mI ð5Þ

It is assumed that the asymptomatic cases can recover, but not die due to COVID-19, thus

Eq (5) is only coupled to Eq (3). A graphical visualization of the system of Eqs (1)–(5) is shown

in Fig 1.

The NPIs are modeled by a piecewise constant contact rate β(t), which is allowed to change

at the dates of the NPI implementations. Without loss of generality, this assumption is refor-

mulated to constant contact rates βj, with j = 1, 2, . . ., M + 1 and M being the total number of

NPIs. βj is exchanged by βj+1 at the date of the j-th NPI. All simulations start on the 2020–03-

01 and for the initial conditions, we use the number of laboratory-confirmed cases per day

Fig 1. The model structure. A visual representation of Eqs (1)–(5), with the different compartments shown as boxes and the transfer

rates as arrows. The data gathered by the RKI are shown as dotted arrows, instead of dashed ones. The color coding of the different

compartments is kept consistently throughout this manuscript.

https://doi.org/10.1371/journal.pone.0254660.g001
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Iobs, gathered by the RKI. It translates to the SEIRD-model (1)–(5) as Iobs¼b aE. Thus, the initial

condition for the Exposed compartment is E(0) = Iobs/α. For the Infectious compartment,

the reported cases over the last 1/α days are integrated Ið0Þ ¼
R 0

� 1=a
IobsðtÞdt. This is only an

approximation, but it quickly becomes irrelevant, as the compartment is filled by the Exposed.

The Recovered are set to R(0) = 0, exactly like the Dead D(0) = 0, as there where no reported

deaths at the initial time. Then, the initial condition for the Susceptible compartment is calcu-

lated as S(0) = N − E(0) − I(0).

Because the latent and asymptomatic cases are lumped together into one compartment,

parts of the model structure and some of its parameters cannot easily be mapped to quantities

which can actually be measured, like the mean time it takes for the asymptomatic cases to

recover. This decision was made in order to keep the number of parameters as low as possible,

but at the same time, to have a model, that is flexible enough to reproduce the course of the

COVID-19 epidemic across different scales and all districts in Germany.

The assumptions made for SIR-type models break down for small populations. Because the

number of cases per day is often already low on the district level without separating the cases

into different age groups, we neglect the age distribution of the population to avoid further

reducing the number of individuals in the respective compartments.

Using the next generation matrix approach [15], the reproduction number for the SEIRD-

model can be calculated yielding

Rj ¼
abj

ðaþ kÞðgþ mÞ
ð6Þ

The system of non-linear ordinary Eqs (1)–(5) is numerically solved using an explicit

Runge-Kutta method of order 5(4), derived by Dormand et al. [16] and implemented by Virta-

nen et al. [17].

The M + 5 unknown parameters θ = (α, β1, β2, . . .βj, γ, κ, μ)T per district in Eqs (1)–(5) are

estimated using Bayesian inference. For the evidence, the number of laboratory-confirmed

cases per day Iobs and the number of deaths related to COVID-19 per day Dobs, gathered by the

RKI, are used. These data are grouped together as Xobs = (Iobs, Dobs)
T. Translating Xobs to the

SEIRD-model (1)–(5), the rate of positively tested cases per day is expressed as Iobs¼b aE and

the rate of COVID-19 related deaths as Dobs¼b mI, with X = (αE, μI)T. Assuming Poisson error

distributions, we maximize its log-likelihood

L ¼
Xt

i¼1

ðXi ln ðXobsi
Þ � ln ðGðXi þ 1ÞÞ � XiÞ ð7Þ

with t being the total number of days simulated.

The parameter inference is set up for all of the 412 districts and the sampling is repeated

200000 times for each of them. The prior distributions of the parameters are uniform P(θ)�U
and the sampling is done using the Metropolis-Hastings MCMC algorithm [18, 19]. The first

10% of the simulations are used for classical Monte Carlo sampling for the burn-in period.

From this, the best parameter set is used as the initial parameter set for the Metropolis sampler.

10 MCMC chains are used for convergence checks. SPOTPY [20] is used for the implementa-

tion of the parameter inference.

The RKI gathers and updates its data on the COVID-19 epidemic once a day. These data

are downloaded and preprocessed in order to use it for the evidence in the Bayesian frame-

work. Next, the parameter inference is executed for all districts in parallel. Finally, the analyses
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are done and the plots are created. All these steps are part of a fully automatised workflow on

the HPC Cluster EVE [21] at the UFZ Leipzig.

For a comparison with the much more common approach of modeling an epidemic on a

national level, the results from all fitted district level simulations are aggregated, first to the

level of states within Germany, and subsequently to the national level. This yields three

different spatial resolutions that can then be compared: 1) district, 2) state, and 3) national.

Additionally, the same SEIRD-model (1)–(5), which was applied to the districts, is also param-

etrized for the national case and death rates for resolution 3) and for the 16 individual German

states for resolution 2).

We performed sensitivity analyses to better understand the model behavior using the

extended Fourier amplitude sensitivity test (FAST) algorithm [22]. This method is a variance-

based global sensitivity analysis taking parameter interactions into account and is imple-

mented by SPOTPY [20].

The relatively high spatial resolution of German districts makes it possible to use geostatisti-

cal methods to identify spatial correlation structures. The variogram is a function describing

the type, length, and strength of these spatial correlations. In the cases considered here, the var-

iogram increases monotonically from 0 until it flattens out when it reaches its maximum,

which is equal to the variance of the field. The greater the variogram at a certain distance, the

smaller the correlations at that distance. If only few and spatially separated superspreader

events take place in Germany, we expect to see a high correlation length but a low correlation

strength, because all the districts with low infection numbers are highly correlated over a large

area (left panel in S1 Fig). But if a superspreader event causes a spreading of infections to

neighboring districts and a map of the case numbers on a district level would be plotted, this

map would look very patchy, with clusters of high case numbers next to clusters of low case

numbers (right panel in S1 Fig). This would be reflected in a variogram with shorter correla-

tion lengths and a higher correlation strength. The variogram is calculated by first computing

the pairwise distances of all data points z(xi) (in this case the number of positively tested indi-

viduals at the centroid xi of the district in which they where reported). Depending on these

pairwise distances kxi − xjk, the values are grouped into bins of different distances r with rk�
kxi − xjk<rk+1 being the kth bin. Now, we define N(rk) as the set of all pairwise data points

which are grouped into the kth bin. By summing the squared differences of all pairs for each

bin, the variogram can now be calculated by following equation [23, 24].

gðrkÞ ¼
1

2jNðrkÞj

X

i;j2NðrkÞ

ðzðxiÞ � zðxjÞÞ
2

ð8Þ

The variograms are calculated and estimated with GSTools [25]. For the calculation of the

variograms, the reported cases in each district are accumulated over the time periods of all

NPIs separately. This yields a total number of reported cases per district for each NPI period.

Then, an empirical variogram is calculated and a variogram model is fitted to it for each of

these periods. For all empirical variograms, the best fit was achieved with an exponential vario-

gram model

g eðrÞ ¼ s2ð1 � exp ð� r=lÞÞ ð9Þ

with σ2 being the correlation strength or simply the variance and λ being the correlation length

(see lower panel of S1 Fig for an example). A different and commonly used length scale is the

percentile scale, which is defined as the distance in which a certain percentage of the vario-

gram’s maximum value (the variance of the field) is reached.
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Results

Visualizing the cumulative reported cases exemplarily for the period of the second NPI on

2020–04-02 to the third NPI on 2020–04-20 on a national, a state, and a district level in Fig 2

shows that reported cases are distributed very inhomogeneously. On the state level one can see

that there is a gradient from south to north, but that most of the cases are only reported in rela-

tively small areas can only be seen on the district level. These three scales open up the opportu-

nity of comparing the epidemic over very differently sized populations. The districts have a

typical population size in the order of 105, the states of 107, and the nation of 108.

The aggregated and nationally calibrated approaches are compared to the German-wide

positively tested cases over time (Fig 3). First of all, it can be seen that the calibrated national

SEIRD-model (1)–(5) with the variable contact rates can be used to reproduce the epidemic in

Germany. Aggregating the simulation results from the fitted district models also reproduces

the case numbers on a national level, but with some interesting deviations from the fitted

national model. The very fast increase of reported cases until mid of March is matched well by

both approaches. The subsequent peak is underestimated by the aggregated models. At the

beginning of April, they show a second peak, which does not appear in the national model. For

lower infection rates, the accumulated models perform well, although they tend to show minor

peaks at the NPI change points. From the final NPI on, the spreading events become more

scattered with a higher variance and the aggregated models underestimate the case numbers.

There is a problem with the initial conditions, because at the early stage of the epidemic, many

districts did not have any reported cases or had larger periods with zero infections. Therefore,

the cases have to be integrated over several days for non-trivial initial conditions. This causes

the aggregated cases to be larger at the start of the simulation.

Fig 2. Cummulative reported COVID-19 cases on different hierarchical levels. The number of laboratory confirmed COVID-19 cases per 100000

accumulated from the second NPI on 2020–04-02 until the third NPI on 2020–04-20 on three different spatial resolutions according to the hierarchical

administrative divisions of Germany. Borders republished from [32] under a CC BY licence, with permission from GeoBasis-DE / BKG, original

copyright 2019. © GeoBasis-DE / BKG (2021).

https://doi.org/10.1371/journal.pone.0254660.g002
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Similarly and very easily within this modeling framework, the district level data can be

aggregated to the next hierarchical level, namely the states. As an example, the state of Bavaria,

which had the most cases of all German states during the first wave, is taken. The result is simi-

lar to the comparison of the national model. The aggregated reported cases show two peaks,

whereas the state model only shows one late peak. The peaks at the dates of the NPIs are

also present and the aggregated models underestimate the slow and scattered increase from

August on.

Now that we have seen that the aggregated fitted simulations can reproduce the reported

case numbers on higher hierarchical levels, we can analyse individual districts and see what is

being averaged out, when looking at the case numbers on a higher hierarchical level. At the

same time, the capabilities and limits of the modified SEIRD model (1)–(5) applied to districts

are shown. The results of the parametrized simulations for three districts with qualitatively dif-

ferent courses of the epidemic are discussed here. The results of the model runs fitted to the

Stadtkreis (SK, urban district) Jena, Landkreis (LK, rural district) Gütersloh, and SK Duisburg,

respectively (Fig 4) are presented now.

SK Jena was the first district to introduce mandatory mask-wearing and at the same time,

this district was very successful in quickly reducing the confirmed cases to almost zero, with

only a few days over several month when single new cases were confirmed. This reduction

might be a direct consequence of the mandatory face masks [7]. The drop in cases can also be

seen from the fitted model results, where the peak of the newly reported cases was around the

time the first NPI was implemented. After this peak, the rate quickly decreased to around zero

per day at the time of the third NPI. The gradual increase of uncertainty in the contact rates

from β2 to β6 is a result of the very low case numbers (Fig 5).

Compared to Jena, LK Gütersloh had a broader peak of infections at the beginning of the

epidemic, but at the time of the third NPI, the rate became very low here too. This changed in

mid June when a major outbreak occurred at a meat processing plant, with over 1000 infected

employees [8, 9]. This outbreak was spread out over LK Gütersloh and LK Warendorf, where

many of the employees lived. This outbreak lasted about two weeks, but the model spreads and

broadens the peak between the NPI change points before and after the event. This is an issue

Fig 3. Comparison of fitted model results on different hierarchical levels. Comparisons of parametrized model runs on a higher hierarchical level

with the aggregated case numbers from the fitted district level models. The fitted national model and the summed positive cases resulting from the 412

district level models are compared to the nationwide reported cases in the left panel and the fitted state model of Bavaria and the summed positive cases

resulting from its 96 district level models are compared to the reported cases in Bavaria in the right panel. The shaded area indicates the 95% credible

interval. The vertical grey lines indicate the dates of the NPIs.

https://doi.org/10.1371/journal.pone.0254660.g003
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of the insufficient temporal resolution of the contact rates βj. A drawback of the current

parameter estimation is revealed by the model results for Gütersloh. The estimation of all con-

tact rates βj is done simultaneously and not for each NPI period successively. This problem

arises before the fifth NPI, where the number of exposed and infectious individuals increases

only to decrease after the NPI in order to match the data better.

SK Duisburg has had a mean infection rate of �Iobs ¼ 14 d� 1
� 8 d� 1

with a standard devia-

tion of 58% without a significant trend. Linearly fitting the data results in a slope of only
d�Iobs
dt ¼ 0:016 d� 2

. Although SIR-type models tend towards either an exponential increase or

decrease of the rates, the modified SEIRD model (1)–(5) reproduces the linear trend in Duis-

burg satisfactorily. The high variance of the reported cases affects the 95% credible interval,

where the spread is much higher relatively to the two other analysed districts.

We have performed G-tests [26] to assess the goodness of fit for all models. Except for dis-

tricts where only single-digit infection rates occur in intervals of up to several weeks, like LK

Altmarkkreis Salzwedel, the models all reproduce the observed infection and death rates with

a high probability (p< 0.05).

Fig 4. Time evolution of different transfer rates in three districts. The transfer rates into the compartment Exposed bj
N IS
� �

is shown in purple, into

Infectious (αE) in orange, and into Recovered (κE + γI) in green. The shaded area shows the 95% credible interval of the rates. The reported positive

cases are shown as a scatter plot in orange, corresponding to Iobs¼b aE. The vertical grey lines indicate the dates of the NPIs.

https://doi.org/10.1371/journal.pone.0254660.g004
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A different view of the course of the epidemic can be gained by looking at the variograms of

the infection rates. The variogram and its fit for a single NPI period from 2020–03-17 until

2020–03-23 of the cumulative case rates are shown in Fig 6. The variograms for all periods

can be found in the appendix (S2.3 Fig in S1 File). The correlation lengths, derived from the

Fig 5. Posterior parameter distributions for SK Jena. The posterior distributions of the parameters for SK Jena. For better visualization, the

parameters κ and μ are shown again on a separate y-scale. A classical box plot is show inside the violins, with the white dot indicating the optimal

parameter.

https://doi.org/10.1371/journal.pone.0254660.g005

Fig 6. Results from the variogram analyses. The empirical and the exponential variograms Eq (9) of the cumulative rates of the reported cases for the

time period before the first NPI are shown in the left panel. The time evolution of the correlation lengths λi of the covariance models for the cumulative

cases is shown in the right panel. The mean distance of the neighboring district centroids is indicated by the dashed grey line.

https://doi.org/10.1371/journal.pone.0254660.g006
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variograms, increase from about λ1 = 40 km and peak at the crest of the first wave at twice the

length λ2 = 81 km, when the first NPIs where implemented (Fig 6). From then on, the correla-

tion lengths drop until the first NPIs are relaxed on 2020–04-20 with λ4 = 26 km, where the

correlation lengths stay nearly constant until a minor peak at λ6 = 36 km is reached. Finally, a

global minimum of λ7 = 5.8 km is reached with the last relaxation of the NPIs. For comparison,

the district centroids have a mean distance to their neighboring district centroids of about

32 km.

Discussion

In this work, we present a modified SEIRD-type epidemiological model with variable contact

rates tailored to the COVID-19 pandemic. This model is fit to the data from each of the 412

German districts, all 16 states, and the nation. The parametrization is done using RKI data of

the daily positively tested cases and the COVID-19 related deaths. The most important tool to

modulate the epidemic to date, the non-pharmaceutical interventions, are implemented using

piecewise constant contact rates which only change at the dates of NPI implementations. This

model is flexible enough to satisfactorily reproduce the time evolution of the epidemic on a

district level over many months, although the development of the epidemic is qualitatively

very different across the different districts. Some districts had a very pronounced first peak fol-

lowed by a long period in which the disease was practically eradicated. Others had a more or

less constant rate of positively tested cases over several months. Furthermore, the same model

can reproduce the epidemic on a state and on a national level. However, only on the district

level is the spatial resolution high enough to analyse spatial patterns, for which we use the geos-

tatistical method of variogram estimation. This method does not require any additional data,

which makes variogram analysis an ideal tool during the onset of new epidemics, when only

limited data are available.

Monitoring and modeling the infections on this small scale level is a first step towards local,

precise, and target-oriented NPIs. Doing so could increase the cost/benefit ratio and also the

acceptance of NPIs. The correlation lengths of the estimated variograms might help in evaluat-

ing if local NPIs are sufficient or if state or even nationwide measurements should be taken.

An example scenario where the case numbers or weekly incidence rates alone are not enough

to judge the effectiveness of local-scale NPIs is the following. If the quarantining in the after-

math of a superspreader event is applied too late or not rigorously enough, it could reduce the

total amount of newly reported cases, but commuters might have already spread the disease to

neighboring districts. In these surrounding districts, the case numbers would only slowly

increase. Thus, by only taking the total case numbers into account, one might come to the con-

clusion, that the superspreader event was successfully quarantined. Whereas the correlation

length would increase early with the slow spreading to the neighboring districts, even though

the total amount of reported cases drops after the initial quarantining. This information can

also be extracted from maps, but they contain the information in complex ways and it is always

easier to communicate information in single numbers (e.g. weekly incidence rates, instead of

the time evolution of the reported cases, the mean instead of the complete distribution, the h-

index instead of the quality and topics of a researcher).

The high spatial resolution of the district level opens up the possibility to aggregate the

results to a specific level, e.g. to the states or to the national level, which can also yield unique

insights into the epidemic. The aggregated district models show a second peak during the first

wave on 2020–04-01 (Fig 3). This might actually hint at the large number of districts, where

the peak infection was reached with a delay of about two weeks compared to the districts, in

which the epidemic started earlier. On a national level this delay is completely averaged out
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and it cannot be seen in the data on a German-wide level. Later on, the aggregated district

models tend to underestimate the national-level case numbers. A reason for this could be that

the dynamics of the epidemic are often driven by local superspreader events, which could be

isolated and quarantined effectively. These events look like outliers on a district level, but

increase the averaged cases on a national level, making them easier to match on the higher

level. From August on, the infections seem to become more scattered with a much higher vari-

ability than before. This is also roughly the time, when more local NPIs were implemented and

a central modeling approach with fixed NPIs for all districts might become too rigid for this

kind of scenario.

The correlation lengths λi obtained from the variogram estimation support the idea that

districts are the appropriate level of granularity for monitoring and modeling the epidemic.

The fact that exponential variograms fit the data best further supports this, as it is a relatively

rough correlation type, compared to e.g. Gaussian variograms, indicating that although pro-

nounced spatial correlations exist, immediately neighboring districts can still have very differ-

ent case numbers. If λi is less than the average neighboring district distance, it indicates that

NPIs should only be implemented on a local district level, according to e.g. the weekly inci-

dence rates of the district, published by the RKI. However, λi greater than the inter-district dis-

tance and less than the average distance between neighboring states suggests that NPIs should

be applied on a state level or on an intermediate level, e.g. in Regierungsbezirken (provinces)

in Germany. If the clusters grow beyond state size, nationwide NPIs are likely to be appropri-

ate again. This hierarchical control approach works in both directions, not only for applying

new NPIs at targeted spatial extents, but also for lifting existing ones over different regions, as

the epidemic subsides. This modeling framework also makes it very easy to make projections

on different hierarchical levels, e.g. what effect would NPIs have on the weekly incidence rates,

if they are applied locally at a district level or if they are applied on a state level. Combining

this with an economic model could help finding a balance between the effectiveness and costs

of NPIs. It should be kept in mind, that the case numbers we calibrate the model against are

likely to be underreported. A seroepidemiological study in four especially affected areas in

Germany found between 1.6 and 6 times more infections than officially reported [27]. As a

consequence, the reports are a lower boundary of the actual number of newly infected individ-

uals. However, this lower boundary can still be used as a proxy for future intensive care unit

demands [6]. However, if the testing strategies do not change considerably, there is no reason

to believe that the relative changes in the actual occurrences of infections do not strongly cor-

relate with the reported ones. Consequently, the effects of NPIs can be estimated, as they influ-

ence the time derivative of the reported cases and thus the relative change. The death rates

seem to be more reliable and it was even suggested that they are a better metric for comparing

the pandemic across different countries than infection rates [28].

The model results will likely improve, if the NPI periods are parametrized individually and

successively. This would prevent the model from increasing the number of cases prior to an

NPI and the actual increase, as can be seen in the results for LK Gütersloh at 2020–06-09 (Fig

4) or in the peaks at the NPI dates in the aggregated models (Fig 3). However, a multitude of

approaches for such a successive parametrization exist. The approach presented in this study

could be a precursor from which all constant parameters (α, γ, κ, μ) are identified. Subse-

quently, the contact rates βj could be parametrized successively by regarding one NPI period at

a time and with priors for βj taken from the precursor run. Alternatively, the constant parame-

ters could also be estimated for each NPI period separately. The differences in these supposedly

constant parameters could be used as an indicator, to see if the compartments should be fur-

ther divided into different age groups, as these parameters do vary between different age

groups. But exploring these possibilities is beyond the scope of this work.
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A further and likely more important improvement might be to choose an appropriate algo-

rithm out of the wealth of published outlier detection algorithms [29] and to apply it to the

RKI time series to automatically identify superspreader events. Such an event could then be

implemented into the existing modeling framework by means of an additional transfer term,

which acts like a Dirac pulse type source term for the Infectious compartment, but at the same

times obeys the conservation laws. This way, local NPIs can be detected automatically and

applied without having to prescribe NPIs manually to all districts individually.

An alternative approach could be to derive information about superspreader events from

identifying change points in the contact rates as done by Dehning et al. [30].

SEIRD-type models are used for predictions or scenario modeling [6, 31]. Evaluating the

predictive capabilities of the modified SEIRD model (1)–(5) is thus a future direction of our

work. This could be combined with the outlier detection in order to automatically raise a flag

in case of a sudden increase in newly reported cases over the past few days.
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