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Abstract

Background: Meyerozyma guilliermondii is a yeast which could be isolated from a variety of environments. The vka1
strain isolated and purified from the organic compost was found to have composting potential. To better
understand the genes assisting the composting potential in this yeast, whole genome sequencing and sequence
annotation were performed.

Results: The genome of M. guilliermondii vka1 strain was sequenced using a hybrid approach, on Illumina Hiseq-
2500 platform at 100× coverage followed by Nanopore platform at 20× coverage. The de novo assembly using
dual-fold approach had given draft genome of 10.8 Mb size. The genome was found to contain 5385 genes. The
annotation of the genes was performed, and the enzymes identified to have roles in the degradation of macromolecules
are discussed in relation to its composting potential. Annotation of the genome assembly of the related strains had
revealed the unique biodegradation related genes in this strain. Phylogenetic analysis using the rDNA region has
confirmed the position of this strain in the Ascomycota family. Raw reads are made public, and the genome wide
proteome profile is presented to facilitate further studies on this organism.

Conclusions: Meyerozyma guilliermondii vka1 strain was sequenced through hybrid approach and the reads were de
novo assembled. Draft genome size and the number of genes in the strain were assessed and discussed in relation to the
related strains. Scientific insights into the composting potential of this strain are also presented in relation to the unique
genes identified in this strain.
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Background
The yeast Meyerozyma guilliermondii (Wick.) Kurtzman
and M. Suzuki, comb. nov. was first described as Endo-
mycopsis guilliermondii by Wickerham [1]. The species
was later placed in the genus Pichia, as Pichia guillier-
mondii [2] and recently renamed as Meyerozyma guil-
liermondii [3]. This ascomycetous yeast is widely
distributed in the natural environment and forms part of
the saprophytes on human skin and mucosal microflora.
Meyerozyma caribbica (anamorph Candida fermentati)
and M. guilliermondii (anamorph Candida
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guilliermondii) are two closely related species [4, 5]. This
yeast has been an object of several studies, with a broad
bibliography describing its multiple interesting proper-
ties and applications [6] and considered ubiquitous as
they are found in deep-sea hydrothermal systems of the
mid-Atlantic rift [7], wastewater treatment plants [8],
maize wounds [9], and insect surfaces [10]. The yeast
synthesizes large quantities of riboflavin [11] and has
been extensively used in biotechnology industry.
M. guilliermondii is involved in xylitol production and

polycyclic aromatic hydrocarbon degradation [12, 13]. It
has been used industrially for the bioremediation pur-
poses as well as for phosphate solubilizing [14, 15]. This
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yeast facilitates the process of tannin and saponin deg-
radation also [16, 17].
In this study, we report the draft genome of the strain

vka1 involved in the composting of organic waste. Hy-
brid sequencing followed by de novo assembly of the
whole genome was performed. The objective of the
study was to identify the number of genes in this strain
and to find out and annotate the genes involved in the
decomposing process, thus to give scientific back up for
the biocomposting capability for this strain.

Methods
Yeast isolation and DNA extraction
The M. guilliermondii vka1 strain was isolated and puri-
fied from the organic compost at Kerala Agricultural
University, India, following the standard protocol [18].
DNA was extracted according to the protocol by Della-
porta et al. [19]. For the extraction, pure culture of the
yeast was isolated from the conical flask, frozen with li-
quid nitrogen in a mortar, ground to fine powder, and fi-
nally transferred to a tube containing extraction buffer
(100 mM Tris pH 8.0, 50 mM EDTA pH 8.0, 500 mM
NaCl, 10 mM mercaptoethanol and 1.25% SDS). After
mixing, 5 M potassium acetate was added and incubated
at 0 °C for 20 min. Supernatant obtained after centrifu-
gation was poured into a clean tube where genomic
DNA was allowed to precipitate with isopropanol for 30
min at – 20 °C. After centrifugation, pellet was resus-
pended in 50 mM Tris, 10 mM EDTA (pH 8.0) and
transferred to a 20 μL tube where DNA was precipitated
with 80% ethanol and the dried pellet was subsequently
dissolved in 10 mM Tris, 1 mM EDTA (pH 8.0).
The 18S rDNA gene of strain vka1 was PCR amplified

and Sanger sequenced. Based on the sequence, the spe-
cies of the yeast was identified. To confirm the species
identity, five 18S rDNA gene sequences each from five
related species (M. guilliermondii, M. caribbica, M. car-
pophila, Candida albicans, and C. amylolentus) were re-
trieved from NCBI GenBank and subjected to the
cluster analysis along with our sequence, with 1000
bootstrap replications.

Sequencing and assembly
Genomic DNA was sequenced and de novo assembly of
the reads was done. Sequencing was performed on Illu-
mina Hiseq-2500 platform at 100× coverage followed by
Nanopore sequencing at 20× coverage. Quality of the
Illumina and Nanopore raw reads was assessed using
FASTQC [20] and Poretools [21], respectively. The de
novo assembly was performed using ABySS 2.2.4 [22].
Different k-mer lengths (40–190) were employed to
optimize the assembly and the best k-mer value of 144
was chosen for the final output. The assembly was fur-
ther conducted using SPAdes 3.11.1 [23] employing
different k-mer lengths (21, 33, 55, 77, 99, and 111), set-
ting the --cov cutoff parameter to auto, and using the
--careful option.

Gene prediction and annotation
Gene prediction from the scaffolds and annotation of
these genes were performed using the following proced-
ure. The assembly was input in to Augustus [24] using
Candida guilliermondii as the trained dataset. Predicted
genes were further analyzed using BLAST+ [25] and
classified into different pathways using KAAS (KEGG
Automatic Annotation Server) [26]. BBH (bi-directional
best hit), the best method for annotating complete ge-
nomes in KEGG, was employed for the prediction, with
M. guilliermondii selected as the organism.

Analysis of genes in comparison with other strains
To understand the genes imparting the biodegradation
capability to vka1 strain, its genome was compared with
those of YLG18 and ATCC6260 strains. The assembled
genome sequences, ASM975640v1 and ASM694215v1 of
YLG18 and ATCC6260 strains, respectively, were down-
loaded in FASTA format from the SRA database of
NCBI. The assembly was then annotated using the same
pipeline detailed above.

Phylogenetic analysis
The rDNA region, comprising the complete sequence of
18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA, from
vka1 strain was used as query in BLASTn and 10 se-
quences belonging to various genera of Ascomycota
were retrieved. Sequences were then aligned using
MAFFT v.7.0 using L-INS-i strategy [27] and the aligned
sequences analyzed using MEGA X [28], employing NJ
method with 1000 bootstrap replications. The evolution-
ary distances were computed using the Jukes-Cantor
method.

Results
The yeast has been isolated and purified from the com-
posted material and DNA was extracted using Dellaporta
method. Purity of the DNA was good enough for se-
quencing. Analysis of the 18S rDNA sequence has
shown that the organism is M. guilliermondii. Cluster
analysis with the sequences of the related yeasts had fur-
ther confirmed the identity of the strain.
The Illumina results had 10,514,805 reads and the

Nanopore had 261,366 reads. Raw reads were of high
quality and the genome features of the strain are sum-
marized in Table 1. Reads are made available in the
NCBI SRA database under the BioProject No.
PRJNA598411. Although the genome was sequenced
with a combination of long and short reads for obtaining
larger number of scaffolds, only a paired-end short read



Table 1 Genome features of M. guilliermondii strain vka1

Genome Features Value

M. guilliermondii strain vka1 Reads 1,05,14,805 (Illumina)
2,61,366 (Nanopore)

Scaffolds 36

Max scaffold length 14,99,707

Min scaffold length 1270

Genome size 10.8 Mb

N50 5,67,598

No. of genes 5385
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library was employed in de novo assembly. The dual-
fold assembly approach has used ABySS 2.2.4 followed
by confirmation with SPAdes 3.11.1 assemblers. Differ-
ent k-mer values were employed for obtaining the as-
sembly and the best value was 144. The final assembly
consisted of 36 scaffolds as predicted by the assemblers.
After the final assembly, draft genome with 10.8 Mb size
was obtained.
Augustus, a gene prediction program that uses a gener-

alized hidden Markov model, was used for prediction of
the genes. It has predicted 5385 genes from the vka1 strain
(Table 1). KAAS annotation has classified the genes into
380 groups involved in diverse pathways (Fig. 1), of which
20 categories represented the enzymes involved in the
degradation of macromolecules. The enzymes with roles
in the biodegradation processes along with the list of
other proteins identified in the genome are presented
in Supplementary Table 1.
Fig. 1 Major KEGG pathway categories of annotated genes from the M. gu
Comparison of the genes identified from the vka1,
YLG18, and ATCC6260 strains had revealed the unique
biodegradation-related genes in vka1. The enzymes S-
(hydroxymethyl)glutathione dehydrogenase, phenylace-
tate 2-hydroxylase, trimethyllysine dioxygenase, 4-
aminobutyrate aminotransferase, and delta3-delta2-
enoyl-CoA isomerase were found only in vka1 strain.
Phylogenetic analysis was carried out using the rDNA

sequences of different genera belonging to Ascomycetes
phylum. The phylogenetic tree had high bootstrap values
for all the branches. Of the two major clades (Fig. 2), the
first one had eight accessions divided into two sub-
clusters. The first sub-cluster included Meyerozyma
genus with 100% bootstrap support. Strain vka1 clus-
tered along with M. guilliermondii strain IFM 63277.
The second sub-cluster had two Debaryomyces acces-
sions along with Candida anglica and Yamadazyma phi-
logaea. Second major clade had three accessions, two
belonging to Scheffersomyces, and one Candida palmio-
leophila accession forming an outgroup.

Discussion
The ascomycetous yeast M. guilliermondii is widely dis-
tributed in the environment including human body. This
microbe is also exploited commercially in riboflavin and
xylitol production [11]. However, it is well understood
to have roles in degradation of macromolecules includ-
ing polycyclic aromatic hydrocarbons [13], phosphates
[15], tannins and saponins [16]. Due to these properties,
it is well utilized in bioremediation [14].
illiermondii strain vka1



Fig. 2 Phylogenetic relationships (cladogram) based on the sequences of rDNA region from selected genomes, inferred using the Neighbour
Joining (NJ) method. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are
shown next to the branches
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Though Illumina sequencing platform offers better
read accuracy, short read lengths is a concern [29]. On
the other hand, Nanopore platform generates longer
reads though comparatively error prone [30]. Method
based on the combined analysis of short and long reads
generated from different platforms is found to result in
comprehensive genome characterization [31].
Several new de novo assembly tools have been devel-

oped recently to assemble short sequencing reads gener-
ated by next-generation sequencing platforms. Different
assembly tools have their advantages and disadvantages
and hence a dual-fold approach is reported to give better
assemblies [32]. Thus, ABySS and SPAdes based de novo
assembly was chosen in this study. The genome size
shown by the assembly was slightly higher than 10.6 Mb
in M. guilliermondii strain ATCC6260 and 10.64 Mb in
P. perniciosus, both sequenced on Illumina HiSeq-2500
platform [33]. The gene calling algorithm Augustus has
predicted 5385 genes from the vka1 strain. The number
of genes obtained is more than that in a previous study
which reported 5275 genes [34], but slightly lower than
5401 genes reported by De Marco et al. [33].
Bi-directional best hit method followed in this study is

identified as the best method for annotating the complete
genomes [35]. The annotation had shown that the genome
accommodates many enzymes which are directly involved
in the biodegradation processes, explaining the composting
potential of this strain. The enzyme salicylate hydroxylase is
identified to be involved in decarboxylative hydroxylation
[36]. Similarly, urea carboxylase is involved in carboxylation
in the degradation process [37]. Enzymes cyanamide hydra-
tase [38], phenylacetate 2-hydroxylase [39, 40], aldehyde de-
hydrogenase [41], saccharopine dehydrogenase [42],
sarcosine oxidase [43], dihydrolipoamide dehydrogenase
[44], trimethyllysine dioxygenase [45], 2-oxoglutarate de-
hydrogenase [44], malonate-semialdehyde dehydrogenase
[46], acyl-CoA dehydrogenase [47], hydroxymethylglutaryl-
CoA synthase [48], 3-hydroxyisobutyryl-CoA hydrolase [49],
4-aminobutyrate aminotransferase [50], S-(hydroxymethyl)-
glutathione dehydrogenase [51], acyl-CoA oxidase [52],
delta3-delta2-enoyl-CoA isomerase [53], beta-galactosidase
[54], alpha-mannosidase [55], and hexosaminidase [56] are
all well understood to have direct involvement in the macro-
molecule catabolism. This array of macromolecule degrad-
ing enzymes, including the unique genes identified, explains
the composting potential of this strain. Future studies are re-
quired on these enzymes and on this yeast to understand
the mechanisms.
The phylogenetic analysis was in agreement with the

previous taxonomic studies on Meyerozyma and ascomy-
cetes. The analysis had confirmed that vka1 strain be-
longs to M. guilliermondii and bootstrap value of 100%
affirms this result. The genera Debaryomyces, Yamada-
zyma, and Candida which clustered into a single clade,
with the bootstrap value of 83.0%, have previously been
shown to be close relatives of Meyerozyma [3, 57, 58].

Conclusion
M. guilliermondii is an ascomycetous yeast universally
distributed in the natural environment and having a
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wide range of industrial applications. The draft genome
of a new strain, vka1, with potential for composting the
organic wastes is being reported. Hybrid sequencing
followed by dual-fold assembly was used to assess the
genome size and the annotation has shown the total
number of genes coded. Twenty categories of enzymes
which are involved in the macromolecule degradation
were identified, and this wide spectrum along with the
unique enzymes identified explains the composing po-
tential of this strain. The phylogenetic analysis has con-
firmed its position in the Ascomycota family.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s43141-020-00074-2.

Additional file 1. Supplementary Table 1. Detailed results of KEGG
(KAAS) analysis of Meyerozyma guilliermondii strain vka1 genome,
showing the genes for the enzymes annotated and their respective
categories (Categories given in boldface).
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