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Men have a statistically higher risk of metabolic and car-
diovascular disease than premenopausal women, but the
mechanisms mediating these differences are elusive. Chronic
inflammation during obesity contributes to disease risk and is
significantly more robust in males. Prior work demonstrated
that compared with obese males, obese females have reduced
proinflammatory adipose tissue macrophages (ATMs). Given
the paucity of data on how sex hormones contribute to
macrophage responses in obesity, we sought to understand the
role of sex hormones in promoting obesity-induced myeloid
inflammation. We used gonadectomy, estrogen receptor–
deficient alpha chimeras, and androgen-insensitive mice to
model sex hormone deficiency. These models were evaluated in
diet-induced obesity conditions (high-fat diet [HFD]) and
in vitro myeloid assays. We found that ovariectomy increased
weight gain and adiposity. Ovariectomized females had
increased ATMs and bone marrow myeloid colonies compared
with sham-gonadectomized females. In addition, castrated
males exposed to HFD had improved glucose tolerance, insulin
sensitivity, and adiposity with fewer Ly6chi monocytes and
bone marrow myeloid colonies compared with sham-
gonadectomized males, although local adipose inflammation
was enhanced. Similar findings were observed in androgen-
insensitive mice; however, these mice had fewer CD11c+

ATMs, implying a developmental role for androgens in mye-
lopoiesis and adipose inflammation. We concluded that go-
nadectomy results in convergence of metabolic and
inflammatory responses to HFD between the sexes, and that
myeloid estrogen receptor alpha contributes minimally to diet-
induced inflammatory responses, whereas loss of androgen-
receptor signaling improves metabolic and inflammatory out-
comes. These studies demonstrate that sex hormones play a
critical role in sex differences in obesity, metabolic dysfunction,
and myeloid inflammation.

Men and women of reproductive age respond differently to
obesity, with men exhibiting higher rates of diabetes and car-
diovascular disease than women despite similar obesity rates
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(1). Premenopausal women are less prone to developing
metabolic disease than age-matched or body mass index–
matched men (2), whereas postmenopausal women develop
increased risk of obesity-related disorders, suggesting a po-
tential role for sex hormones in these discrepancies (3).
Similarly, hypogonadal men, regardless of body mass index,
have an increased risk for metabolic disease (4). The increase
in cardiometabolic risk after menopause and in hypogonadal
men is paralleled by the redistribution of body fat and is
reversed or decreased by sex hormone replacement therapy
(5–7). Visceral adiposity is strongly associated with metabolic
syndrome (8). When fed a high-fat diet (HFD), male mice gain
significantly more adipose mass and exhibit profound meta-
bolic dysfunction compared with female mice fed HFD (9).
While HFD-fed female mice exhibit an increase adipocyte size,
they remain metabolically protected from the negative con-
sequences of obesity, such as hyperglycemia and insulin
resistance (9, 10).

The mechanisms behind this sexual dimorphism in adipose
dysfunction remain unclear. However, there is strong evidence
to implicate a shift in immune cell responses to a more chronic
activated myeloid profile that contributes to sequelae of
obesity in males (11, 12). Specifically, proinflammatory
CD11c+ adipose tissue macrophages (ATMs) predominate in
males, whereas CD11c− ATMs increase in females (13). This
immune activation in adipose tissue is driven by adipocyte
expansion, adipocyte death, and lipolysis (14, 15). Adipo-
genesis has been demonstrated to be sexually dimorphic (16).
We have previously demonstrated that with short-term HFD
adipose expansion and induced lipolysis, both males and fe-
males have robust proliferation of CD11c− ATMs (17, 18).
However, we have also seen that in obese males, hematopoietic
stem cells (HSCs) and myeloid progenitors expand with di-
etary lipid exposure, and recruitment signals within tissues
drive a sustained inflammatory tone with the accumulation of
monocytes and CD11c+ ATMs (17, 19).

A variety of models have been used to understand the role of
sex hormones in metabolism and adipose tissue health. Es-
trogens signaling through their cognate estrogen receptors
(ERs) play a protective role in glucose metabolism, food intake,
and peripheral insulin sensitivity (10, 20). Androgens also play
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Sex hormones and diet-induced inflammation
multifaceted roles in insulin production, body composition,
and metabolism (21). Mice with aromatase deficiency, which
blocks the conversion of testosterone to estrogen, have
increased visceral adiposity and liver steatosis (22) empha-
sizing the importance of estrogen synthesis in regulating lipid
storage. Androgens also directly impact metabolism via acti-
vation of the androgen receptor (AR) on adipocytes, which has
been found to regulate adipogenesis (23, 24). Overall, while
these studies indicate that sex hormones and their in-
termediates have a sexually dimorphic role in metabolism, they
have not directly compared sexually dimorphic inflammatory
responses or delineated the importance of specific sex hor-
mone receptors to inflammation phenotypes.

Our prior work demonstrated that males and females on
HFD have weight gain, adipocyte hypertrophy, and differential
macrophage polarization. Males expand myeloid progenitors
in the bone marrow (BM) leading to increased circulating
monocytes and increased tissue myeloid cells (13, 25),
contributing to insulin resistance, whereas females are pro-
tected from this metabolic inflammation. Although the dif-
ference in inflammatory responses is well established and
strongly implicated in the discrepancies observed in disease
manifestation between the sexes, little is known about the
catalyst for this dimorphism. We hypothesize that sex hor-
mones modify obesity-induced disease manifestations in males
and females and contribute to the observed inflammatory shift.

To further investigate the relationship between sex hor-
mones and tissue myeloid inflammatory responses in obesity,
we conducted studies using the following mouse models of sex
hormone deficiency: (1) gonadectomy (GX); (2) mice lacking
signaling in the AR (ARtfm); or (3) ER-deficient alpha (ERα−/−).
Our studies demonstrate that GX results in convergence of
metabolic inflammatory responses in male and female mice.
Contrary to prior reports that estrogen dampens inflammatory
responses (26–28), we found limited effects of hematopoietic
ERα deficiency in metabolism or diet-induced inflammation.
In contrast, AR deficiency resulted in significant improvement
in metabolic and inflammatory responses to HFD.

These studies demonstrate the complexity of GX and that
the role of sex hormones in diet-induced obesity cannot be
attributed to single hormone/receptor interactions.
Results

GX attenuates sex differences in metabolic responses to
obesity

Our previous studies with WT mice challenged with 60%
HFD for 16 weeks showed that glucose intolerance, insulin
resistance, and adipose tissue inflammation develop primarily
in male mice, whereas female mice remained protected (13).
Earlier studies with gonadectomized mice demonstrated dif-
ferential susceptibility to obesity between male, female, and
ovariectomized female mice but did not address inflammatory
responses (29). Critically, prior studies have compared intact
males with only gonadectomized females and thus neglected
the effect of androgens in diet-induced obesity (29). Prior
studies that only compared intact males to gonadectomized
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females and involved diets that varied in fat percentages and
duration failed to delineate the effect of androgens in diet-
induced obesity (30–32). A direct comparison of gonadecto-
mized males and females to gonadally intact animals is also
necessary to determine the specific role of androgens and es-
trogens on metabolic and inflammatory responses.

To address this, we conducted studies in hormone-deficient
mouse models. We performed sham or GX procedures at
4 weeks of age in males (castration [CAS]) and females
(ovariectomy [OVX]) and then challenged them with 60%
HFD at 6 weeks of age. To understand the effects of GX on sex
hormones, we evaluated testosterone and estradiol levels in
serum of male and female GX mice. As expected, a marked
reduction in testosterone was observed with CAS in males
(Fig. 1A). HFD alone also reduced testosterone levels in males.
Testosterone levels were similar in GX normal diet (ND) and
GX HFD male animals. Overall, estradiol was lowered by GX
in females (Fig. 1B). However, the effect size of GX and male/
female differences in estradiol levels were moderate compared
with the effect of GX on testosterone.

Body weight comparisons showed that all HFD-fed groups
gained weight compared with their ND controls (Fig. 1C).
While GX animals of both sexes had similar body weights in
their respective diet conditions (Fig. 1C), they manifested
increased fat mass compared with their gonadally intact sham
counterparts (Fig. 1D). Overall, female sham HFD mice had
the highest energy expenditure (Fig. 1E) and lowest body
weight gain. Consistent with body weight equalization between
sexes with GX, inguinal white adipose tissue and liver mass
were also similar in GX HFD males and females (Fig. 1, F and
G), because of an increase in inguinal white adipose tissue in
female GX HFD animals and a decrease in liver mass in male
GX HFD animals. Overall, the effect of GX is to markedly
reduce testosterone in males and moderately reduce estradiol
in females, which is associated with convergence of weight,
energy expenditure, and body composition among males and
females in response to HFD.

In gonadally intact male mice, within 10 weeks of HFD,
fasting glucose and insulin levels were greatest in male HFD
sham compared with female HFD sham and male ND
(Fig. 2A). However, GX decreased insulin levels in male GX
HFD animals to levels comparable to female sham and GX
HFD groups (Fig. 2B). Glucose tolerance tests (GTTs) in ND-
fed mice demonstrated that GX in male mice worsened
glucose intolerance, with higher glucose area under the curve
(Fig. 2C) and peak glucose levels (Fig. 2D) in male GX animals,
when compared with male sham animals and both sham and
GX females. However, this effect was reversed in HFD-fed
animals; at 12 weeks of HFD, male GX HFD animals had
improved glucose tolerance compared with male sham HFD
animals (Fig. 2E). Insulin tolerance tests (ITTs) conducted in
the same animals revealed no main effect of GX in ND
although there was a sex effect with both sham and GX fe-
males having lower glucose values than males (Fig. 2F). In
contrast, in the setting of HFD, male sham HFD animals had
the highest glucose levels, and GX resulted in a significant
improvement in insulin sensitivity in male GX HFD animals
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Figure 1. Gonadectomy (GX) reduces sex hormones and increases adiposity.Male and female animals underwent sham surgery or GX at 4 weeks of age
and then at 6 weeks of age remained on ND or started HFD. Serum testosterone (A) varied significantly by sex, surgery, and diet, with significant interaction
among all factors (p < 0.001 for all) and was lowered by GX in male ND animals ($$$$) and by HFD in sham male animals (####). Serum estradiol (B) varied
significantly by surgery and sex and was lowered by GX in female ND animals. Body weight (C) varied significantly by sex, surgery, and diet with significant
interaction among all factors. Female sex showed attenuated weight gain in sham animals, whereas GX HFD animals of both sexes gained equal weights.
Body composition (D) demonstrated an increase in fat mass with GX in both sexes and an increase in fat mass in male sham compared with female sham.
E, energy expenditure (EE) was highest in female sham HFD mice. IWAT (F) and liver (G) weight showed a greater increase in male than female sham HFD
animals. With GX, there was no difference by sex in these tissue weights. N = 4 for ND groups and N = 8 for HFD groups. Data shown as average ± SEM. *p <
0.05, **p < 0.01, ***p < 0.005, and ****p < 0.001 between male and female of each group. #p < 0.05, ##p < 0.01, ###p < 0.005, and ####p < 0.001 marks
differences between ND and HFD of the same sex and surgery group. $p < 0.05, $$p < 0.01, $$$p < 0.005, and $$$$p < 0.001 marks significant differences by
surgery. HFD, high-fat diet; IWAT, inguinal white adipose tissue; ND, normal diet.

Sex hormones and diet-induced inflammation
(Fig. 2G). Levels in GX male HFD mice were comparable to
that seen in female GX HFD and female sham HFD groups.

After 16 weeks, fed glucose levels were significantly altered
by diet and GX. Female GX HFD animals had significantly
higher fed glucose levels compared with female sham HFD
mice, with male sham HFD animals having the highest insulin
levels overall (Fig. S1, A and B). Further evaluation of gonadal
white adipose tissue (GWAT) demonstrated that Ir and Irs1
(representing insulin receptor response) gene expression was
higher in female sham HFD compared with male sham HFD
animal (Fig. S1, D and E), GX in HFD females lowered
expression, whereas in male HFD, it increased gene expression
of these insulin-signaling genes. Consistent with this, male
sham HFD mice had higher fasting homeostatic model
assessment for insulin resistance compared with female sham
HFD mice, and this was improved in male GX HFD mice,
suggesting increased insulin sensitivity in GX males (Fig. S1F).
No significant changes in homeostatic model assessment for
insulin resistance were seen in GX females. These metabolic
studies show that in sham animals, males had more metabolic
consequences of HFD than females, and GX attenuated those
differences.
J. Biol. Chem. (2021) 297(5) 101229 3
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Figure 2. Gonadectomy (GX) leads to improved metabolism in male HFD-fed animals. Male and female animals underwent sham surgery or GX at
4 weeks of age and then at 6 weeks of age remained on ND or started HFD. After 10 weeks fasting, glucose (A) varied significantly by sex and diet driven by
differences in the sham macrophage (M) HFD group. Fasting insulin (B) was highest in the sham M HFD group and was significantly decreased by GX. This
pattern was also observed in 12-week GTT data as area under the curve (AUC) (C) and GTT time courses (D, ND and E, HFD). Insulin tolerance tests showed
that insulin sensitivity was lowest in M sham ND and HFD mice (F, ND and G, HFD). Data shown as average ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, and
****p < 0.001 between male and female of each group. #p < 0.05, ##p < 0.01, ###p < 0.005, and ####p < 0.001 marks differences between ND and HFD of the
same sex and surgery group. $p < 0.05, $$p< 0.01, $$$p < 0.005, and $$$$p< 0.001 marks significant differences by surgery. GTT, glucose tolerance test; HFD,
high-fat diet; ND, normal diet.

Sex hormones and diet-induced inflammation
GX dampens sex differences in meta-inflammation

Prior studies have demonstrated that in males, GX leads to
adipocyte hypertrophy, increased lipogenesis, and increased
inflammatory gene expression (33). However, it is not known if
loss of sex hormones also alters adipose tissue and inflam-
mation in females. After 16 weeks of HFD challenge, GX an-
imals had increased total mass of visceral GWAT regardless of
sex (Fig. 3A). This equalized between sexes when GWAT mass
4 J. Biol. Chem. (2021) 297(5) 101229
was normalized to body weight (Fig. S1C). In ND animals,
there were no sex differences in average adipocyte size, but GX
increased average adipocyte size in males and females (Fig. 3, B
and C), whereas in HFD, there was no effect of GX (Fig. 3, B
and C).

To investigate the role of sex hormones in inflammatory
responses, we performed tissue-specific histology and flow
cytometry studies. Crown-like structure (CLS; macrophages



Figure 3. Gonadectomy (GX) alters adipose tissue and liver lipid storage in HFD.Male and female animals underwent sham surgery or GX at 4 weeks of
age and then at 6 weeks of age remained on ND or started HFD. Visceral fat was evaluated as GWAT mass (A), which varied significantly by diet and surgery,
with highest overall values in GX animals of both sexes. GWAT adipocyte size was evaluated by distribution (B) and average adipocyte size (C). Concordant
with mass, adipocyte size was greatest in GX HFD of both sexes. Immunofluorescence of GWAT (caveolin, green and Mac2 staining, magenta) (D) and GWAT
crown-like structures/high-power field (E) varied by sex and diet and was greatest in male HFD animals with no significant effect of GX. F, liver H&E staining.
G, in HFD-exposed animals, liver triglyceride (TG) estimation per gram of liver and total liver mass was performed. Male mice have higher liver TG than
female mice, an effect that was attenuated by increased liver TG in females after GX. H, liver H&E sections scored for nonalcoholic steatohepatitis (NASH).
N = 4 to 8 per group. Data shown as average ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, and ****p < 0.001 between male and female of each group.
#p < 0.05, ##p < 0.01, ###p < 0.005, and ####p < 0.001 marks differences between ND and HFD of the same sex and surgery group. $p < 0.05, $$p < 0.01,
$$$p < 0.005, and $$$$p < 0.001 marks significant differences by surgery. GWAT, gonadal white adipose tissue; HFD, high-fat diet; ND, normal diet.

Sex hormones and diet-induced inflammation
accumulated around adipocytes) density was increased most
markedly in male gonad-intact HFD mice relative to corre-
sponding females (Fig. 3, D and E). Of note, there is no sig-
nificant difference in CLS density among male and female
HFD mice after GX. The moderate increase in CLS density in
female HFD GX animals compared with its gonad-intact
counterpart—although it did not reach significance—com-
bined with marked increase in GWAT mass (Fig. 3A) raises the
question of whether overall burden of adipose inflammation is
increased in those animals.

Male sham HFD animals had micro (small cellular lipid
droplets) and macrosteatosis (large lipid droplets), but both
female and male GX HFD animals had only macrosteatosis
(Fig. 3F) and similar liver triglyceride (TG) content (Fig. 3G).
Possibly as a consequence of changes in adiposity, liver his-
tology showed the presence of liver steatosis in female GX
HFD mice at levels similar to male GX HFD (Fig. 3, E–G).
These results demonstrate that GX leads to convergence in
adiposity and liver steatosis between sexes.

Given the difficulties in quantifying CLSs in heterogeneous
adipose tissue by histology, flow cytometric analysis of GWAT
immune cells was conducted. In visceral adipose tissue
GWAT, ATMs were increased in male sham HFD compared
with male ND and female sham HFD. However, ovariectomy
increased GWAT ATMs in female HFD mice compared with
ovary-intact mice (Fig. 4A). In HFD females, GX increased
ATMs of the CD11c+ and CD11c− type (Fig. 4, B and C). In
male mice, GX did not change the overall prevalence of ATMs
J. Biol. Chem. (2021) 297(5) 101229 5
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Sex hormones and diet-induced inflammation
but did increase CD11c+ ATMs (Fig. 4B), consistent with prior
reports (33). Dendritic cell numbers were highest in male GX
HFD animals and remained unchanged in females after GX
(Fig. 4D). Adipose tissue T-cells of both the CD4 and CD8
types were higher in GX HFD females (Fig. 4, E–G). Gene
expression studies to further assess inflammatory markers in
adipose tissue showed increased proinflammatory Il6 and
6 J. Biol. Chem. (2021) 297(5) 101229
Mcp1 expression in GX animals of both sexes in response to
HFD (Fig. S1, G and H). Regulatory Il4 had higher expression
in all female groups (Fig. S1I). In summary, GX worsened
adipose tissue inflammation in female mice exposed to HFD
but surprisingly did not improve adipose tissue inflammation
in male mice despite improvement in glucose tolerance and
hepatic TG content.



Sex hormones and diet-induced inflammation
Given the effects of GX onCD11c+ATMs, which are typically
recruited from circulation, we next evaluated Ly6chi monocytes
in circulation and proliferation of BM progenitors. Surprisingly,
male HFD sham animals had the highest percentage of Ly6chi

monocytes in circulation, whereas GX male mice showed
reduced numbers (Fig. 4H), despite the increase in CD11c+

ATMwith GX. Given that a major source of recruited ATMs in
chronic HFD is from the BM, we assessed the effect of GX on
in vitro proliferation of myeloid colonies in GX male mice.
Myeloid colonies were counted as colony-forming units (CFUs).
This in vitro assessment of BM myeloid potential evaluates the
BM propensity to generate macrophages and neutrophils.
When CFUs were further classified as granulocytes (G) and
macrophages (M), we identified that in HFD conditions, GX
decreased the production of myeloid G andM colonies in males
but increased them in females in both ND and HFD conditions
(Fig. 4I). These results in the BM are discordant with the
abundance of CD11c+ ATM in tissue, which were increased by
GX in HFD animals. This discordance suggests that GX may
play a significant role in altering the tissue microenvironment,
rather than exerting an effect only through BM myeloid cell
production.

Overall, our findings demonstrate that GX results in
convergence of metabolic phenotypes in males and females
when exposed to HFD. Worsening adipose tissue inflamma-
tion in GX females was associated with marked changes in
energy expenditure but only minor changes in glucose meta-
bolism. In males, GX significantly worsened metabolic out-
comes with minor changes to adipose tissue inflammation.
While endocrine manipulation clearly changed metabolic
outcomes, the complex changes in phenotypes observed after
GX bring up the question of whether non-gonadal sources of
sex hormones significantly effect immune responses to HFD in
ways not reflected in circulating hormone levels. We therefore
proceeded to examine the necessity of ER and testosterone
receptor signaling for immune responses to HFD.
Hematopoietic ERα−/− deficiency does not change
metainflammation but augments BM myeloid expansion
in vitro

Given that HFD GX females had an enhanced inflammatory
tone compared with HFD sham females, we sought to next
understand the effects of estrogens on driving metain-
flammation in males and females. To investigate this, we
generated animals that were hematopoietically deficient in
ERα via BM chimeras. ERα is known to be the predominant
ER in myeloid cells and adipose tissue (26, 28). We thus used
BM chimeras given that whole-body ERα−/− mice have bone
fragility and can be unsuitable for long-term experiments
especially in the context of weight gain (26, 34). Comparisons
were performed between ERα−/− → WT (ERα−/− BM trans-
planted into WT) and WT → WT (WT BM transplanted into
WT) for both male and female mice. After BM reconstitution
and recovery, a subgroup of animals was challenged to HFD.

After 10 weeks of diet challenge, fasting glucose levels were
similar in all groups (Fig. S2A). GTT showed changes in
glucose tolerance related to sex and diet (Figs. 5A and S2B)
concordant with those observed in GX experiments (Fig. 2),
but no changes were observed because of ERα−/− donor ge-
notype. There were no significant differences in body or
GWAT weights based on donor genotype (Fig. S2C). Likewise,
ERα−/− genotype did not significantly alter ATMs (Fig. 5B) or
T cells (Fig. 5C), with the exception of FoxP3+ CD4 cells,
which were decreased in males transplanted with BM from
ERα hematopoietic knockouts in both ND and HFD
conditions.

Given that we did not observe a significant effect of he-
matopoietic ERα deficiency in vivo, we sought to verify pre-
viously reported effects of ERα (26, 28). We evaluated BM
progenitors by flow cytometry and myeloid colony assays
in vitro. Consistent with prior studies showing that ERα in-
fluences inflammatory responses, WT groups transplanted
with BM from hematopoietic knockout animals had significant
differences compared with WT animals in BM pre-GM
myeloid progenitors and BM-derived myeloid colonies
(Fig. 5, D and E) with an increase in progenitors in ERα−/−

marrow across diet and sex. ERα−/− genotype did not reca-
pitulate the increase in BM CFUs observed in HFD GX fe-
males. Post hoc analysis demonstrated that ND male ERα−/− →
WT generated more myeloid CFUs compared with male ND
WT → WT animals (Fig. 5E), but after HFD, all groups were
similar in myeloid CFU response. Interestingly, early HSC
progenitors, multipotent progenitors, and hematopoietic pro-
genitor cell 1 did not appear to be different, but late pro-
genitors such as hematopoietic progenitor cell 2 were
decreased in all ERα−/ − → WT groups (Fig. S2). This decrease
in less committed progenitors and increase in more myeloid
committed progenitors suggests that estrogen may influence
skewing or differentiation of later progenitors (35). Overall, the
results of hematopoietic ERα−/− fail to recapitulate the mod-
erate changes seen in adipose tissue inflammation seen in fe-
male mice after GX. Given that there is not a large effect of
OVX on estradiol levels, this could simply reflect that changes
in estrogen alone are not the primary source of metabolic and
inflammatory changes after OVX in HFD.
Developmental androgen signaling plays a role in obesity-
induced adipose tissue and myeloid inflammation

Because of the profound effect of GX on testosterone levels
in male mice, we examined the role of AR signaling in myeloid
cell proliferation and metabolic and inflammatory responses to
HFD. We performed in vitro methylcellulose assays with BM
cells. We tested in vitro addition of testosterone in the pres-
ence of a dietary lipid—palmitate—to determine whether this
treatment shifted the predisposition of the BM from ND WT
male and female mice. This addition of the saturated fatty acid,
palmitate is a tissue culture model used to mimic the response
to diets high in saturated fat (17). Consistent with the decrease
in BM myeloid responses with androgen loss through castra-
tion (Fig. 4H), the addition of testosterone in ND male BM
cells enhanced the number of total granulocyte (G) and
macrophage (M) colonies in males (Fig. 6A), whereas there
J. Biol. Chem. (2021) 297(5) 101229 7



0 50 100 150
0

100

200

300

400

500

Time After Injection

G
lu

co
se

 (m
g/

dL
)

WT-WT ND
ERa-WT ND

 Male ND

0 50 100 150
0

100

200

300

400

500

Time After Injection

G
lu

co
se

 (m
g/

dL
)

WT-WT ND
ERa-WT ND

Female ND

0 50 100 150
0

100

200

300

400

500

Time After Injection

G
lu

co
se

 (m
g/

dL
)

WT-WT HFD
ERa-WT HFD

Male HFD

0 50 100 150
0

100

200

300

400

500

Time After Injection

G
lu

co
se

 (m
g/

dL
)

WT-WT HFD
ERa-WT HFD

Female HFD

A

ND HFD
0

10

20

30

40

G
W

AT
 A

TM
 %

 S
VF

Male WT-WT
Male ERa-WT
Female WT-WT
Female ERa-WT

Sex p=0.006
Diet p=0.001

*
#

ND HFD
0

5

10

15

20

G
W

AT
 C

D1
1c

+  
AT

M
 %

 S
VF

Sex p=0.001
Diet p=0.001

***
#

ND HFD
0

10

20

30

IW
AT

 A
TM

 %
 S

VF Sex p<0.001
Diet p<0.001

****
*
###

ND HFD
0

2

4

6

8

IW
AT

 C
D1

1c
+  

AT
M

 %
 S

VF

Sex p<0.001
Diet p=0.015

****
#

B

ND HFD
0

5

10

15

G
W

AT
 C

D3
+ 

%
 S

VF

Sex p=0.002

#
*****

**

####

ND HFD
0

2

4

6

8

G
W

AT
 C

D4
+ 

%
 S

VF Sex p=0.009
Diet p<0.001

####
***

#

ND HFD
0

20

40

60

80

G
W

AT
 F

ox
P3

+ 
%

CD
4+

 Sex p<0.001
Genotype p<0.001
Diet p=0.01

***
***

**
**

ND HFD
0

1

2

3

4

G
W

AT
 C

D8
+ 

%
 S

VF

C

ND HFD
0.0

0.5

1.0

1.5

Pr
e-

G
M

 %
 S

ca
tte

r B
M

Genotype p=0.003
Diet p=0.015

D E

ND HFD
0

50

100

150

G
 a

nd
 M

 
CF

U/
10

^4
 c

el
ls

Male WT-WT
Male ERa-WT
Female WT-WT
Female ERa-WT

Genotype p<0.001
Diet p<0.001

####
*

* #

Sex p<0.001; Genotype p=0.046; Diet p=0.003
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Sex hormones and diet-induced inflammation
were no significant changes in females (Fig. 6B). However,
testosterone in the presence of palmitate increased the total
cell numbers harvested from plates in both males and females
(Fig. 6C). This indicates that combined palmitate and testos-
terone treatment expands the progenitor pool in males only
but increases proliferation rates in both males and females.

To further understand the role of androgens, we conducted
studies using the ARtfm (testicular feminization) mouse as a
model of AR deficiency, given lack of androgen signaling re-
sponses in this animal from the time of development as
opposed to postnatal GX. As in the previous experiments,
animals were challenged with HFD for 16 weeks. Male ARtfm

animals were of lower weight compared with WT males
(Fig. 7A), had improved glucose tolerance, insulin sensitivity
8 J. Biol. Chem. (2021) 297(5) 101229
(Fig. 7, B and C), and lower-fed glucose than WT males
(Fig. 7D). While there were no significant differences in
visceral GWAT (Fig. 7E), male ARtfm mice were protected
from liver expansion as predicted from GX studies (Fig. 7F).
On the other hand, female ARtfm mice did not show any sig-
nificant changes in liver mass.

Consistent with male sex hormones driving metain-
flammation, male ARtfm mice fed HFD had fewer Ly6chi

monocytes in blood (Fig. 7G) and fewer GWAT CLSs (Fig. 7H)
than WT males and females. Flow cytometry showed fewer
CD11c+ ATMs in GWAT (Fig. 7I) compared with WT males
and females. To next determine if androgen depletion affects
hematopoietic myeloid progenitors, in vitromyeloid expansion
assays were performed. BM cells from ARtfm mice plated on
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Sex hormones and diet-induced inflammation
methylcellulose showed fewer macrophage and total gran-
ulocyte (G) and macrophage (M) colonies in male HFD ARtfm

animals (Fig. 7J) than WT males. Overall, these results
emphasize a role for androgens in driving weight gain with
HFD, myeloid expansion, metabolic inflammation, and glucose
tolerance.

Discussion

Sex hormones play a role in the onset of metabolic disor-
ders, but their role in the development of these disorders re-
mains unclear (36). Although studies have evaluated metabolic
Figure 7. Male ARtfm animals on HFD have attenuated metainflammation.
6 weeks of age. Weight gain (A), GTT (B), ITT (C), and fed glucose levels (D) we
female animals by AR deficiency. There was no effect of ARtfm in female mice.
there was no post hoc difference in males or females. Liver weights (F) we
monocytes (G) and CD11c+ ATMs (H, immunofluorescence [caveolin, green and
total granulocyte and macrophage colonies in HFD males. N = 4 to 8 per group
and ****p < 0.001. AR, androgen receptor; GTT, glucose tolerance test; GWAT,
ND, normal diet.
changes in models of obesity using both male and female an-
imals, there is a paucity of studies that directly compare loss of
gonadal hormones in male and female animals. In our study,
we directly compare both gonadectomized males and females
and investigate specific hormone receptor–mediated mecha-
nisms of metabolic and myeloid inflammatory responses to
HFD. We hypothesized a proinflammatory role for androgens
in obesity and a protective anti-inflammatory role of estrogens,
given the observation that metabolic inflammation is increased
in male animals. We did find that GX enhanced adipose tissue
inflammation in obese females but with only moderate
WT and ARtfm male and female mice were placed on ND or HFD starting at
re all significantly worsened in male WT mice and improved to the level of
GWAT weights (E) were significantly different by genotype (p = 0.017), but
re highest in WT males and normalized by ARtfm. Both circulating Ly6chi

Mac 2, magenta], I) were highest in WT males. J, ARtfm reduced myeloid and
of mice. Data shown as average ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005,
gonadal white adipose tissue; HFD, high-fat diet; ITT, insulin tolerance test;
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changes in metabolism. Surprisingly, while GX male animals
on HFD had improved metabolic outcomes, these were not
associated with improvements in adipose tissue inflammation
and were associated with increased CD11c+ ATMs and
increased proinflammatory cytokines. On the other hand,
circulating Ly6chi monocytes and BM myeloid potential was
dampened with CAS, suggesting different effects of androgens
during leukocyte development versus polarization in tissues.

Given the complexity of peripheral hormone metabolism,
we investigated the direct role of hematopoietic ERα and found
almost no effect on metabolism or tissue inflammation. AR
deficiency however improved metabolic and inflammatory
responses to HFD, suggesting that loss of AR signaling
beginning during development, with intact production and
metabolism of androgen, leads to both improved metabolism
and decreased ATMs. Overall, these results emphasize that
androgens play significant roles in immune responses and
metabolic responses, with direct roles in activating BM im-
mune cells and monocytes, and in regulating inflammatory
tone in the adipose tissue (Table 1). These studies also
emphasize that there can be a disconnect between adipose
tissue inflammation and metabolism as has been seen in
studies of weight loss (37).

Our data demonstrate that male GX improves glucose
tolerance and insulin sensitivity with no improvement in adi-
pose tissue inflammation. Lifelong AR deficiency improves
both metabolic and inflammatory responses to HFD in male
mice. In vitro, male GX and ARtfm mice have dampened
myeloid colony production, and consistent with this, the
addition of testosterone enhances myeloid colony production.
These discordant results of adipose inflammation in the two
different models of androgen signaling deficiency could be due
to the developmental timing of androgen signaling or result
from altered circulating hormone levels that result from re-
ceptor deficiency with retained androgen production. The later
possibility is supported by the finding that isolated BM either
from HFD-exposed males or fatty acid exposure with testos-
terone in vitro had increased myeloid expansion. Prior work
consistently demonstrates that GX or AR deficiency exacer-
bates adiposity and adipocyte hypertrophy, but the effects on
glucose tolerance (32, 33, 38) and adipose inflammation have
been mixed. These differences in findings may be due to
methodology, including fat content in diet, doses used in
glucose challenges, and even length of diet challenge. It is
known that AR is important for insulin production (21, 39),
and the degree of hyperglycemia in high GTTs may outstrip
the capacity for insulin production regardless of insulin
sensitivity.
Table 1
Summary of key findings from each experimental group

Experimental model Adiposity Glucose t

OVX versus sham HFD Increased Mild imp
Hematopoietic ER⍺−/− versus WT Unchanged Unchange
CAS versus sham HFD Increased Improved
ARtfm versus WT HFD Unchanged Improved
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While androgens may alter metabolic responses to obesity
(32, 33, 38), the contribution of androgen signaling to the
myeloid expansion in HFD has not been examined (19, 40).
Our in vitro studies with testosterone stimulation demon-
strated the inflammatory role of androgens by enhancing
myelopoiesis in WT males, which was dampened in BM from
ARtfm and GX males. Our androgen deficiency and male GX
models also showed decreased monocytes. However, GX and
ARtfm showed discordant results in abundance of ATMs.
Furthermore, we found increased levels of proinflammatory
cytokines in the adipose tissue after CAS with HFD. These
cytokines may be directly expressed by the enlarged adipocyte
mass (41). Interestingly, our finding of similar ATMs was seen
in BM chimeras with AR−/y BM (38); however, those animals
had decreased liver macrophages. Taken together, these find-
ings further emphasize that there may be differences in in-
flammatory roles for androgens in the BM, monocytes, and
tissues. A major limitation of our studies is that these models
are whole body knockouts of androgen signaling. Therefore,
differences in tissue-specific cues for trafficking and accumu-
lation of immune cells are not controlled, and further, our
findings on metabolism may be a result of whole-body effects
and not solely on due to adipose-specific inflammatory
responses.

Rodent model studies of estrogen deficiencies as well as
clinical studies in women with polycystic ovarian syndrome,
postmenopausal women, and aromatase-deficient men (42, 43)
demonstrate protective effects of estrogen on metabolic
function by reducing proinflammatory cytokines and main-
taining insulin sensitivity during obesity (12, 20, 44, 45). Our
studies utilizing OVX demonstrated modest worsening of
glucose tolerance, impaired energy expenditure, increased
adipose tissue inflammation, and enhanced myeloid prolifer-
ation in the BM in the context of HFD, supporting a moderate
protective role of estrogen compared with the stronger dele-
terious effect of testosterone.

Prior studies suggest that ERα may be the primary mediator
of estrogen signaling in both adipose tissue and the immune
system (26). However, deletion of ERα from the BM did not
recapitulate either the immune effects or the metabolic effects
of OVX. This may be due to estrogen activity on peripheral cell
types driving inflammation or other ERs (G protein–coupled
estrogen receptor or ERβ) that may play an important role.
Studies examining adipose tissue ERα found protective effects
of estrogen signaling on adiposity and metabolism, however,
flow cytometric characterization of ATMs was not performed
in these studies (46). Furthermore, the study that suggested a
significant immune role for BM ERα was performed on a
olerance Adipose CD11c+ ATMs BM myeloid CFU

airment Increased Increased
d Unchanged Increased in ND

Mild increase Decreased
Decreased Decreased
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leptin-deficient background, which may significantly alter
immune responses compared with HFD alone (26).

Another limitation of our study is that we only assessed
circulating serum hormone levels, whereas other sources were
not determined. The endocrine model overlooks the extensive
capacity of adipocyte cell types including immune cells to
generate andmetabolize sex steroids, enabling the production of
sex steroids for autocrine and intracrine signaling (47, 48) that
may possibly explain some marginal effects on inflammation as
in BM ERα knockout experiments. Sex differences in metain-
flammation have also been seen in other metabolic tissues
during obesity (49), including the liver (50) and myocardium
(51). Our study is limited as we focused on the adipose tissue,
and future studies will need to study the role of sexual dimor-
phism in inflammatory responses in other metabolic organs.

In summary, females remain protected from HFD-induced
reprogramming of HSCs, ATM accumulation, and insulin
resistance, similar to premenopausal women with obesity (52,
53). Our studies provide evidence that androgen deficiency
even with HFD improves metabolism, enhances adiposity, and
improves BM and peripheral myeloid inflammation, as
demonstrated in our GX and ARtfm studies. The ARtfm studies
add that the removal of AR receptor alone dampens both
inflammation and metabolic responses to HFD. Further
studies examining inflammation with cell-specific knockout of
AR and ERs will be critical to decipher the contribution of
peripheral tissues and specific immune cells to inflammatory
responses in obesity.

Experimental procedures

Animal studies

C57Bl/6J (000664), AR testicular feminization ARtfm (001809)
mice, which have a spontaneousmutation in theARgene (54, 55),
and ERα knockout male and female (004744) mice were pur-
chased from Jackson Laboratories. Appropriate background
control mice and littermate controls from Jackson were used for
genetic knockout models. Gonadectomized and sham surgery
animals were purchased from Jackson Laboratories at 4 weeks of
age. All mice were fed ad libitum either a control or an ND
consisting of 13.5% fat (5LOD; LabDiet) or HFD consisting of
60% of calories from fat (Research Diets; D12492), starting at
6weeks of age for 16weeks of duration.Animals were housed in a
specific pathogen-free facility with a 12-h light/12-h dark cycle
and given free access to food andwater. Animal protocols were in
compliance with the Institute of Laboratory Animal Research
Guide for the Care and Use of Laboratory Animals and approved
by the University Committee on Use and Care of Animals at the
University of Michigan (animal welfare assurance number:
A3114-01). Metabolic cage studies were performed in singly
housed animals in the Michigan Mouse Metabolic Phenotyping
Center with evaluations for 3 days (13).

Metabolic studies

Metabolic testing included fasting glucose and serum
collection after 10 weeks of HFD, intraperitoneal GTT at
12 weeks of HFD, and intraperitoneal ITTs at 14 weeks of
HFD. GTTs were performed with 0.7 g/kg of D-glucose and
ITTs with 1 unit/kg of humulin both after 6 h of fasting.

BM transplantation studies

Bone marrow transplantation (BMT) studies were per-
formed as previously described (19). BM from donor groups
(10 million cells/mouse) was injected retroorbitally into
lethally irradiated (900 rad) recipient mice (6 weeks of age).
Animals were treated with antibiotics in water (polymyxin and
neomycin) for 4 weeks post-BMT. Donors for these experi-
ments were males and females either WT or ERα−/− mice.
Recipients were sex-matched WT animals. Half of the animals
per group were started on HFD 6 weeks after BMT.

Adipose tissue stromal vascular fraction isolation and flow
cytometry

Adipose tissue fractionation and flow cytometry analysis were
performed as described previously (19). Briefly, whole adipose
tissue was minced and digested with type II collagenase (Sigma;
1 mg/ml in RPMI media) for 15 to 30 min at 37 �C on a rocker.
Filtrated samples were spun at 500g for 10min, and red blood cell
lysis was conducted (Biosciences; 00-4333-57). Stromal vascular
fraction cells were stained with antimouse CD45 eFluor450 (30-
F11 monoclonal; Invitrogen), CD64 PE (X54-5/7.1 monoclonal;
BD Pharmingen), and CD11c APC or eFluor 780 (N418 mono-
clonal; Invitrogen), and gating was performed for macrophage
populations and by CD45 gates to determine ATMs (13). T-cell
stains included CD3 PerCP5.5 (145-2C11), CD4 APC (GK1.5),
CD8 FITC (53-6.7), and FoxP3 PE (NRRF-30). All hematopoietic
stem and progenitor cell stainings were performed using lineage
staining on APC including CD4 (GK1.5), CD5 (53-7.3), CD8 (53-
6.7), CD11b (M1/70), B220 (CD45R) (RA3-6B2), Gr1(RB6-8C5),
and Ter119 (eBioscience), Sca PECy7 (D7), CD117 APCCy7
(2B8), Endoglin/CD105 PacBlue (MJ7/18), CD16/32 PerCP5.5
(93), CD150 PE (TC15-12F12.2), and CD48 FITC (MEM-102) as
previously described (17).

Immunofluorescence and immunohistochemistry

Adipose tissue was fixed in 1% paraformaldehyde for 24 h
and then transferred to PBS at 4 �C. Tissues were blocked in
0.3% Triton, 5% bovine serum albumin, and then stained using
polyclonal anti-caveolin (CAV-1; Cell Signaling) and anti-
Mac2 (MAC-2; Galectin-3; eBioM3/38). For histology, tissues
were formalin fixed, paraffin embedded, sectioned at 5 μm, and
stained with H&E. H&E staining was performed by the Uni-
versity of Michigan’s Comprehensive Cancer Center Histology
Core. Images were captured with an Olympus IX-81 fluores-
cent microscope. Adipocyte sizing was conducted by capturing
multiple TIFF-gray-scale images, and adipocyte circumference
was determined with ImageJ software (the National Institutes
of Health). Pixel areas of all individual cells in 3 to 5 areas were
analyzed and averaged for each condition.

Methylcellulose CFU assay

BMs from femurs were flushed with Iscove’s modified
Dulbecco’s medium, treated with fatty acid–free bovine serum
J. Biol. Chem. (2021) 297(5) 101229 11
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albumin or 10 μM palmitic acid for 1 h at 37 �C, and then
resuspended in MethoCult (Stem Cell Technologies) medium
and plated (10,000 cells/plate) for granulocyte (G)/macrophage
(M) assay. Testosterone (Sigma; T1500) was added at a con-
centration of 10 μM. CFUs were counted 7 days after plating.
CFUs were further classified into granulocytes (G) and mac-
rophages (M) based on size of the colonies (https://cdn.
stemcell.com/media/files/manual/MA28405-Mouse_Colony_
Forming_Unit_Assays_Using_MethoCult.pdf).

Quantitative real-time PCR

RNA was extracted from adipose tissue using Trizol LS (Life
Technologies), and complementary DNA was generated using
a High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). SYBR Green PCR Master Mix and the StepO-
nePlus System (Applied Biosystems) were used for real-time
quantitative PCR. GAPDH expression was used as an inter-
nal control for data normalization. Samples were assayed in
duplicate, and relative expression was determined using the
2−ΔΔCT method. All primers used are listed in the supporting
table.

Hormone and TG measurements

Estradiol and testosterone levels were assessed with Cayman
ELISA kits (estradiol, catalog no.: 582251 and testosterone,
catalog no.: 582701). Serum TG was measured with Infinity
TG determination kit (Thermo Fisher Scientific), following
manufacturer’s instructions. Liver TGs were homogenized,
extracted by a modified Folch method, and assayed (18).

Statistical analyses

The data from each experiment were analyzed using uni-
variate methods, and when appropriate, multivariate methods
were used with profile analysis or repeated-measurement
analysis. All results adjust for multiple comparisons. Univari-
ate analysis was carried out using general linear models to
identify the significant factors, and Tukey’s pairwise compar-
isons were used to identify the pairs of groups that were
significantly different. For variables, such as GTT and ITT,
where measurements are taken at different time points,
multivariate ANOVA was used to identify the significance of
the factors and their interactions. The programs used for the
analysis were MINITAB (Minitab, LLC) and JMP (SAS
Institute).

Data availability

The datasets generated during and/or analyzed during the
current study are available from the corresponding author
upon reasonable request.
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