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Abstract The critical role of blood lipids in a broad range of health and disease states is well

recognised but less explored is the interplay of genetics and environment within the broader blood

lipidome. We examined heritability of the plasma lipidome among healthy older-aged twins (75

monozygotic/55 dizygotic pairs) enrolled in the Older Australian Twins Study (OATS) and explored

corresponding gene expression and DNA methylation associations. 27/209 lipids (13.3%) detected

by liquid chromatography-coupled mass spectrometry (LC-MS) were significantly heritable under

the classical ACE twin model (h2 = 0.28–0.59), which included ceramides (Cer) and triglycerides

(TG). Relative to non-significantly heritable TGs, heritable TGs had a greater number of associations

with gene transcripts, not directly associated with lipid metabolism, but with immune function,

signalling and transcriptional regulation. Genome-wide average DNA methylation (GWAM) levels

accounted for variability in some non-heritable lipids. We reveal a complex interplay of genetic and

environmental influences on the ageing plasma lipidome.

Introduction
As the field of lipidomics has grown, hundreds to thousands of complex lipids have been character-

ised (Fahy et al., 2005; Quehenberger et al., 2010), with many linked to health and disease states,

such as metabolic syndrome (Meikle and Christopher, 2011), cardiovascular disease (Meikle et al.,

2014; Harmon et al., 2016), obesity (Barber et al., 2012; Rauschert et al., 2016), and dementia
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(Han et al., 2001; Kim et al., 2018; Mielke et al., 2012; Wong et al., 2017). Both genetic and envi-

ronmental factors influence these biological phenotypes. Identifying the contributions of these fac-

tors can help elucidate the importance of genes for a particular trait, as well as providing insight into

the environmental influences. This information might enable the design of personalised medical

treatments for lipid-related disease states.

While there are substantial data to suggest that levels of traditional lipids and lipoproteins such

as high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL), cholesterol and triglycer-

ide levels are heritable (Liu et al., 2018; Goode et al., 2007), few studies have focused on the

genetic and environmental influences on the plasma levels of individual lipid species and lipid classes

beyond these traditional lipid measures. Additionally, lipids vary within and between individuals

(Begum et al., 2016; Begum et al., 2017; Saw et al., 2017) based on variables such as age

(Ishikawa et al., 2014; Lawton et al., 2008; Wong et al., 2019a), sex (Ishikawa et al., 2014;

Wong et al., 2019a), body mass index (BMI) (Wong et al., 2019a; Shamai et al., 2011), lipid-lower-

ing medication (Meikle et al., 2015) and genetic background (Liu et al., 2018; Bennet et al., 2007),

demonstrating a wide degree of complexity involved in the regulation of lipid metabolism. It would

therefore be informative to understand the extent to which variation in specific plasma lipids is

determined by genetic and environmental influences. We hypothesise that as circulating lipids are

produced downstream of genomic, transcriptomic and proteomic regulatory processes, that there

will be strong environmental influences on lipid variance.

Previous genome-wide association study (GWAS) data implicate many genetic loci associated

with traditional lipid levels. For example, the genes encoding lipoprotein lipase, hepatic lipase and

cholesteryl ester transfer protein (LPL, LIPC and CETP respectively) have been associated with HDL,

and genes encoding cadherin EGF LAG seven-pass G-type receptor 2, apolipoprotein B and translo-

case of outer mitochondrial membrane 40 (CELSR2, APOB and TOMM40 respectively) have been

associated with LDL (Middelberg et al., 2011). Apolipoprotein E (APOE) variants have been estab-

lished as a strong risk factor for cardiovascular disease and Alzheimer’s disease (Bennet et al., 2007;

Corder et al., 1994) and are associated with altered LDL-C levels. One large exome wide screening

study with over 300,000 individuals identified 444 variants at 250 loci to be associated with one or

more of plasma LDL, HDL, total cholesterol and triglyceride levels (Liu et al., 2017). Collectively,

data from 70 independent GWAS with sample sizes ranging from ten thousand to several hundred

thousand participants have identified associations of traditional lipid levels with 500 single nucleo-

tide polymorphism (SNPs) in 167 loci that explain up to 40% of individual variance in these traditional

lipid measures (Matey-Hernandez et al., 2018). This number suggests that LDL, HDL, total choles-

terol and triglyceride levels undergo a substantial degree of genetic regulation, but also highlights

that much of the lipid variance is still unaccounted for, possibly related to rare variants or environ-

mental factors (Matey-Hernandez et al., 2018; Garcı́a-Giustiniani and Stein, 2016).

One of the most powerful tools for analysis of gene versus environment effects on phenotypic

traits is the classical twin design, which estimates the relative contribution of heritable additive

genetic effects (A) and shared (C) and unique environmental (E) influences on a given trait by com-

paring correlations within monozygotic and dizygotic twin pairs (van Dongen et al., 2012). One

major strength of this design compared to family studies is that twins are matched by age and com-

mon environment, reducing cross-generation differences. Genetic and environmental variances can

be computed with relatively high power using a modest sample size. It is expected that since mono-

zygotic twins share 100% of segregating genetic variation, while dizygotic twins share 50%. It is also

assumed that twins are raised in the same environment, thus any additional differences between

monozygotic twins would be attributable to unique environmental (E) effects. Further, any differen-

ces in intraclass correlations between monozygotic and dizygotic twins could be estimated as due to

additive polygenic effects (A).

We applied the classic twin design to estimate heritability using 75 pairs of MZ twins and 55 pairs

of DZ twins from the Older Australian Twin Study (OATS) (Sachdev et al., 2009; Sachdev et al.,

2013), aged between 69–93 years. Since many proteins are known to regulate lipid metabolism, it is

expected that some lipids may show substantial heritability, as reported in previous studies

(Frahnow et al., 2017; Draisma et al., 2013). Further, we hypothesised that some of the variance in

lipids that do not have significant heritability might be controlled by gene sequence - independent

mechanisms, such as genome-wide average DNA methylation (GWAM) levels. Our study is the first
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to examine heritability of the broad plasma lipidome among healthy older – aged twins and explore

putative genetic, transcriptomic and epigenetic associations of these lipids.

Results

Participant characteristics
Plasma lipidomics was performed on n = 330 individuals, 260 of these were used for heritability anal-

yses. Characteristics of the MZ (n = 150, 100 females) and DZ (n = 110, 79 females) twins with avail-

able plasma for heritability analyses are presented in Table 1. There were no group differences

between MZ and DZ twins on these characteristics except in HDL-C levels, which were higher in MZ

twins relative to DZ twins (p<0.05), but did not remain significant after correcting for multiple

comparisons.

Heritability
Heritability of lipids was computed using the classical ACE model. Classical lipid measures of total

cholesterol, LDL, HDL and triglycerides were significantly heritable (h2 = 0.427, 95% C.I. = [0.075,

0.592], 0.404, 95% C.I. = [0.121, 0.573], 0.419, 95% C.I. = [0.027, 0.766], and 0.427, 95% C.I. =

[0.181, 0.623] respectively). HDL had a substantial C component (i.e., common environment; h2C =

0.27, 95% C.I. = [0.00, 0.48]). For individual lipid species measured, 27 out of 203 (13.3%) were sig-

nificantly heritable with a median heritability of h2 = 0.433, ranging from 0.287 for TG (18:0/17:0/

18:0) to a maximum of 0.59 for Cer (d17:1/24:1).

The percentages of heritable lipids from the total pool of identified lipids in each lipid class is

summarised in Figure 1A. Heritability estimates across lipid class and by individual lipid for signifi-

cantly heritable lipids are summarised in Figure 1B and Supplementary file 1A. Ceramides (Cer)

had the highest heritability estimates (range h2 = 0.433–0.59), where 9 out of 20 species were signifi-

cantly heritable. For triglycerides (TG), 12 of out 59 species measured were heritable (range h2 =

0.287–0.495). Among diacylglycerols (DG), 3 species out of 10 were heritable (range h2 = 0.422–

0.544). Only three phospholipids were heritable, including 2 of 58 phosphatidylcholines (PC) and 1

out of 5 phosphatidylethanolamines (PE), (range h2 = 0.327–0.413). Cholesteryl ester (CE), lysophos-

phatidylcholine (LPC), phosphatidylinositol (PI) and SM (sphingomyelin) species were not significantly

heritable, with median heritability for non-significant lipids at h2 = 0.23, and near zero heritability for

Table 1. Participant characteristics for heritability analyses.

MZ (n = 150) DZ (n = 110) Statistic p-value

Age 75.7 (5.47) 76.07 (5.31) �0.548 0.584

Females 100 (67%) 79 (72%) 0.785 0.376

Education (yrs) 10.99 (3.18) 11.2 (3.18) �0.475 0.635

BMI (kg/m2) 27.934 (4.74) 27.5 (4.92) 0.776 0.438

WHR 0.89 (0.09) 0.89 (0.08) 0.164 0.87

MMSE 28.9 (1.37) 28.95 (1.76) �0.062 0.95

LDL-C (mmol/L) 2.77 (0.97) 2.78 (0.97) �0.078 0.938

HDL-C (mmol/L) 1.73 (0.46) 1.60 (0.44) 2.341 0.02

Cholesterol (mmol/L) 5.08 (1.01) 4.98 (1.12) 0.822 0.412

Triglyceride (mmol/L) 1.30 (0.54) 1.32 (0.56) �0.298 0.766

APOE e4 carrier* 35 (26%) 27 (28%) 0.118 0.731

Means (SD) are presented for continuous variables, while n (%) is presented for categorical variables. Comparisons of

MZ and DZ pairs used t tests for continuous variables and c (Quehenberger et al., 2010) tests for categorical

variables.

Abbreviations: MZ = monozygotic, DZ = dizygotic. body mass index (BMI), mini-mental state exam (MMSE), waist-

hip ratio (WHR), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C).

*excludes participants with missing data (n = 231 participants with APOE genotype data).
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Figure 1. Heritability of lipids. (A) Percentage distribution of heritable lipids. The central wheel represents

significantly heritable lipids and their percentage distribution by lipid class. Smaller wheels emanating from each

sector represent proportions of these heritable lipids compared to total measured lipids of that class, such that

the sum of these smaller wheels equals the total pool of 207 individual lipids measured. For example, 45% of

significantly heritable lipids belonged to the TG lipid class, and these heritable lipids represented 17% of total

measured plasma TG. Orange sectors represent non-heritable percentage of each lipid class. (B) The distribution

of heritability (h2), estimated from the ACE model, for each individual lipid species grouped according to class.

Boxplots show median with interquartile range for each class. Dark circles represent heritable lipids, as opposed

Figure 1 continued on next page
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LPC species. Heritability estimates obtained for summed lipid groups (Supplementary file 1B) were

mostly similar to that of the individual lipids, though there were some differences. For example, the

sum of monounsaturated SM species was heritable whereas no individual SM was significantly herita-

ble. A complete heritability table for all lipids is presented in Supplementary file 2A.

Additionally, a sex heterogeneity model was used to assess differences in heritability between

sexes (Supplementary file 2B), while a gene-environment interaction model was used to assess heri-

tability differences between age groups (Supplementary file 2C). We found suggestive levels of sig-

nificance for four lipids between sexes (unadjusted p<0.05), and a substantial effect of age on

heritability estimates in both directions (decreasing with age, as well as increasing with age) across

most significantly heritable lipids.

Genetic, Environmental and Phenotypic Correlations
Genetic and environmental correlations were estimated for significantly heritable lipid species and

lipid classes. Median genetic correlations between Cer species were high (rg = 0.94), as were TG

(rg = 0.81) and DG (rg = 0.73) species. DG and TG were also highly genetically correlated with each

other (rg = 0.70), as were Cer species with monounsaturated SM (rg = 0.83). Median phenotypic cor-

relations between Cer species, between TG species and between DG species were rp = 0.85, 0.61,

and 0.53 respectively, and rp = 0.51 between TG and DG species, and rp = 0.83 between Cer and

monounsaturated SM. Median unique environmental correlations were moderately lower than corre-

sponding genetic correlations (re = 0.75, 0.56 and 0.53 for Cer, TG and DG respectively, and

re = 0.45 between TG and DG, and re = 0.72 between Cer and monounsaturated SM), indicating

that heritable lipids of similar class have a strong shared genetic basis relative to the unique environ-

ment. Further, traditional lipids (LDL-C, HDL-C, total cholesterol and TG) had poor genetic and phe-

notypic correlations with individual lipid species, apart from traditional triglyceride measures, which

was highly correlated with individual TG and DG species. A genetic correlation matrix heatmap is

shown in Figure 1—figure supplement 1.

Association with gene expression
The association of lipids (n = 209) with probe level gene expression (n = 35,971) was analysed using

linear mixed models via the R package nlme (Pinheiro et al., 2019). We found significant gene

expression probe associations (n = 3568) with 47 individual lipids (7 DG, 2 PC, 1 PE, 37 TG; see

Supplementary file 2D and 2E). Of these associations, 15 were linked to significantly heritable lipids

(12 TG, 3 DG, n = 380 unique probes). In fact, we found that all significantly heritable TG and DG

species were also significantly associated with gene expression of particular transcripts. An addi-

tional 32 individual lipids (25 TGs, 4 DGs, 2 PCs and 1 PE, n = 276 unique probes) without significant

heritability were significantly associated with gene expression. In regards to traditional and grouped

classes of lipids, there were also significant gene expression associations with HDL-C, total TG, and

grouped TGs regardless of total carbon number or number of double bonds. No significant gene

expression associations were identified for LDL-C. There was a modest but non-significant positive

correlation between variance explained by gene expression of probes and heritability (p>0.05, Fig-

ure 2 and Supplementary file 2D). This implies that gene expression accounts for some but not all

the variance in heritable lipid levels.

Since the bulk of significant gene expression associations were with TG, we examined the rela-

tionship of gene expression associations for TG species by degree of saturation, classifying each TG

species as being saturated (no fatty acyl double bonds), monounsaturated (possessing one double

bond), or polyunsaturated (possessing two or more double bonds). We then investigated how many

transcripts were associated with a low, medium and high number of lipids, by counting the number

of gene transcripts significantly associated with either 1–2 lipids, 3–8 lipids, and over eight lipids in

Figure 1 continued

to grey circles, which represent lipids that were not significantly heritable. Minimum (significant) heritability is

h2 >0.287.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Genetic correlation heatmap.
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that class (in the case of polyunsaturated TG). Generally, only a few gene transcripts were associated

with many lipids, regardless of saturation level. There were 282 gene transcripts associated with 1–2

TGs in the saturated TG class, but only six were associated with at least three different TGs in that

class.

Figure 2. Heritability estimate (h2a) vs total variance explained (Nagelkerke r2) by gene expression probe transcripts for heritable lipids. Pearson

correlation was calculated.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Batch correction using inverse rank normal transform of residuals.

Table 2. Gene expression associations among TG lipids.

TG class Number of associated lipids Number of transcript associations

Saturated TG 1–2 282

3–8 6

Monounsaturated TG 1–2 59

3–8 7

Polyunsaturated TG 1–2 243

3–8 119

>8 9

Note. Table lists number of gene expression associations common to a maximum of 1–2, 3–8 and >8 lipids in each

TG saturation class (saturated, monounsaturated, and polyunsaturated TG).
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Table 2 summarises the number of significantly associated gene transcripts among each TG satu-

ration class, while Figure 3 is a Venn diagram identifying gene transcripts that are unique or shared

across saturation classes for significantly heritable TG lipids (Figure 3A) and non-heritable TGs only

(Figure 3B). The total list of gene transcripts associated with lipids can be found in

Supplementary file 2E and 2F, while Supplementary file 2G and 2H show gene transcripts ordered

by TG degree of saturation and total number of carbons. For example, ribosomal protein L4 pseudo-

gene 2 (RPL4P2), A disintegrin and metalloproteinase domain-containing protein 8 (ADAM8) and

Adipocyte Plasma Membrane Associated Protein (APMAP) were uniquely associated with saturated

TG when considering heritable TG lipids.

Figure 3. Venn diagrams showing distribution of gene transcripts associated with a majority of TG lipids. These were subdivided into those associated

with saturated vs monounsaturated vs polyunsaturated lipids for (A) significantly heritable TGs and (B) non-heritable TGs. Also shown are heritable vs

non-heritable set of significant gene expression associations of TG lipids that were first subdivided based on (C) double bond group/saturation

(Supplementary file 2G) and (D) total number of carbons (<49 carbons, 49–55 carbons and 56+ carbons, Supplementary file 2H). Gene transcripts

included in these Venn diagrams were those significantly associated with the highest and second highest number of lipids of a particular saturation

class (A and B), or among heritable and non-heritable lipids (C and D). Upwards and downwards arrows indicate positive and inverse gene expression

associations with lipid levels respectively.
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Interestingly, there were a number of transcripts associated with a maximum of 1–2 TG lipids

(e.g. 1–2 saturated lipids had 282 hits). In a majority of cases, these associations were driven by a

specific TG lipid (among saturated TGs, this was TG(16_0/16_0/24_0), among monounsaturated

TGs, this was TG(16_0/14_0/18_1) and for polyunsaturated TGs, these were TG(19_1/18_1/18_2),

TG(16_0/18_1/23_1), TG(16_0/22_6/22_6) and TG(25_0/18_1/18_1)). These lipids tended to have a

medium to high total carbon count (i.e. >55 carbons). By contrast, our analysis also found gene

expression of histidine decarboxylase (HDC) and carboxypeptidase A3 (CPA3) to be significantly

associated with all TGs irrespective of the number of total carbons and number of double bonds. In

fact, HDC and CPA3 were also significantly associated with other lipids including DG and HDL-C

(Supplementary file 2E). Notably, there were some differences between the gene transcript associa-

tion profiles of significantly heritable vs non-heritable lipids; many more gene transcript associations

were unique to heritable as opposed to non-heritable TGs (Figure 3A–D, Supplementary file 3).

For example, pseudogenes appearing in the heritable lipid list do not appear in the non-heritable

list. Comparing transcribed genes associated with TG lipids by total number of carbons (<49 carbons

‘low’, 49–55 carbons ‘medium’ and 56+ carbons ‘high’) also yielded a similar outcome (Figure 3D).

Furthermore, the majority of transcriptome associations with non-heritable lipids were inverse

associations, whereas the lipid-transcriptome associations for heritable lipids were a mix of positive

and inverse associations, suggesting a diverse impact of these lipids on cellular function. It is also

interesting that the majority of inverse lipid-transcriptome associations encode protein coding tran-

scripts (15/17 total), and only 2/17 were non-protein coding RNAs/pseudogenes. By contrast, the

majority of positive lipid-transcriptome associations were for non-protein coding pseudogenes (9/11)

and only 2/11 were protein coding.

Functional pathways of associated gene transcripts
We examined whether gene transcripts significantly associated with lipids included genes responsi-

ble for structural changes by a diversity of lipid modifying machinery, such as families of elongase

and desaturase enzymes responsible for modifying fatty acid chain length and saturation level

(Kindt et al., 2018), as well as a plethora of synthetases which assemble complex lipids such as the

triglycerides and phospholipids (Sorger and Daum, 2002). Interestingly, in our gene/lipid transcrip-

tomic association list (Table 3, Figure 3 and Figure 4), such structure regulating genes do not

appear.

Instead, the transcripts reveal genes which regulate other physiological and cellular functions par-

ticularly those involved with immune and vascular functions (Table 3), with possible roles in the cen-

tral nervous system (CNS). We also found an upregulation of pseudogenes. The STRING and

BioGRID databases (Szklarczyk et al., 2019; Oughtred et al., 2019) were used to provide func-

tional information on genes identified in the lipid-transcriptome analysis. Some other notable path-

ways include vasoactive peptides, vesicular transport and pseudogenes/non-protein coding genes.

The latter could play important regulatory roles, such as in gene silencing (Guo et al., 2014).

Directions of arrows indicate either positive (upwards facing) or inverse (downwards facing) lipid-

gene transcriptome associations. Even though our transcriptomic data was for the blood transcrip-

tome, some of these genes also have functions in the CNS or associations with neurodegenerative

diseases (far right column).

Association of DNA methylation levels at specific CpG sites with lipid
and gene expression
To gain insight into the relationships between lipid levels and DNA methylation of CpGs at specific

genes, we selected gene transcripts significantly associated with lipids and identified associations

between DNA methylation at CpG sites within close proximity to these gene transcripts, and lipid

expression (Supplementary file 2I). We found significant associations of DNA methylation (p<0.05)

with four lipids: PE(16:0_20:4), TG(25:0_16:0_18:1), TG(18:0_17:0_18:0) and TG(18:1_18:2_18:2). Of

these, two were heritable - TG(25:0_16:0_18:1) and TG(18:0_17:0_18:0).

We also examined the relationship between gene expression and DNA methylation at specific

CpG sites of genes whose transcripts were associated with significant heritability

(Supplementary file 2J). We found 19 significant CpG site-gene expression associations related to

four unique lipids (TG(19:1_18:1_18:2), TG(15:0_16:0_18:1), PC(20:2_18:2), TG(16:0_18:1_23:1), but
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these associations were a very minor subset of all CpG site-gene expression associations. Therefore,

we did not find sufficient evidence to suggest that DNA methylation at specific CpG sites drives

changes in gene expression, though we acknowledge this analysis lacks sufficient power to be

conclusive.

Association of lipids with genome wide average DNA methylation
(GWAM)
We then explored associations of genome wide average methylation with lipid levels and found sig-

nificant associations of all five LPCs (and the total LPC sum) with GWAM (range beta = �0.22 to

�0.27, see Table 4). Notably, four TGs were also significantly inversely associated with GWAM

(beta = �0.18 to �0.23). Further, only two other lipids were positively associated with GWAM,

namely one CE and one PC (beta = 0.21, and 0.18 respectively, Table 3). None of these lipids was

significantly heritable, with maximum heritability of 0.39, though one TG (TG18:1_17:1_22:6) was

borderline significant (p=0.05 for h2), with a maximum of two significant gene expression associa-

tions (for TG18:1_17:1_22:6 and TG18:1_20:4_22:6).

Table 3. Functions of genes with significant lipid-gene transcriptome associations.

Biological Pathways
Gene
Transcripts* Relevance to the CNS

Inflammation

Innate immunity #LILRB3, #MGAM

Adaptive immune response #LILRA6

Host Defense #FPR1, #TRIM51 FPR1 found in neural glial cells, astrocytes and neuroblastoma (Cussell et al., 2019).

Allergic Response #ADAM8, #HDC,
#CPA3

ADAM8 may regulate cell adhesion during neurodegeneration (Schlomann et al.,
2000).
HDC as a histidine decarboxylase, produces histamine, which in the CNS is a
neurotransmitter (Yoshikawa et al., 2014).

Class I MHC antigen binding #LILRA6, #LILRB3

B-Cell response/receptor signalling #GAB2, #LILRB3,
#PRKCD

GAB2 is associated with Alzheimer’s disease. By activating PI3K, increases amyloid
production and microglia-mediated inflammation. Several GAB2 SNPs are associated
with late-onset Alzheimer’s disease (Chen et al., 2018).

Mast Cell Degranulation #CPA3, #HDC,

Vasoactive Actions

Regulation of vasoactive peptides (e.g.,
endothelin, angiotensin 1, snake toxins, etc)

#GATA2, #CPA3,

Epithelial Cell Integrity #KRT23, #PRKCD

Cell Adhesion #APMAP APMAP supresses brain Ab production (Mosser et al., 2015).

DNA Regulation " RPSA, "
SNORA62, "
SNHG1

Vesicle/Endosome Regulation/Transport " VAMP8,
#REPS2,
#SLC45A3

SLC45A3 regulates oligodendrocyte differentiation (Shin et al., 2012).

Pseudogenes/non-protein coding #S100A11P1,
#RPSAP15,
" RP11-179G5.1,
" RP11-350G8.3,
" RPL35P5, "
RPL4P2,
" RPS10P14, "
RPSAP15,
" RPSAP58, "
SNHG1,
" SNORA62

Regulatory roles. Gene silencing, affects mRNA stability.
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Discussion
In this study, we evaluated the relative contributions of genetic versus environmental factors to the

plasma lipidome among older Australian twins aged 69–93 years. As hypothesised, both genetic and

environmental factors contribute to shaping the plasma lipidome, though in our sample of older

Figure 4. Schematic of the combined genetic and environmental influences on the blood lipidome, and the

association of this lipidome with the blood transcriptome. Under this model, non-heritable lipids could affect gene

transcription, while heritable lipids could also affect gene transcription (collectively ‘blood lipid associated

transcriptome’), but are possibly modified upstream by genetic machinery such as elongases, desaturases,

synthetases, receptors and binding proteins. Gene transcripts encoding these enzymes and proteins may be

independent of the ‘blood lipid associated transcriptome’ noted in this study.

Table 4. Regression of lipid residuals significantly associated with genome wide average DNA

methylation levels.

Lipid Beta SE t p-value h2 p-value for h2

CE(20:3) 0.21 0.09 2.34 2.31E-02 0.31 0.30

LPC(15:0) �0.22 0.09 �2.54 1.39E-02 6.51E-16 1

LPC(16:0) �0.27 0.09 �3.12 2.90E-03 3.82E-14 1

LPC(17:0) �0.21 0.09 �2.34 2.30E-02 2.82E-14 1

LPC(18:1e) �0.21 0.09 �2.44 1.81E-02 3.52E-17 1

LPC(26:0) �0.27 0.09 �3.10 3.07E-03 0.056 0.87

PC(39:3) 0.18 0.09 2.12 3.84E-02 0.39 0.14

TG(18:1_17:1_22:6) �0.18 0.09 �2.05 4.51E-02 0.31 0.05

TG(18:1_18:1_22:5) �0.23 0.09 �2.69 9.58E-03 3.42E-15 1

TG(18:1_20:4_22:6) �0.21 0.09 �2.41 1.96E-02 2.98E-15 1

TG(19:0_18:1_18:1) �0.18 0.09 �2.14 3.73E-02 0.312 0.29

GroupLPC �0.24 0.09 �2.74 8.32E-03 1.88E-15 1

Notes. Associations of GWAM with lipid residuals (adjusted for age, sex, education, BMI, lipid lowering medication,

smoking status, experimental batch and APOE e4 carrier status).
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individuals, environmental factors were predominant, with only 13.3% of individual lipids analysed

being significantly heritable, belonging mainly to the TG, DG and Cer lipid classes. We identified a

higher number of gene-transcript associations with heritable as opposed to non-heritable lipids, and

revealed unexpected biological roles of these lipids based on these transcript associations. Addition-

ally, we found a small subset of non-heritable lipids to be associated with GWAM, suggesting a

potential mechanism by which environmental influences can be conveyed on the lipidome. This pow-

erful combination of lipidomics, transcriptomics and DNA methylation data in a twin study is the first

of its kind and enables unique insight into lipidome heritability in older aged individuals.

Heritability estimates
Heritable lipids had a moderate level of heritability (median h2 = 0.433) which compares well with an

estimate of 35.4% provided for metabolites from a genome-wide genotyping study in subjects aged

60 years and over (Darst et al., 2019), and another estimate of 0.37 from a family based heritability

study (Bellis et al., 2014). Traditional lipid measures of LDL-C, HDL-C, total cholesterol and TG were

significantly heritable, consistent with previous studies (Liu et al., 2018; Goode et al., 2007;

Mahaney et al., 1995), though our estimates for these traits (range 0.40–0.47) were lower than esti-

mates from other studies, reported to exceed 0.60 (Liu et al., 2018; Beekman et al., 2002), likely

due to age differences. Interestingly, one of these studies found heritability estimates of these traits

among Australian twins to be lower than the same estimates in Dutch and Swedish twin pairs

(Beekman et al., 2002) (twin cohorts differing by age range), highlighting that differences in ethnic-

ity, cohort and age can lead to substantial variance in reported heritabilities from study to study.

Additionally, the substantial shared environment (C) component for HDL-C (0.27) is consistent with

previous studies (Liu et al., 2018; Mahaney et al., 1995) that indicate that shared environment early

in life is an important contributor to HDL-C variance later in life.

Comparing heritability at the level of individual lipid species, one recently published German twin

study using data from NutriGenomic Analysis in Twins (NUGAT) yielded a similar range of heritabil-

ities of 0–62% (Frahnow et al., 2017), finding 19 of 150 plasma lipid species to be highly heritable

(h2 > 0.40), not dissimilar to the proportion identified in the present study (27 of 207). However, the

heritability of various classes often did not corroborate our findings. For example, NUGAT reported

LPC and PE to be moderately heritable (0.25<h2<0.35), while SMs had high heritability, as opposed

to ceramides which were reported to be lowly heritable. By contrast, our study found high heritabil-

ity of ceramides, and no significantly heritable SMs and virtually zero heritability of LPCs. A more

recent publication of a Finnish population based study (FINRISK) reported SNP-based heritability of

lipid species to be in the range 0.10–0.54 (Tabassum et al., 2019), and found Cer to be the most

heritable species, corroborating findings from the present study and others (McGurk et al., 2017;

McGurk et al., 2019), though heritability of some other lipid classes, such as LPC was markedly

higher than reported in the present study. We have summarised our findings against the backdrop

of previous literature in Table 5. One possible explanation for reported differences is that heritabil-

ities may change across the lifespan (Goode et al., 2007). Age-dependent increases in heritability

have been reported for LDL-C and HDL-C (Goode et al., 2007), while heritability estimates for BMI

are lower in older adults compared to young adults (Silventoinen et al., 2017). In our cohort, we

did find age-dependent heritability effects in both directions (Supplementary file 2C). This could be

amplified when considering that the age range of NUGAT participants was 18 to 70 years, and 25 to

74 years for FINRISK whereas OATS consisted of much older individuals ranging from 69 to 93 years.

Further, the age range may exacerbate the potential impact of pre- and post-menopausal status on

lipid profiles (Anagnostis et al., 2015; Saha et al., 2013) among women, who comprise a majority

of participants in both OATS (n = 179, 68.8%) and the NUGAT study (n = 58, 63%), though we only

found minor evidence of sex-dependent heritability effects in our ageing cohort. In summary, while

our heritability ranges were largely consistent with previous studies, there is some variance in herita-

bility of particular lipid classes and individual species.

Lipid associations with DNA methylation
To assess possible mechanisms contributing to variance of non-heritable lipids, we compared aver-

age DNA methylation levels over 450,000 different DNA methylation sites among MZ twins. DNA

methylation is a well characterised epigenetic mechanism by which a gene expression profile can be
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regulated and inherited independent of the genetic sequence (Egger et al., 2004), and involves the

addition of a methyl group (-CH3) to the base cytosine of 5’-cytosine-phosphate-guanine-3’ (CpG)

dinucleotides (Bird, 2002; Lim and Maher, 2010). Methylation of CpG clusters around promoter

regions of genes typically leads to suppression of gene transcription. Of salience, five LPCs and their

summed total, which were extremely non-heritable (near zero), were significantly associated with

GWAM. Although only a small subset of lipids showed significant associations with GWAM (just

eight individual lipids of 180 non-heritable lipids), these findings do suggest that epigenetic factors

such as DNA methylation could explain some of the variation associated with non-heritable lipids,

especially very lowly heritable phospholipids and LPC, the least heritable lipid class in our data-set.

In previously published work, DNA methylation has been associated with environmental changes

in lipid levels. Maternal lipids, passing from mother to child in utero at 26 weeks of gestation, lead

to DNA methylation changes in the newborn (Tindula et al., 2019). The lipids associated with DNA

methylation changes included phosphatidylcholine and lysolipids – phospholipid degradation prod-

ucts and choline could be an important precursor for DNA methylation. Similarly to our study, higher

lipid metabolites were associated with lower methylation levels of genes involved in prenatal devel-

opment. While the association of LPCs with DNA methylation has not previously been identified, it is

worth noting that LPCs are a major source of polyunsaturated fatty acid (PUFA) for the brain

(Yalagala et al., 2019) and regulate gene transcription through sterol regulatory-element binding

protein (SREBP) pathways (Chan et al., 2018). Thus, LPC is an important lipid to convey dietary sour-

ces of PUFAs into the brain and regulate gene transcription.

Table 5. Comparison of heritability estimates for traditional lipids and specific lipid classes/species summarising the current work and

other published studies.

Study and cohort details Findings Reference

Traditional lipids

Present study
75 MZ pairs, 55 DZ pairs
69–93 years

Range h2: 0.404–0.427
HDL-C had substantial C-component 0.27

Qingdao Twin Registry
382 MZ pairs and 139 DZ pairs, mean age
51 ± 7

Total Cholesterol and LDL-C 0.614, 0.655
HDL-C h2 = 0.26, C-component = 0.478

Liu et al., 2018

National Heart Lung and Blood Institute
Veteran Twin Study;
235 MZ, 260 DZ pairs
48–63 years

Longitudinal increases in heritability across three time pts
Total Cholesterol (from 0.46 to 0.57), LDL-C (from 0.49 to 0.64), and
HDL-C (from 0.50 to 0.62)
TG: h2 = 0.40

Goode et al., 2007

San Antonio Family Heart Study
N = 569, mean age 39.4 years

h2HDL-C = 0.55, h2TG = 0.53 Goode et al., 2007;
Mahaney et al., 1995

Lipid Species/Classes

Present study Range h2: 0–0.59
Range heritable lipids: 0.287–0.59, median: 0.433
Heritable lipids: some Cer, TG, DG. Fewer PE, PC
Non-heritable lipids: LPC, SM, PI, CE

Wisconsin Registry for Alzheimer’s
Prevention n = 1212, mean age 60.8

Range 0.2–84.9%, median h2 = 0.354
Median h2ceramides = 0.48
Median h2DG = 0.38

Darst et al., 2019

San Antonio Family Heart study, n = 1212
mean age 39.52

h2range = 0.09–0.60
Median = 0.37
Heritable: almost all lipids, including Cer, TG, DG
Least heritable: LPC, alkyl-PE

Bellis et al., 2014

NUGAT Twin Study
34 MZ, 12 DZ twin pairs
18–70 years, median age 25

Range h2: 0–0.62 (19/152 lipids had h2 > 0.40)
Heritable lipids: LPC, PE, SM
Non-heritable: Cer

Frahnow et al., 2017;
Tabassum et al., 2019

FINRISK n = 2181
25–74 years
SNP based heritability

SNP based range h2: 0.10–0.54
Heritable lipids: Cer, LPC, SM, TG
Non-heritable: PI

Tabassum et al., 2019

n = 203 plasma samples from 31 families Cer heritability range: 0.10–0.63 McGurk et al., 2017

n = 999, 196 British families, mean age 45 SNP-based Cer heritability range: 0.18–0.87 McGurk et al., 2019

Wong et al. eLife 2020;9:e58954. DOI: https://doi.org/10.7554/eLife.58954 12 of 28

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.58954


These findings add to studies conducted in animal models which also show that nutrients taken

by the mother are passed on to offspring during pregnancy, and may have a lasting impact on gene

expression through DNA methylation (Hoile et al., 2013). Dietary restriction has also been shown to

attenuate age-related hypomethylation of DNA in the liver, resulting in the downregulation of genes

involved in lipogenesis and elongation of fatty acid chains in TGs, leading to a shift in the TG pool

from long chain to medium and shorter chain TGs (Hahn et al., 2017). In summary, there is evidence

to suggest that lipids can influence DNA methylation levels, while genes related to lipid metabolism

can also be regulated in response to DNA methylation.

Interestingly, when we attempted to focus on DNA methylation at specific CpG sites within close

proximity to genes whose transcripts were significantly associated with lipids, we found a few associ-

ations with lipids and with gene expression, but little overall evidence to indicate that DNA methyla-

tion drives gene expression of these transcripts. More work needs to be done to clarify these

relationships using a larger sample size.

Genetic correlations
High within-class genetic correlations between individual Cer, TG, and DG species (all r > 0.70) sug-

gest similar genetic influences between lipids of the same class. Further, Cer species and monoun-

saturated SM also exhibited high genetic correlations, as did TG and DG. Metabolically, Cer and SM

belong to the sphingolipid class where SM can be converted to Cer via sphingomyelin phosphodies-

terase (Pralhada Rao et al., 2013), while TG and DG are interconvertible, where TG can be metabol-

ised to DG by adipose triglyceride lipase (ATGL), or DG to TG through the addition of acyl CoA via

DG acyltransferase (DGAT) (Liang and Nishino, 2010). Our results suggest that the heritable lipi-

dome is regulated by overlapping genes which are associated with multiple lipids, especially lipids

that belong to the same class, or are related by a connected metabolic pathway. Nevertheless, envi-

ronmental correlations were still high for these lipids suggesting the importance of environmental

factors on lipid levels. Traditional lipids (total triglyceride, LDL-C, HDL-C and total cholesterol) had

low genetic and phenotypic correlations with individual lipid species, except for triglyceride meas-

ures, which were highly correlated with TG and DG species. This finding confirms previous results

(Tabassum et al., 2019) and suggests some differences between variance in traditional lipid meas-

ures and variance in the lipidome at the individual lipid species level.

Lipid-Transcriptome associations
Transcriptome associations of both heritable and non-heritable triglycerides, which represented the

largest component of our lipidomics dataset, were assessed. We anticipated that both heritable and

non-heritable lipids would have gene transcript probe associations, since endogenous triglycerides

are derived from essential dietary fatty acids, such as linoleic acid, or other fatty acids substantially

derived from dietary sources (such as linolenic acid and docosahexaenoic acid). Gut microbiota

(microbiome) can also have an effect on the dietary lipidome, prior to absorption, representing

another ‘environmental’ contributor, to lipid abundance and structure (Just et al., 2018). Although

we hypothesized heritable lipids would be associated with gene transcripts involved in structural

remodeling or transport of lipids (e.g. elongases, desaturases, synthases and synthetases), these

transcripts were not represented in our lipid-blood transcriptome analysis. From this, we infer that

the genes which are thought to account for the substantially heritable phenotype of our triglyceride

group (i.e. via lipid metabolic processes) are not necessarily the same as those reflected in the lipid-

transcriptome associations. This might be the case if the heritable aspect of our lipid list is driven by

lipid modifying genes (such as desaturases, elongases, fatty acid synthases and synthetases), while

the blood transcriptome is associated with the endogenous lipidome, which is a product of both

environment and genetics (a feedback loop of sorts). We model this hypothesis in Figure 4. This is

to say the blood transcriptome is malleable to both genetic and environmental influences and com-

plements our finding that variance in lipid levels due to heritability is only partially accounted for by

gene expression of associated transcripts.

Biological effects of the lipid associated blood transcriptome
Our lipid-transcriptome analysis revealed strong associations of lipids with gene transcripts involved

in modulating immune and vascular function. Interestingly, a previous twin study found a minor

Wong et al. eLife 2020;9:e58954. DOI: https://doi.org/10.7554/eLife.58954 13 of 28

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.58954


subset of the immune system is modulated by genetic influences, such as the homeostatic cytokine

response (Brodin et al., 2015), and many of the associated gene transcripts in the current study

including Solute carrier family 45 member 3 (SLC45A3), CPA3 and HDC were previously reported in

a study of lipid and immune response (Inouye et al., 2010). Thus, some of the transcriptome associ-

ations uncovered could reflect lipid-modulated innate immune responses. Since this protein coding

transcriptome has largely negative associations with lipid levels, we infer that it is moderating/sup-

pressing inflammation or adverse vascular events. On the other hand, high fat diet in mouse models

leads to elevated gene transcription related to white adipose tissue and liver metabolism, and after

a prolonged high fat dietary regimen, activation of inflammatory pathways (Liang et al., 2013). We

postulate that lipid levels are normally linked to the suppression of inflammatory responses to main-

tain homeostasis, but become associated with activation of inflammatory responses following meta-

bolic overload, such as in diabetes mellitus or obesity (Feng et al., 2016; Hubler and Kennedy,

2016). Indeed, the authors of this study only noted significant upregulation of genes associated with

inflammatory pathways after six weeks of high fat diet consumption, in contrast to genes associated

with lipid metabolism, which were upregulated directly following a high fat diet.Since most of the

associated lipid-protein coding transcriptome were membrane proteins, this suggests a possible

interaction between lipids and protein function at the cellular surface. For example, vesicle associ-

ated membrane protein 8 (VAMP8) is involved in cellular fusion and autophagy. This would also

explain transcripts being associated with proteins involved in phosphorylation and other signalling

pathways. Altogether, the lipid-blood transcriptome associations indicate likely roles of lipids in

inflammation, immune response, membrane and cell surface signalling as opposed to lipid

metabolism.

Limitations and future perspectives
There are some important limitations to this work. Firstly, this study covers a fairly wide age range in

older aged adults (69–93 years). Very few heritability studies have focused on the lipidome in this

age bracket. It is thereby important to stress that the findings of this study may not necessarily gen-

eralise to the whole population. We suspect that in our older cohort, environmental factors would

dominate given the time in which these exposures are allowed to accumulate and shape the lipi-

dome. Some of the heritabilities reported may vary longitudinally, owing to the dynamic contribution

of genetic and environmental factors, and their interaction, across the lifespan (Steves et al., 2012).

In particular, heritability estimates may decrease where unique environmental exposures accumulate

with time and become a dominant force in lipid modulation. By contrast, heritabilities may also

increase where certain genes become more active in older age to shape a given phenotype, poten-

tially relating to lipids that may convey protective effects with ageing, as opposed to harmful effects

(Marenberg et al., 1994). Given the age range of the cohort used, the results from the present

study likely reflect a combination of both genetic and environmental influences on variation in the

lipidome relevant to older age, and may provide important clues as to lipids and genes important in

longevity. Some of these influences may underlie metabolic and lipidomic signatures previously

described in very old individuals (Wong et al., 2019a; Montoliu et al., 2014; Clement et al., 2019;

Armstrong et al., 2017). It is also important to emphasise that heritability estimates only represent

the relative contribution of genetic and environmental influences. A ‘low heritability’ score does not

necessarily imply that there are no additive genetic effects, but rather that variation in the lipid pro-

file among twins is largely mediated by the shared or unique environment. Further, we acknowledge

that though we have included as many participants as possible from this study, there may be insuffi-

cient power to make substantive conclusions. Nevertheless, we believe our findings to be a good

starting point for further investigation.

Transcriptomics data obtained through the Illumina microarray provides a broad overview of

many potential gene transcript associations with measured lipids from the same individuals. How-

ever, these data were obtained using RNA from blood cells, which presents potential biases in the

types of associations uncovered and could account for some of the immune regulatory genes uncov-

ered. Nevertheless, given the strict cutoff p-value employed in the analyses, it is likely these associa-

tions reflect true roles of these lipids in immune function, and the genes we uncovered have

previously been identified in other lipid-transcriptomic studies (Inouye et al., 2010). We must

emphasise that the transcriptome is influenced by many independent factors up- and downstream.

The relationship between genetic variance (heritability) and the transcriptome is not clearcut.
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Nevertheless, we find some evidence that the transcriptome is linked to heritable plasma lipids and

may explain a small proportion of their heritability. Additionally, while ceramides were the most heri-

table lipids, there were no significant gene expression associations with these lipids. This could be

due to very low endogenous expression of ceramide synthases in leukocytes (Levy and Futerman,

2010), though this pattern may be different in tissues where the most abundant CerS, CerS2, is

highly expressed (Laviad et al., 2008), such as in the kidney or liver (Levy and Futerman, 2010).

Another major limitation is the fact that only average levels of DNA methylation (i.e. GWAM)

were considered when associating with lipids, rather than DNA methylation at specific sites. This

approach was necessary in order to avoid multiple testing correction for over 450,000 CpG methyla-

tion sites. The result is that the associated lipids showed at best suggestive significant associations

with DNA methylation. The associations that we did find were for non-heritable lipids only, especially

the least heritable LPCs, and were largely inverse. It is likely that based on previous studies, more

significant associations with DNA methylation sites could be determined using greater selectivity of

methylation sites at certain genomic regions. Further, as our analysis only showed that a small subset

of non-heritable lipids were associated with GWAM, there is a still a lot variation in the lipidome not

accounted for. CpG site specific analysis for particular genes did not find a relationship between

DNA methylation and gene expression of these transcripts, though this analysis may lack power to

detect these relationships. Other epigenetic mechanisms such as histone modification and chromatin

structural changes could be implicated in regulating lipid metabolism, but are beyond the scope of

this study.

We also acknowledge that our lipidomic analyses was conducted in whole plasma as opposed to

within lipoprotein fractions, which limits insight into biological properties of lipid species. For exam-

ple, serum albumin contains free fatty acids, which were not analysed in the present study, and

would require separate analysis through gas-chromatography mass spectrometry. Since free fatty

acids incorporate into phospholipids and triglycerides, their function may reveal greater complexity

in lipid regulation at the gene level than we have described. Nevertheless, plasma is a common bio-

logical matrix for lipidomic study and likely includes both free lipids and plasma bound components,

and represents a good comparative source for further, more detailed studies. Additionally, we advo-

cate for increased focus on assay of individual lipids. Despite some redundancy between traditional

measurements and the individual species (e.g. total TG correlated well genetically and phenotypi-

cally with individual TGs), substantial variance in many lipid classes is not well represented using tra-

ditional measurements, and heritability of a lipid class may differ from heritabilities of individual

lipids of that class, likely owing to the broad range of heritability estimates obtained, as previously

reported (Frahnow et al., 2017).

In the context of guidelines for lipid health and therapeutic targets, individual lipids may

strengthen genetic associations with lipid loci that could be useful for assessing cardiovascular dis-

ease risk (Tabassum et al., 2019). Non-heritability of some lipids and the malleability of the lipid-

blood transcriptome also suggests these lipids could be amenable to modification therapeutically.

While there is still a long way to go before analysis of individual lipids has direct clinical utility, our

study presents a useful first step towards understanding how the broad lipidome is regulated, espe-

cially in older individuals, and their putative functions beyond that of traditional lipids.

Conclusion
In our study of older Australian twins combining lipidomics, transcriptomics and DNA methylation

data, a small subset of plasma lipids was heritable and included largely Cer, TG and DG species.

Most phospholipids, especially LPCs, were not significantly heritable. Significantly heritable lipids

exhibited high genetic correlations between individual Cer, TG and DG species, as well as between

Cer and SM, and between DG and TG, indicating shared genetic influences between lipids of the

same class or metabolic pathways. Heritable lipids, especially TGs and DGs, were associated with a

greater degree of gene transcript probe associations relative to the non-heritable lipids, and these

transcripts were related to immune function and cell signalling rather than lipid metabolism directly.

Thus, genes not related to lipid metabolism may still be associated with plasma lipid levels. Finally,

associations of genome-wide average DNA methylation with highly non-heritable lipids, especially

LPCs, suggest a potential mechanism by which environmental influences on lipids are conveyed.

Overall, this study shows that a vast majority of plasma lipids are controlled by the environment, and

hence modifiable, with genetic control still a major contributor to Cer, DG and TG lipid levels.
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Further, our study suggests a complex interaction between lipids, environment, DNA methylation

and gene transcription.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Biological
sample
(Homo sapiens)

Fasting human
EDTA plasma
OATS
Wave 3

Sachdev, P.S., et al (2011).
Cognitive functioning in
older twins: the Older
Australian Twins Study.
Australasian journal on
ageing 30 Suppl 2, 17–23.

Subject Cohort used:
Wave three from the
Older Australian
Twins Study (OATS)
Age range: 69–93 years

Plasma used for
lipidomics analysis.
Cohort also has
genetics (SNPs)
data and gene
methylation data

Chemical
compound,
drug

SPLASH Lipidomix
Mass Spec Standard

Avanti (Alabaster,
Alabama,
United States)

SKU 330707-1EA Stable isotope
labelled internal
lipid standards

Other QExactive Plus
mass spectrometer
and associated
software: Xcalibur
(3.1.66.10) and MS
Tune (2.8 SP1
Build 2806))

Thermo Fischer
Scientific (Waltham
MA United States)

MSMS Mass spectrometer
and controller software

Other DIONEX UltiMate
3000
LC System and
associated
Chromeleon
software

Thermo Fischer
Scientific (Waltham MA
United States)

LC and controller
software

The LC system is comprised
of an RS pump, RS
column compartment and
RS autosampler

Software,
algorithm

Lipidsearch
software v4.2.2

Thermo Fischer
Scientific
(Waltham MA
United States)

ThermoFisher
Scientific software

Lipid identification
and peak area
integration

Chemical
compound,
drug

Acteonitrile
UN 1648

Honeywell Burdick and Jackson HPLC grade solvent
CAS 75-05-08

Solvent used for
preparing LC-MS
Buffers
Country of
manufacture: Korea

Chemical
compound,
drug

Ammonium
formate

Honeywell Fluka HPLC grade reagent
CAS 540-69-2

Reagent used for
preparing LC-MS Buffers
UNIVAR analytical
reagent
Country of
manufacture:
Germany

Chemical
compound,
drug

Formic Acid (99%)
UN 1779

AJAX Finechem
(Nuplex Industries,
Australia)

AR Grade
CAS 64-18-6

Solvent used for
preparing
LC-MS Buffers

Chemical
compound,
drug

Milli-Q IQ 7000
purified Water

Merck Millipore Purity monitored
to a minimum of
18 MW resistivity

Purified water for
preparing buffers
and general
laboratory use

Chemical
compound,
drug

Isopropanol Honeywell Burdick
and Jackson Material
No. 10626668
Manufactured: USA

LC-MS grade
CAS 67-63-0

Solvent used for
preparing LC-MS
It is important to use
LC-MS grade
isopropanol
in buffer B, to maintain
low background
signal for LCMSMS

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Other Acquity LC column
LC-MS reverse
phase column

Waters Corporation Acquity UPLC CSH
C18, 1.7 mm,
2.1 � 100 mm column
SKU 186005297

Includes Vanguard
pre-column attachment.

Chemical
compound,
drug

Butanol for
lipid extraction

Asia Pacific
Specialty
Chemicals,
Thermo Fisher
Scientific

CAS 71-36-3 Extraction described:
https://doi.org/www.
frontiersin.org/articles/
10.3389/fneur.2019.00879/full
https://www.mdpi.com/2218-
1989/5/2/389

Chemical
compound,
drug

Methanol HPLC
grade solvent
for lipid extraction

AJAX Finechem
(Nuplex
Industries, Australia)

CAS 67-56-1

Commercial
assay or kit

PAXgene blood
RNA system

PreAnalytix, Qiagen CAS 762165
CAS 762164

RNA blood tube
and extraction kit.
Used as per
manufacturer’s
protocol

Commercial
assay or kit

Agilent Technologies
2100 Bioanalyzer

Agilent G2939BA RNA integrity
number (RIN)
assessment

Commercial
assay or kit

Illumina Whole-Genome
Gene Expression direct
Hybridization Assay
System HumanHT-
12 v4

Illumina, San
Diego, CA

BD-103–0604 Used as per
manufacturer’s
protocol
BD-901–1002

Commercial
assay or kit

Illumina Infinium
HumanMethylation
450 BeadChip

Illumina,
San Diego, CA

WG-314–1002 Used as per
manufacturer’s
protocol

Other Beckman LX20 Analyser
(clinical chemistry
analysis of LDL-C,
HDL-C, triglyerides)

Beckman
Coulter, Australia

Done at Prince of Wales
hospital, Sydney.
Timed endpoint
method used for
calculation of LDL-C.

Commercial
assay or kit

APOE genotyping:
Taqman genotyping
assays
Assays:
C__3084793_20 (rs429358) &
C_904973_10 (rs7412)

Poljak, A., et al. The
Relationship Between
Plasma Abeta Levels,
Cognitive Function and
Brain Volumetrics: Sydney
Memory and Ageing
Study. Curr Alzheimer
Res 2016;13:243–55

Applied Biosystems
Inc, Foster city, CA

Software,
algorithm

ROpenMx 2.12.2 Neale, M.C., et al. (2016).
OpenMx 2.0: Extended
Structural Equation and
Statistical Modeling.
Psychometrika 81, 535–549.

SEM heritability
analysis R package

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

Other R packages:
Minfi, RNOmni,
nlme, rcompanion,
caret

Aryee MJ, et al. Minfi: a
flexible and comprehensive
bioconductor package
for the analysis of
Infinium DNA
methylation
microarrays. Bioinformatics
30(10), 1363–1369 (2014).
McCaw, 2019. RNOmni:
Rank Normal
Transformation Omnibus
Test. In. (R package
Pinheiro et al., 2019. nlme:
Linear and Nonlinear Mixed
Effects Models.
In. (R package
Mangiafico, 2019.
rcompanion: Functions to
Support Extension
Education Program
Evaluation. In. (R package
Kuhn, M., et al.
(2018). caret: Classification
and Regression
Training. In. (R package

Cohorts
The study sample comprised participants aged between 69–93 years enrolled in the Older Australian

Twin Study (OATS), established in 2007. The study recruited participants from three states in eastern

Australia (QLD, NSW and VIC). The OATS collection included; patient data, including blood chemis-

try, MRI, neuropsychiatric assessment/cognitive tests, and medical exams performed over several

visits (waves), each taken at an interval of 16–18 months, with the first visit denoted as ‘Wave 1’, sec-

ond visit denoted as ‘Wave 2’ and so on. From OATS, we selected n = 330 participants who had

available plasma from Wave 3; plasma from this wave collected within a period of up to 3 years

apart. Of these, 260 participants were eligible for heritability analyses, including 150 monozygotic

twins (75 pairs in total; 25 male, 50 female), and 110 dizygotic twins (55 pairs in total; 31 males, and

79 females). The study protocol for OATS has been previously published (Sachdev et al., 2009;

Sachdev et al., 2013; Sachdev et al., 2011). Participants who had significant neuropsychiatric disor-

ders, cancer, or life threatening illness were excluded from this study.

Plasma collection, handling and storage
Blood collection, processing and storage were performed under strict conditions to minimize pre-

analytical variability (Wong et al., 2017). Fasting EDTA plasma was separated from whole blood

within 2–4 hr of venepuncture and immediately stored at �80˚C prior to bio-banking. Samples then

underwent a single freeze thaw cycle for the purpose of creating aliquots, which minimizes subse-

quent freeze thaw cycles for specific experiments. EDTA plasma was chosen as the anticoagulant

since it chelates divalent metals, thereby protecting plasma constituents from oxidation, which is

particularly important for lipids. Thereafter, lipid extractions were performed within 15 min of freeze

thawing and extracts stored at �80˚C and analysed within two months of extraction.

Targeted assays of plasma lipids
Plasma total cholesterol, LDL-C, HDL-C and TG were measured by enzymatic assay at SEALS pathol-

ogy (Prince of Wales Hospital) as previously described (Song et al., 2012), using a Beckman LX20

Analyzer with a timed-endpoint method (Fullerton, CA). LDL-C was estimated using the Friedewald

equation (LDL-C = total cholesterol - HDL-C - triglycerides/2.2).
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APOE genotyping
DNA was extracted from samples using established procedures (Muenchhoff et al., 2017). Geno-

typing of two APOE single nucleotide polymorphisms (SNPs rs7412, rs429358) was performed using

Taqman genotyping assays (Applied Biosystems Inc, Foster City, CA) to determine the APOE haplo-

type, which has three alleles (e2, e3, e4).

Lipid extraction from plasma: Single phase 1-butanol/methanol
Lipid internal standards (SPLASH Lipidomix Mass Spec Standard) were purchased from Avanti (Ala-

baster, Alabama, United States) and diluted ten-fold in 1-butanol/methanol (1:1 v/v). Plasma extrac-

tion was performed in accordance with a single phase extraction as previously described

(Alshehry et al., 2015; Wong et al., 2019b). Briefly, we added 10 mL of 1:10 diluted SPLASH inter-

nal lipid standards mixture to 10 mL plasma in Eppendorf 0.5 mL tubes. 100 mL of 1-butanol/metha-

nol (1:1 v/v) containing 5 mM ammonium formate was then added to the sample. Afterwards,

samples were vortexed for 10 s, then sonicated for one hour. Tubes were centrifuged at 13,000 g

for 10 min. The supernatant was then removed via a 200 ml gel-tipped pipette into a fresh Eppendorf

tube. A further 100 ml of 1-butanol/methanol (1:1 v/v) was added to the pellet to re- extract any

remaining lipids. The combined supernatant was dried by vacuum centrifugation and resuspended in

100 ml of 1-butanol/methanol (1:1 v/v) containing 5 mM ammonium formate and transferred into 300

ml Chromacol autosampler vials containing a glass insert. Samples were stored at �80˚ C prior to LC-

MS analysis. The robustness and reproducibility of this extraction method has been previously dem-

onstrated (Wong et al., 2019b) in our laboratory, with variation in human plasma ranges of measure-

ment between individuals across age, sex (Wong et al., 2019a) and by APOE genotype

(Wong et al., 2019c) reported.

Liquid chromatography/Mass spectrometry
Lipid analysis was performed by LC ESI-MS/MS using a Thermo QExactive Plus Orbitrap mass spec-

trometer (Bremen, Germany) in two experimental batches separated by a month. A Waters ACQ-

UITY UPLC CSHTM C18 1.7 um, 2.1 � 100 mm column was used for liquid chromatography at a flow

rate of 260 mL/min, using the following gradient condition: 32% solvent B to 100% over 25 min, a

return to 32% B and finally 32% B equilibration for 5 min prior to the next injection. Solvents A and

B consisted of acetonitrile:MilliQ water (6:4 v/v) and isopropanol:acetonitrile (9:1 v/v) respectively,

both containing 10 mM ammonium formate and 0.1% formic acid. Product ion scanning was per-

formed in positive ion mode. Sampling order was randomised prior to analysis.

Lipidsearch v4.2.2 search parameters
Lipidsearch software v4.2.2 (Thermo Fischer Scientific, Waltham MA) was applied to perform

searches on raw files using the databases ‘General’ and ‘labelled standards’. For peak detection,

recalc isotope was set to ‘ON’, RT interval = 0.0 min. We used product search for LC-MS method

and the precursor and product tolerances were set at 5.0 ppm and 8.0 ppm respectively. The inten-

sity threshold was 1% parent ion, and the m-score threshold was set to 2.0. For quantitation, mz tol-

erance was set at �5.0 ppm to 5.0 ppm, and the retention time range was set at �0.5 to 0.5 min.

The m-score threshold was 5.0, and all lipid classes were selected for inclusion. Ion adducts included

+H, +NH4 for positive ion mode.

Alignment and peak detection/analysis
The raw data were aligned, chromatographic peaks selected, specific lipids identified and their peak

areas integrated using LipidSearch. Owing to the large number of RAW files being processed, the

alignment step was performed in four separate batches, with a maximum of 100 samples aligned at

any one time, and the data collated and exported to an Excel spreadsheet for manual processing

and statistical analysis. Only lipids that were present in all four alignment batches were included in

our analysis. The raw abundances (peak areas) were normalised by dividing each peak area by the

raw abundance of the corresponding internal standard for that lipid class; for example, all phosphati-

dylcholines were normalised using 15:0-18:1(d7) PC. The intra-assay coefficient of variation (CV) was

calculated by dividing the standard deviation of the normalised abundances by the mean across lipid

species. Lipid ion identifications were filtered using the LipidSearch parameters rej = 0 and average
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peak quality >0.75. Furthermore, identifications with CV < 0.4 from repeated injections of quality

control standards every 20 runs were included. These controls included: (i) blank, to check for col-

umn and chromatography background levels, (ii) internal standards only, to check on system perfor-

mance across a long sequence of runs, (iii) quality control plasma, to check for between run

performance and enable calculation of between run and within run assay CV%. Where duplicate

identifications were found on LipidSearch (i.e. lipid IDs with identical m/z and annotations, and simi-

lar retention times), the lipid ID with the lowest CV%, and highest peak quality score was used.

When necessary, the average m-score (match score, based on number of matches with product ion

peaks in the spectrum [20]) was also used to differentiate closely related lipid species, with the lipid

having the highest m-score selected. All other duplicates were excluded from analysis. Lipid group-

sums were produced by adding lipids within a defined class/subclass together, such as total mono-

unsaturated triglycerides (TG), total ceramides (Cer) etc.

Microarray gene expression
Fasting blood samples for gene expression analyses were collected. The methods for gene expres-

sion data collection analyses have previously been described (Ciobanu et al., 2018). Briefly, PAX-

gene Blood RNA System (PreAnalytiX, QIAGEN) was used to extract total RNA from whole blood

collected in PAXgene tubes following overnight fasting. RNA samples with RNA integrity number

(RIN) �6 as measured by the Agilent Technologies 2100 Bioanalyzer were used in subsequent analy-

ses (Gallego Romero et al., 2014). Assays for gene expression were performed using the Illumina

Whole-Genome Gene Expression Direct Hybridization Assay System HumanHT-12 v4 (Illumina Inc,

San Diego, CA, USA) in accordance with standard manufacturer protocols. Quality control (QC) and

pre-processing of raw gene expression intensity values extracted from GenomeStudio (Illumina)

were performed using the R Bioconductor package limma (Ritchie et al., 2015). Background correc-

tion and quantile normalisation was done using the neqc function. Expressed probes with detection

p-value<=0.05 were retained for analysis. After pre-processing and filtering, 308 samples and

36,053 transcripts were available for gene expression analysis. After overlapping with the lipids data

290 samples were available for lipids – gene expression analysis. Gene abbreviations used in the text

are based on Gene Ontology nomenclature.

DNA methylation
Genome-wide DNA methylation data for 113 monozygotic twin pairs was generated using an estab-

lished genomics provider using peripheral blood DNA collected at baseline (Armstrong et al.,

2017). Randomisation of co-twins across the arrays was performed within experiments. DNA methyl-

ation status was assessed using the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc,

San Diego, CA, USA). Background correction was applied to raw intensity data and the R minfi pack-

age was used to generate methylation beta values (ranging from 0 to 1) (Aryee et al., 2014). Quan-

tile normalisation was used. We excluded sex chromosome probes, probes containing SNPs, cross-

reactive probes as well as probes not detected in all samples from analysis (Chen et al., 2013). Fol-

lowing these quality control (QC) procedures, 420,982 out of 485,512 probes remained. White blood

cell composition was estimated using a previously described method (Houseman et al., 2012),

implemented in minfi. After filtering methylation outliers using the preprocessQantile function of the

minfi package with default parameters, out of the 217 samples with methylation data, 135 over-

lapped with lipids data. Genome wide Average Methylation (GWAM) for each sample across all the

probe level beta values were calculated.

Data analysis
Data transformations
Since different sets of covariates are used to adjust for the lipid levels, gene expression and methyla-

tion, we have first obtained residuals after adjusting for standard confounders in order to obtain lipid

and gene expression profiles independent of cohort characteristics. Residuals for lipids were

obtained after adjusting for age, sex, education, BMI, lipid lowering medication, smoking status,

experimental batch and APOE e4 carrier status, which were then inverse normal transformed using

the R package RNOmni (McCaw, 2019). This transformation eliminated experimental batch separa-

tion effects (Figure 2—figure supplement 1A and B). Residuals for gene expression were obtained
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after adjusting for age, sex, experimental batch, RIN, blood cell counts (eosinophils, lymphocytes,

basophils and neutrophils - obtained using standard laboratory procedures by Prince of Wales

SEALS Pathology). Residuals for methylation beta values were obtained after adjusting for age, sex,

BMI and estimated white blood cell counts (CD8T, CD4T, NK, B-cell, monocytes, and granulocytes).

Residuals were used for all the analyses presented here.

Heritability estimation
Heritability was estimated using SEM. Under the SEM the phenotypic covariance between the twin

pairs is modelled as a function of additive genetic (A), shared environmental (C) and unique environ-

mental (E) components. In the narrow sense heritability is defined as the ratio of additive genetic var-

iance [Var(A)] to the total phenotypic variance [Var(A)+Var(C)+Var(E)]. The model containing these

three parameters (A, C and E) is known as the ACE model. For model parsimony and test concerning

the variance parameters, models with only A and E components, known as AE model, and the mod-

els with CE and E components would be fit and compared with the full ACE model (Neale and Car-

don, 1992). Genetic and environmental correlations were estimated using the bivariate Cholesky

model. Heritability, genetic correlations and environmental correlations under the twin SEM were

estimated using the R OpenMx (2.12.1.) package (Neale et al., 2016).

Sex- and age-related differences in heritability
Differences in heritability between the two sexes were examined using the sex heterogeneity model.

This model is similar to the general ACE model but additional parameters are used to represent the

genetic and environmental effects of male and female samples. The male and female path coeffi-

cients are used to model the opposite sex pair in DZ twins. The full likelihood is the sum of likeli-

hoods under MZ, DZ and opposite sex pairs. Test of equality of the parameters under male and

female samples were examined by likelihood ratio test comparing the heterogeneity model against

a constrained homogeneity model assuming the same set of parameters for male and female sam-

ples. Age-related change in heritability was examined using a gene-environment interaction model

(Purcell, 2002). The path coefficients under this model were further decomposed to accommodate

the age effects.

Association tests
Test of association of lipids with probe level gene expression were performed using the linear mixed

model and the lme function in R package nlme (Pinheiro et al., 2019). Gene expression and lipid

residuals (adjusted for age, sex, education, BMI, lipid lowering medication, smoking status, experi-

mental batch and APOE e4 carrier status) were used as independent and dependent variables

respectively in these models. A p-value threshold of 1.39 � 10�6 (0.05/35971, obtained by Bonfer-

roni conservative correction for total number of probes) was used to define significant associations

of lipids with probe level gene expression.

Similarly, lipid residuals were used as dependent variable and average methylation value was

used as the independent variable to test the association of lipids with methylation. The proportion

of variance in lipids explained by the gene expression variation and methylation variance were esti-

mated based on the log-likelihoods as implemented in the R package rcompanion (Mangia-

fico, 2019). For most of the lipids, multiple gene expression probes were associated. Hence to

avoid overfitting and multi-collinearity, we used penalized regression methods as implemented in

glmnet of the R package caret (Kuhn et al., 2018) to reduce the number of probes in the regression

model. The list of probes retained in the glmnet model was used to estimate the variance contrib-

uted by the gene expression.

For analysis of GWAM (Table 4), r2 is McFadden’s pseudo-r2. p-value for h2 is the p-value for test

of significant additive genetic effects (h2 = heritability). Thus p-value for h2 <0.05 indicates significant

heritability. Regression coefficients are based on average methylation at CpG sites excluding any

with known SNPs influencing lipid levels.

Lipid shorthand notation
Lipids are named according to the LIPID MAPS convention (Fahy et al., 2009). Lipid abbreviations

are as follows: ceramide (Cer), cholesterol ester (CE), diacylglycerol (DG), lysophosphatidylcholine
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(PC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingo-

myelin (SM) and triglyceride (TG).

R-Scripts
R code scripts for major analyses described in the Data Analysis are available by author request.
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