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Abstract: Oral submucous fibrosis (OSF) is characterized by abnormal collagen deposition. It is a
precancerous disorder and transforms into a malignant tumor in 1.5–15% of all cases. Symptoms
include submucous fibrosis, ulceration, xerostomia, a burning sensation, and restricted mouth
opening. All of these greatly interfere with patient quality of life. The present review introduces
OSF from a molecular perspective and summarizes what is known about its underlying mechanisms,
diagnostic biomarkers, and therapeutic interventions. In addition to the aggressive treatment of OSF,
its prevention is also important. Future research should, therefore, focus on improving the oral health
literacy of the patients susceptible to OSF.

Keywords: collagen deposition; diagnostic biomarkers; oral submucous fibrosis (OSF); precancerous
disorder; therapeutic interventions; underlying mechanisms

1. Introduction

Oral submucous fibrosis (OSF) is a chronic disease that produces scars, tissue fibrosis, and
precancerous lesions. It frequently occurs in the buccal mucosa [1,2]. Pathological characteristics
include chronic inflammation, excessive collagen deposition in the connective tissues below the
oral mucosal epithelium, local inflammation in the lamina propria or deep connective tissues, and
degenerative changes in the muscles. OSF patients experience a severe burning sensation in the
mouth after ingesting spicy foods. Other symptoms of OSF include dry mouth, pain, taste disorders,
restricted tongue mobility, trismus, dysphagia, and altered tone. This disease contributes significantly
to mortality because of its high malignant transformation rate (1.5–15%) [3]. The incidence of OSF
differs with ethnicity and region and is closely associated with diet, habits, and culture [4–6]. India
has the greatest number of OSF patients worldwide but the disease also occurs in Taiwan and other
Asian countries [7,8]. There are also numerous OSF patients in South Africa as this country has many
Indian immigrants. According to World Health Organization (WHO) statistics, there are >5 million
OSF patients globally [9,10]. In India, OSF occurs more often in women than men but the opposite is
true for other regions. The patient age range is 20–40 y.
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Causative factors of OSF include autoimmunity, vitamin B, C, and iron deficiencies, chewing betel
nut, consumption of spicy foods, human papilloma virus (HPV) infection, and genetic mutations [11–15].
Epidemiological studies have shown that chewing betel nut is one of the most significant risk factors
for OSF [16]. Among OSF patients in China, 62.3% have the habit of chewing betel nuts [17]. Certain
studies also reported that habits such as chewing and smoking tobacco and drinking alcohol increase
the risk of OSF [12,18]. A study in Taiwan indicated that a high proportion of betel quid chewers are
also tobacco smokers (86%) or alcohol drinkers (74%) [19]. Chewing betel nut and tobacco together
substantially increases the incidence of OSF [20]. Other studies confirmed that drinking alcohol and
chewing betel nut have an additive effect on OSF induction [19,21].

OSF is widely recognized as a precursor to oral precancer. Previous studies found that OSF
patients in China have a 1.19% chance of developing oral cancer. In India, ~7.6% of all OSF patients
develop oral cancer [8,22]. Previous studies proved that the duration of OSF and the extent to which
its symptoms worsen are directly correlated with oral cancer progression. OSF generally progresses
to oral cancer 3–16 y after the initial OSF diagnosis [23,24]. Unfortunately, there are no effective
treatments for OSF available for clinical use. Here, the aim of this work is review the existing literature
on the pathogenesis, molecular diagnosis, and clinical treatment of OSF in order to elucidate effective
molecular prevention, diagnosis, and treatment strategies for it.

2. Pathological Symptoms and Molecular Mechanism

2.1. Pathological Symptoms

Chewing betel nut is the main cause of OSF [25–28]. The histopathology of OSF comprises
various epithelial alterations, rete-peg shapes, and subepithelial deposition of dense bands of collagen
fibers. At different OSF stages, epithelial alterations vary from atrophy with hypoplasia to hyperplasia
and/or dysplasia [29,30]. A shift in epithelial compliance in response to increased connective tissue
fibrosis favors the initiation of carcinomatous processes such as epithelial-mesenchymal transition
(EMT) [31,32]. The most common initial symptoms of OSF are ulceration, xerostomia, a burning
sensation, and limited ability to open the mouth [27,33]. These effects interfere with the daily life of the
patient and may lead to complications. After tissue injury, myofibroblasts differentiate into contractile
and secretory cells to close the wounds, produce components of the extracellular matrix (ECM) and
secrete cytokines. However, excessive accumulation of ECM proteins such as collagen may result in
pathological fibrosis [34,35].

2.2. Defective Collagen Homeostasis

Several studies confirmed that OSF is the result of collagen dysregulation, namely, increased
biosynthesis and reduced clearance [12,25,36]. Betel nut contributes to these alterations in collagen
metabolism. Betel nut contains alkaloids, flavonoids, and copper. All of these interfere with ECM
homeostasis in oral tissue [12]. A high proportion of betel nut chewers also smoke tobacco and drink
alcohol. Studies confirmed that tobacco smoking and alcohol consumption have an additive effect on
OSF pathogenesis [19]. A schematic diagram of the molecular pathology mechanism of OSF is shown
in Figure 1.
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Figure 1. The molecular pathologic mechanism of oral submucous fibrosis (OSF). 

2.2.1. Increased Collagen Synthesis 

The four main alkaloids in betel nut are arecoline, arecaidine, guvacine, and guvacoline. These 
stimulate fibroblasts to produce collagen [12,16,37]. Both OSF- and normal cells produce ~85% type I 
collagen and ~15% type III collagen. In OSF cells, however, the ratio of the α1(I) to α2(I) chains of 
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(calcium hydroxide) to betel nut in pan facilitates the hydrolysis of arecoline to arecaidine. The latter 
amplifies fibroblastic proliferation and increases collagen formation [35]. 
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Fibroblast phagocytosis plays an important role in the regulation of ECM remodeling by 
collagen degradation [12]. However, fibroblasts from patients with OSF are markedly deficient in 
collagen phagocytosis. This defect may result in fibrosis [12,16]. It was demonstrated that collagen 
phagocytosis was inhibited in OSF fibroblasts treated with arecoline [12,35]. Flavonoids such as 
tannins and catechins are other important components of betel nut and work synergistically with 
alkaloids to induce OSF. Flavonoids stabilize collagen by inhibiting collagenase and stabilizing 
collagen fibrils [36]. Localized mucosal inflammation induced by betel nut recruits activated T cells 
and macrophages and increases cytokines and TGF-β. TGF-β significantly increases collagen 
production by activating the procollagen genes COL1A2, COL3A1, COL6A1, COL6A3, and COL7A1. 
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collagen fibers [12,35]. TGF-β also impedes collagen degradation by activating the tissue inhibitor of 
the matrix metalloproteinase (TIMP) gene and the plasminogen activator inhibitor (PAI) [25,36]. 
Decreased levels of gelatinolytic proteinases such as MMP (matrix metalloproteinase)-2 and MMP-9 
secreted by fibroblasts and increased levels of TIMP-1 contribute to the loss of ECM equilibrium in 
OSF [35,43]. Arecoline significantly elevates TIMP-1 protein and mRNA expression in buccal mucosal 
fibroblasts [43]. Copper promotes LOX activity in OSF [44,45]. All of these significantly increase 
collagen production and maintenance [36,46]. 

Figure 1. The molecular pathologic mechanism of oral submucous fibrosis (OSF).

2.2.1. Increased Collagen Synthesis

The four main alkaloids in betel nut are arecoline, arecaidine, guvacine, and guvacoline.
These stimulate fibroblasts to produce collagen [12,16,37]. Both OSF- and normal cells produce
~85% type I collagen and ~15% type III collagen. In OSF cells, however, the ratio of the α1(I) to α2(I)
chains of type I collagen is ~3:1 whereas in normal cells it is ~2:1 [38,39]. Moreover, the addition of
slaked lime (calcium hydroxide) to betel nut in pan facilitates the hydrolysis of arecoline to arecaidine.
The latter amplifies fibroblastic proliferation and increases collagen formation [35].

2.2.2. Reduced Collagen Clearance

Collagen clearance is reduced by collagen stabilization, defective ECM dynamics, and inhibition
of phagocytosis. Arecoline promotes the formation of cross-links between collagen peptide chains
which renders the collagen resistant to degradation by collagenases [40,41]. The active constituents
in betel nut induce substantial amounts of collagen synthesis in the oral mucosal cells. Cystatin C
inhibits cysteine proteinases and might also stabilize collagen fibrils in OSF [42]. Arecoline upregulates
cystatin C in buccal mucosal fibroblasts in a dose-dependent manner [12].

Fibroblast phagocytosis plays an important role in the regulation of ECM remodeling by collagen
degradation [12]. However, fibroblasts from patients with OSF are markedly deficient in collagen
phagocytosis. This defect may result in fibrosis [12,16]. It was demonstrated that collagen phagocytosis
was inhibited in OSF fibroblasts treated with arecoline [12,35]. Flavonoids such as tannins and catechins
are other important components of betel nut and work synergistically with alkaloids to induce OSF.
Flavonoids stabilize collagen by inhibiting collagenase and stabilizing collagen fibrils [36]. Localized
mucosal inflammation induced by betel nut recruits activated T cells and macrophages and increases
cytokines and TGF-β. TGF-β significantly increases collagen production by activating the procollagen
genes COL1A2, COL3A1, COL6A1, COL6A3, and COL7A1. It also increases procollagen proteinase and
upregulates lysyl oxidase (LOX) which cross-links collagen fibers [12,35]. TGF-β also impedes collagen
degradation by activating the tissue inhibitor of the matrix metalloproteinase (TIMP) gene and the
plasminogen activator inhibitor (PAI) [25,36]. Decreased levels of gelatinolytic proteinases such as
MMP (matrix metalloproteinase)-2 and MMP-9 secreted by fibroblasts and increased levels of TIMP-1
contribute to the loss of ECM equilibrium in OSF [35,43]. Arecoline significantly elevates TIMP-1
protein and mRNA expression in buccal mucosal fibroblasts [43]. Copper promotes LOX activity in
OSF [44,45]. All of these significantly increase collagen production and maintenance [36,46].



Int. J. Mol. Sci. 2019, 20, 2940 4 of 22

2.3. Inflammatory Cytokines and Growth Factors

During betel nut chewing, the thick fibers injure the oral mucosa which causes inflammation
of epidermal cells and activates macrophages to secrete cytokines. Transforming growth factor-β
(TGF-β) is a major cytokine involved in OSF progression. It regulates the expression of α-SMA and
type 1 collagen in myofibroblasts [47–49]. Studies have shown arecoline induced connective tissue
growth factor (CTGF) biosynthesis via reactive oxygen species (ROS) and the NF-κB, JNK, and p38
MAPK pathways in buccal mucosal fibroblasts [35,48]. CTGF overexpression in individuals with the
betel nut chewing habit may enhance fibrotic activity and pathogenesis in OSF [12,35]. Arecoline
also upregulates other proinflammatory and profibrotic cytokines such as IL-1, IL-6, IL-8, TNF-α,
PDGF, b-FGF, and KGF-1. It downregulates IFN-γ which, in turn, promotes collagen synthesis [12,50].
Changes in cytokines and growth factors cause fibroblast proliferation and collagen synthesis near the
site of injury, thereby resulting in fibrosis [51–53]. In addition to the classic targets of fibrosis—TGF-β,
IL-6 and more—a large amount of evidence from across different tissues, such as heart, lung, skin,
liver, colon, and kidney, indicated that IL-17 and its downstream pathways are closely related to the
initiation and propagation of fibrosis [54]. The role of IL-17 in the progression of OSF has not yet been
explored, and this subject is worthy to investigate in the future.

2.4. Malignant Transformation

OSF constitutes a failure in the wound healing process following chronic persistent injury to the
oral mucosa [55]. Paymaster first identified the malignant potential of OSF in 1956 but its mechanisms
have not yet been elucidated [28]. The high mortality rate associated with oral squamous cell carcinoma
(OSCC) is the result of late diagnosis of the malignant potentiality of its associated precancers [29,56].
Malignant transformation in the OSF background is complex. It involves numerous pathways
and molecules associated with hypoxia, the cell cycle, angiogenesis, and epithelial mesenchymal
transition [57].

2.4.1. Hypoxia

It was proposed that hypoxia is an important microenvironmental factor in OSF associated with
betel quid chewing and its malignant transformation [57–60]. Hypoxia-inducible factor-1α (HIF-1α)
is a key regulator of cellular responses to hypoxia and is strongly upregulated in various fibrotic
diseases including OSF [61]. HIF-1α also participates in the upregulation of various growth factors
associated with fibrogenesis such as vascular endothelial growth factor (VEGF), TGF-β, fibroblast
growth factor (FGF), platelet-derived growth factor (PDGF), and epidermal growth factor receptor
(EGFR). Hyperbaric oxygen treatment (HBO) increases oxygen tension and delivery to oxygen-deficient
tissues and may serve as a supplementary therapy for fibrogenesis involving hypoxia [57,62].

2.4.2. Cell Cycle

The proliferating cell nuclear antigen (PCNA) index is positively correlated with the malignant
transformation potential. The PCNA index was higher in OSF epithelium than normal oral mucosa.
There was a significant difference in the expression levels between the dysplastic OSF group and the
nondysplastic group [57]. Cyclin B1, p34 (cdc2), and p-survivin play key roles in carcinogenesis by
influencing mitosis in the G2/M phase [63–65]. All of these molecules were upregulated in OSF relative
to normal mucosa and there was a significant difference between OSF and OSCC in terms of their
expression levels. P63 is consistent with p53 and regulates cell proliferation and differentiation. It serves
as a surrogate marker of malignant transformation [66]. Nuclear positivity to p63 consistently increased
with OSF progression to OSCC. Thus, p63 is a quantitative biomarker of the malignant potential and
progression of OSF [67]. HPV infection is another factor leading to p53 inactivation. The E6 and
E7 oncoproteins of high-risk HPV inactivate the p53 and retinoblastoma tumor suppressor proteins,
resulting in loss of control of the cell cycle [68]. The prevalence of any HPV type in precancerous
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lesions (including OSF) was found to be higher than in the healthy control samples. However, only
high-risk HPV types (types 16, 18, 31, 33, 35, 39, 45, 52) have a higher prevalence in OSCC lesions.
This shows that high-risk HPV types are prevalent in OSCC and may play a role in its progression,
while low-risk types are associated with oral pre-cancerous lesions [69].

2.4.3. Angiogenesis

Multiple angiogenesis-related molecules such as inducible nitric oxide synthase (iNOS), b-FGF,
TGF-β, PDGF, and HIF-1α are expressed in OSF and maintain the vascularity of the underlying
connective tissue [57]. An increase in vasculature is an adaptive response of the mucosa to hypoxia
induced by progressive fibrosis. However, once the malignant transformation has already occurred, it
will promote tumor proliferation [70]. Arecoline toxicity may reduce vascularity in OSF. Conventional
histology and morphological analysis demonstrated that mucosal vascularity declines with advanced
fibrosis and increases in the juxtaepithelial area when dysplasia appears in the epithelium [71].

2.4.4. Epithelial Mesenchymal Transition

EMT is a complex process involving the loss of cell-cell attachment, polarity, and specific epithelial
markers, cytoskeletal remodeling, and the establishment of a mesenchymal phenotype [72]. EMT may
be involved in the malignant transformation of OSF. EMT activators participate in betel nut associated
OSF [27,55,73,74]. EMT-inducing transcription factors such as snail, slug, and twist are involved in the
pathogenesis of betel nut related OSF. They initiate and facilitate the acquisition of a mesenchymal
phenotype by repressing E-cadherin [27,73,75]. Zinc finger E-box binding homeobox 1 (ZEB1), another
EMT-inducing transcription factor, is also implicated in betel nut associated OSF pathogenesis because
it activates the α-SMA promoter [74].

3. OSF Diagnosis

3.1. Differential Diagnosis

Clinical, functional, and histological staging/classification of OSF have been documented. Certain
staging systems are used by doctors for clinical OSF diagnosis or treatment [76]. In clinical
staging/classification, early OSF presents with stomatitis and vesiculation, moderate OSF has a
marble-like appearance and palpable fibrous bands, and severe OSF is manifested by leukoplakia
and erythroplakia. In functional OSF classification, stages I–V range from a maximum interincisal
mouth opening of >35 mm to <5 mm. As OSF may transform to OSCC, solid biopsies are necessary
to assist with clinical diagnoses and therapeutic planning. In histological staging/classification, the
number and distribution of fibroblasts, collagen fibers, inflammatory cells, and blood vessels are used
to determine whether OSF is at an early, intermediate, or advanced stage. Moreover, biomarkers
such as proteins, mRNAs, and non-coding RNAs are applied towards OSF staging and classification.
In recent years, liquid biopsies of sera and saliva have been used to extend the functionality of the
measuring instruments. Bioinformatic analyses can also be implemented in real time, reduce invasive
and/or noninvasive diagnostic techniques, and replace surgical solid biopsies in OSF diagnosis.

3.2. Solid Biopsy

Tissue staining is the most common method of obtaining histological images from solid biopsies.
Biomarkers are detected by methylated PCR, real-time PCR, western blotting, and staining techniques.
These are used to identify promoter methylation, gene and protein expression levels, and marker
locations in the tissues.

3.2.1. Hematoxylin and Eosin (H&E) Stain and Specific Stains

H&E staining is often used as a control for immunohistochemical (IHC) staining as it indicates
whether tissue processing has been performed correctly and reveals any artifacts. It clearly elucidates
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basic tissue morphology by staining the nuclei and cytoplasm purple and pink, respectively. Pathologists
make diagnoses based on H&E staining as well as other specific stains and IHC detection in particular
cases. Epithelial alterations, rete-peg shapes, subepithelial depositions of dense bands of collagen
fibers, and inflammatory cells are regarded by pathologists as OSF markers. The relative efficacies of
Mallory’s, Masson’s, and Van-Gieson stains were compared against H&E staining on 30 OSF tissues.
Mallory’s stains most effectively highlighted variations in the thick keratin layer of the stratified
squamous epithelium, subepithelial edema, subepithelial hyalinization, fibrillar and homogeneous
collagen, and areas of degenerating skeletal muscle bundles and hyalinization. However, it barely
revealed constricted blood vessels [77].

3.2.2. Coding Gene and Protein Biomarkers in OSF Tissues

Several pathways and molecules associated with hypoxia, the cell cycle, angiogenesis, and EMT
are involved in OSF pathology. Most OSF cases presented with positive PCNA expression in the basal
and suprabasal layers. In 77% of the cases, there was also positive PCNA expression in the superficial
layer [78]. Proteomic two-dimensional electrophoresis (2-DE) identified cyclophilin A (CYPA) as a
biomarker and gene intervention target of OSF [79]. CYPA participates in carcinogenesis. It may
promote cell proliferation and inhibit apoptosis by caspase deactivation. The latter is a therapeutic
target for OSF [80]. Nuclear receptor coactivator 7 (NCOA7) was selected by matrix-assisted laser
desorption ionization imaging mass spectrometry (MALDI-IMS) analysis and confirmed by cell lines,
animal models, and 32 pairs of OSCC tissues and their corresponding adjacent noncancerous OSF
tissues. NCOA7-associated proteins regulated the cell cycle and cell proliferation. These are potential
biomarkers for the early diagnosis of OSF malignant transformation [81].

Arecoline induces HIF-1α protein expression in a dose-dependent manner. HIF-1α expression
was significantly upregulated in the fibroblasts, epithelial cells, and inflammatory cells of betel quid
chewers. Activated HIF-1α stimulates PAI-1 expression and induces extracellular matrix accumulation
leading to OSF [58]. CD105 is a TGF-β signaling receptor and plays important roles in angiogenesis and
fibrogenesis. It is essential for endothelial cell proliferation and promotes angiogenesis. CD105 was a
more specific biomarker than CD34 in the determination of OSF neoangiogenesis [82]. A combination
of MALDI-MS, one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D
SDS-PAGE), and nano liquid chromatography (nanoLC) was used to identify α-enolase overexpression
in biopsies of oral OSF with dysplasia relative to nondysplastic OSF and normal oral mucosa.
The α-enolase promotes cell proliferation by regulating PI3K/AKT signaling, inducing tumorigenesis
by activating plasminogen, and increasing the Warburg effect. High α-enolase expression in OSF
tissues is detected by western blotting, IHC, and RT-qPCR [83].

Ki67 and cyclin D1 evaluate cell proliferation while p16 and p53 are tumor-suppressor genes.
β-catenin and c-Jun are associated with transcriptional activity. The hepatocyte growth factor receptor
c-Met and the insulin-like growth factor II mRNA-binding protein 3 (IMP3) are linked with tumor
invasion. In OSF, Ki67, cyclin D1, c-Met, and IMP3 are upregulated but β-catenin is downregulated.
Ki67 upregulation combined with p16 downregulation significantly differs between transforming
and nontransforming OSF [84]. The secreted Wnt antagonist Wnt inhibitory factor-1 (WIF1) inhibits
Wnt/β-catenin signaling by directly binding to Wnt proteins. WIF1 promoter methylation may account
for the β-catenin activation characteristic of OSF carcinogenesis [85]. In contrast, promoter methylation
suppresses the secretion of the frizzled-related proteins 1 (SFRP1) and SFRP5 and are coupled with
cytoplasmic/nuclear β-catenin accumulation in OSF carcinogenesis [86]. β-catenin expression levels in
the normal, hyperplastic, dysplastic, and OSCC stages of OSF merit further investigation.

3.2.3. Non-Coding Gene Biomarkers in OSF Tissues

Certain microRNAs are stable in frozen or paraffin-embedded tissues and low copy numbers
may nonetheless be analyzed by reverse-transcription qPCR. The miR-200b and miR-200c were
downregulated in OSF specimens. Arecoline treatment reduced miR-200c expression in buccal
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mucosal fibroblasts. The miR-200c and miR-200b upregulated E-cadherin by targeting ZEB1 and
ZEB2, respectively [87,88]. ZEB1 binds to the α-smooth muscle actin (α-SMA) promoter and induces
α-SMA which is overexpressed in the myofibroblasts during fibrogenesis. LncRNA GAS5-AS1 was
downregulated in OSF tissues. It repressed phosphorylated Smad2 and downregulated TGF-β/Smad
signaling and α-SMA expression in myofibroblasts [89]. In contrast, LINC00974 had the opposite
effects. LINC00974 was aberrantly upregulated in OSF tissues and myofibroblasts [90].

3.3. Liquid Biopsy

Current biochemical and biomolecular techniques are more stable and sensitive than their
predecessors. Even low concentrations of free ions, circulating cells, proteins, nucleic acids, and
enzymes may be detected in body fluids. Serum protein and globulin levels were significantly decreased
in OSF relative to normal tissues [91]. Serum copper levels gradually increased as OSF transformed
into OSCC along with the duration of the betel quid chewing habit [92]. Saliva samples are easily
obtained from patients and have been used as diagnostic samples for the past decade. In recent years,
OSF biomarkers have been identified in serum and saliva and the feasibility of their application in OSF
diagnosis has improved as evidence and sample sizes have increased.

3.3.1. Biomarkers in OSF Serum

The rates of sister chromatid exchange per lymphocyte in patients with OSF and pan chewers
were significantly higher than those in healthy controls. ROS-induced DNA damage is responsible for
genome instability [93]. The levels of the provitamin A carotenoid β-carotene decreased with OSF
progression [94]. Erythrocyte superoxide dismutase (E-SOD) and glutathione peroxidase (GPx) levels
were significantly lower in the OSF, oral leukoplakia, and oral cancer groups than the control [95].
Lactate dehydrogenase (LDH) catalyzes the oxidation of lactate to pyruvate and its levels are markedly
elevated in several potentially malignant lesions/conditions and oral cancer [96]. Serum LDH levels
were directly correlated with betel chewing frequency and mouth opening in OSF patients. On the
other hand, no such associations were found for salivary LDH [97]. Serum LDH may be a better
biological marker of OSF than salivary LDH. OSF patients presented with elevated DNA damage
and lipid peroxidation levels compared with healthy controls. As malondialdehyde (MDA) is a lipid
peroxidation marker, the evaluation of its levels by comet assay may help identify OSF patients with
high malignant potential [98].

3.3.2. Biomarkers in OSF Saliva

MDA and 8-hydroxy-2-deoxyguanosine (8-OHdG) are detectable in serum, urine, and saliva.
Salivary 8-OHdG and MDA were higher in OSF patients but salivary vitamins C and E were lower in
OSF patients than healthy normal controls. Multiple biomarkers may increase OSF diagnosis specificity
and sensitivity and could include 8-OHdG, MDA, vitamin C, and vitamin E [99]. In another study,
total salivary protein and lipid peroxides were higher but vitamins A, C, and E and salivary SOD
and GPx were lower in OSF patients than the controls [100]. Thus, oxidative stress is correlated with
OSF progress. Salivary LDH was significantly higher in the OSF group than the control [101]. S1007
was first isolated from squamous epithelial cells in psoriatic skin. The levels of salivary S100A7 were
higher in OSF patients than the healthy normal group [102]. High S100A7 expression is observed in
potentially malignant oral disorders and is associated with the risk of malignant transformation in oral
dysplasia [103,104].

3.4. Instrumentation for OSF Diagnosis

Biopsies are usually performed to confirm clinical diagnoses. Certain patients with OSF refused
incisional biopsy because of the low transforming rate of OSF. Therefore, autofluorescence spectroscopy,
optical coherence tomography (OCT), and Fourier transform infrared spectroscopy (FTIR) were used
to assist incisional biopsy in OSF diagnosis.
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Autofluorescence spectroscopy exploits the fact that various diseased tissues have different and
unique histomorphological characteristics. When tissues are excited to a suitable wavelength, intrinsic
fluorophores rise to various fluorescence emission spectra. For example, the maximum emissions
for tryptophan, collagen, and nicotinamide adenine dinucleotide (NADH) are measured at 340 nm,
380–400 nm, and 440–460 nm, respectively. The 330 nm excitation applied to OSF mucosa had a
significantly higher 380 nm emission peak and a significantly lower 460 nm emission peak than those of
normal oral mucosa [105]. There were significant statistical differences in the emission peaks between
normal and OSF patients and between betel quid chewers and OSF patients [106]. After the OSF was
treated, the mucosa presented with relatively lower intensity at ~385 nm and comparatively higher
intensity at ~440 nm than untreated OSF mucosa [107].

In 1988, the time-domain OCT system was used for the first time on human teeth and oral mucosa.
OCT uses low-coherence light to capture two- and three-dimensional images at micrometer resolution
within optical scattering media. Epithelial thickness and the standard deviation (SD) of the A-mode
scan intensity in the laminar propria layer are effective diagnostic markers for OSF [108].

3.5. Combining Instrumentation and Sera in OSF Diagnosis

FTIR generates infrared absorption and emission spectra of solids, liquids, and gases. Previously,
as mentioned above, it is stated that serum protein, globulin, vitamin, copper, specific protein, enzyme,
and nucleic acid levels significantly differed between OSF patients and healthy controls. Combining
instrumentation with sera is more effective than either approach alone and may save time and reagents
in OSF diagnosis. FTIR spectroscopy of sera from OSF patients could be useful in rapid and accurate
preoperative screening/diagnosis [109].

At present, there are more biomarkers available for solid than liquid biopsies. They are associated
with cell proliferation (PCNA, Ki67, cyclin D1, cyclophilin A, NCOA7, and α-enolase), angiogenesis
(HIF-1α, PAI-1, and CD105), cell invasion (c-Met and IMP3), Wnt-dependent signaling (WIF1, SFRP1,
SFRP5, and β-catenin), promoter methylation (WIF1, SFRP1, and SFRP5), microRNAs (miR-200b
target ZEB2 and miR-200c target ZEB1), and lncRNAs (lncRNA GAS5-AS1 and lncRNA LINC00974
with activated and inhibited TGF-β/Smad signaling, respectively). Ki67 in combination with p16 and
NCOA7 could detect high OSF transformation rates to malignant cells. Liquid biopsies are relatively
less invasive and highly efficient. The protein and globulin levels in the sera of OSF patients are
comparatively downregulated. The elevated copper levels seen in OSF patients may be a consequence
of betel chewing. Genome instability markers are also used in OSF diagnosis. These include sister
chromatid exchange in the lymphocytes of OSF patients. To this end, a comet assay for DNA damage
detection is used. Anti-ROS enzymes (E-SOD, GPx), ROS products (MDA), and cellular metabolic
enzyme (LDH) activities in sera differed between normal and OSF patients. Certain enzymes and
ROS products such as GPx, SOD, LDH, MDA, and 8-OHdG were detectable in both sera and saliva.
However, 8-OHdG was not detected in the sera of OSF patients. The levels of vitamins C and E
were reduced in OSF saliva compared to those of normal controls. Upregulated and downregulated
biomarkers are listed in Table 1. Techniques of molecular biology were used to screen for OSF
biomarkers, and instrumentation such as autofluorescence spectroscopy, OCT, and FTIR was also
adapted for OSF diagnosis.
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Table 1. Biomarkers in solid biopsy and liquid biopsy.

Biomarker in Tissues Note Sample Size/References

Up: PCNA Cell proliferation 30 OSF, 10 OSCC [78]

Up: cyclophilin A Cell proliferation 25 normal, 25 OSF [79,80]

Up: NCOA7 Cell proliferation, early diagnosis of OSF
malignant transformation

24 OSF tissues without malignant
transformation, 34 OSCC tissues arising

from OSF [81]

Up: HIF-1α, PAI-1 Angiogenesis 6 normal, 25 OSF [58]

Up: CD105 Angiogenesis 15 normal, 30 OSF [82]

Up: α-enolase Cell proliferation, tumorigenesis (increased
Warburg effect)

13 normal, 19 OSF without dysplasia
(OSFWT), 23 OSF with dysplasia

(OSFWD), 28 OSCC [83].

Up: Ki67, cyclin D1, c-Met,
IMP3Down: β-catenin

Cell proliferation (Ki67, cyclin D1), invasion
(c-Met, IMP3), the combined biomarkers of
Ki67 and p16 (tumor suppressor) showed

significantly different expression between the
transformation and non-transformation

groups

6 normal, 36 OSF [84]

Down: WIF1 Wnt antagonist, inhibits Wnt/β-catenin
signaling by directly binding to Wnt proteins. 15 normal tissue, 45 OSF, 55 OSCC [85]

Up: β-catenin
Down: SFRP-1, SFRP-5 Wnt/β-catenin signaling 15 normal, 45 OSF, 55 OSCC [86]

Down: miR-200b,
miR-200c

Up: ZEB1, ZEB2

miR-200b targeting ZEB2, miR-200c targeting
ZEB1

25 control, 25 OSF [87]
20 control, 20 OSF [88]

Down: LncRNA
GAS5-AS1

LncRNA GAS5-AS1 bind to Smads and
prevents them binding to SBE on TGF-β
target gene promoter, thereby negatively

regulates TGF-β/Smad signaling pathway

25 control, 25 OSF [89]

Up: LncRNA LINC00974 LncRNA LINC00974 activates TGF-β/Smad
signaling 20 OSF tissues [48,90]

Biomarker in Serum Note Sample Size/References

Down: Serum protein,
globulin - 50 control, 50 nicotina stomatitis, 50 OSF,

50 leukoplakia, 50 malignancy [91]

Up: Copper
Serum copper levels increased gradually from
precancer to cancer, as the duration of betel

quid chewing habit increased.
30 control, 30 OSF, 30 OSCC [92]

Up: Sister chromatid
exchange in lymphocytes Genotoxic, genome instability,

10 male patients who had the habit of
chewing pan for 5 or more years, 10 male

patients with OSF who had panparag
chewing habit and 10 age- and

sex-matched controls without any
chewing habit [93]

Down: β-carotene β-carotene as the best-known provitamin A
carotenoid 40 control, 40 OSF [94]

Down: E-SOD, GPx Anti-ROS stress 25 control, 25 OSF, 25 leucoplakia, 25
OSCC [95]

Up: LDH Cell metabolism 30 control, 30 OSF [96]
20 control, 20 OSF [97]

Up: MDA, comet assay ROS product (MDA), DNA damage
phenotype (comet assay) 30 control, 30 OSF [98]
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Table 1. Cont.

Biomarker in Saliva Note Sample Size/References

Up: 8-OHdG, MDADown:
Vitamin C, vitamin E

ROS product (8-OHdG, MDA), anti-ROS
stress (vitamin C, vitamin E)

40 OSCC, 40 oral lichen planus lesions, 40
leukoplakia, 40 OSF, 40 control [99]

Down: GPx, SOD Anti-ROS stress 63 control, 63 OSF [100]

Up: LDH LDH main function is to catalyze the
oxidation of lactate to pyruvate.

30 control, 30 OSF [96]
20 control, 20 OSF [97]

10 control, 25 OSF, 25 OSCC [101]

Up: S100A7
A small calcium-binding protein, has been

associated with the development of psoriasis
and carcinomas in different types of epithelia.

30 control, 30 OSF [102–104]

Instrument Note Sample Size/References

Auto-fluorescence
spectroscopy, (320–330 nm

excitation, collagen at
380–400 nm emission and

NADH at 440–460 nm
emission)

Up: Collagen
Down: NADH

15 normal oral mucosa, 59 OSF mucosal
[105].

18 normal individuals without the habit of
betel quid chewing, 18 betel quid chewers

without OSF, 15 OSF [106].
20 normal, 20 OSF [107].

OCT detect the epithelium
thickness and the standard
deviation of A-mode scan

intensity in the laminar
propria layer

Up: Epithelium thickness, laminar propria
layer

44 OSF samples were obtained
from 44 patients. Also, 44 healthy samples

were obtained
from 26 healthy volunteers. [108]

FTIR spectrometry Protein contents in serum were different 30 control, 30 OSF [109]

4. Treatment

OSF is treated primarily with surgery and conservative methods including molecular approaches.
This section is to discuss the conservative treatment of OSF using physical and drug therapies and
natural compound remedies.

4.1. Physical Therapy

Hyperbaric oxygen therapy (HBOT) is used to treat decompression sickness, gas gangrene, and
carbon monoxide poisoning. In HBOT, the patient is placed in a hyperbaric chamber in which the
ambient oxygen pressure is higher than atmospheric pressure. HBOT was first applied in dentistry
in 1988 to promote periodontal wound healing [110]. Recently, the application of HBOT in OSF was
reported. HBOT enhances fibroblast apoptosis and inhibits fibroblast activity by reducing IL-1β and
TNF-α production [111,112]. HBOT attenuates the production of proinflammatory cytokines such as
IL-1, IL-6, and IL-10 [113]. HBOT enriches oxygenation of all tissues and hinders the production of
reactive oxygen species such as E-SOD, GPx, catalase, paraoxonase, and heme-oxygenase-1 [114,115].
HBOT suppress fibroblast activity, has anti-inflammatory and antioxidant properties, thus resulting in
the therapeutic effect of OSF [62].

4.2. Drug Therapy

The main objectives of drug therapy for OSF are anti-inflammation and degradation of the
extracellular matrix. Corticosteroids comprise a class of steroid hormones produced in the vertebrate
adrenal cortex. Many of them have been synthesized. The glucocorticoids and mineralocorticoid
participate in numerous physiological and biochemical processes. Glucocorticoids block inflammation
mediators and impede the inflammatory reaction [116]. They also block fibroblast proliferation and
collagen deposition [117].

Dexamethasone, methylprednisolone, and betamethasone are synthetic drugs with
glucocorticoid-like effects. Intralesional injection of synthetic corticosteroids significantly improves
mouth opening [118,119] and alleviates the burning sensation [118,120] in OSF. Hyaluronidase
and chymotrypsin are proteolytic enzymes that degrade extracellular matrices such as hyaluronan



Int. J. Mol. Sci. 2019, 20, 2940 11 of 22

and collagen. They are usually co-administered with corticosteroids in OSF treatment [121,122].
Pentoxifylline is a xanthine derivative primarily used to mitigate muscle pain. It competitively
and nonselectively inhibits phosphodiesterase, suppresses TNF-α production in lipopolysaccharide
(LPS)-stimulated human monocytes [123], blocks leukotriene synthesis, and diminishes the
inflammatory reaction. Pentoxifylline improved mouth opening and reduced the burning sensation in
OSF [118]. It also facilitated swallowing and speech [124].

Colchicine has been used as early as 1500 BC to treat joint swelling. It was approved for
medical use in 1961. It is extracted from the autumn crocus and decreases inflammation by inhibiting
neutrophil activation and migration to the inflammation site and by suppressing IL-1 β activation [125].
The efficacy of colchicine in OSF treatment was first reported in 2013 [126]. Patients with OSF took
0.5 mg oral colchicine twice daily and received injections of 1500 IU hyaluronidase into each buccal
mucosal lesion once weekly. By the second week, the burning sensation was alleviated, mouth opening
increased, and histological parameters were reduced. The aforementioned dosages combined with
0.5 mL lignocaine hydrochloride once weekly improved mouth opening and reduced the burning
sensation in patients with grade II OSF after 12 weeks [121].

4.3. Natural Compound Remedies

Natural compounds are pure chemical substances extracted from living organisms. Most natural
compounds used to fight disease are extracted from herbs used in traditional Chinese medicine (TCM)
and the foods we eat.

Compounds in TCM with potential efficacy against OSF include butylidenephthalide, glabridin,
asiatic acid, tanshinone, and salvianolic acid B. Butylidenephthalide is extracted from Angelica sinensis
or Ligusticum chuanxiong and has neuroprotective [127], vasorelaxant [128], and anticancer [129] effects
and inhibits liver fibrosis and inflammation [130]. It has demonstrated therapeutic efficacy against
OSF. In vitro tests revealed that butylidenephthalide downregulates α-SMA, fibronectin, and type 1
collagen A1 and reduces myofibroblast bioactivity [75]. Glabridin is derived from the root of Glycyrrhiza
glabra (licorice). It is a type of isoflavonoid or natural phenolic compound with antioxidant and
anti-inflammatory properties. It suppresses α-SMA, type I collagen, and TGF-β [131]. Asiatic acid
is extracted from Centella asiatica which is also used in TCM. Asiatic acid ameliorated fibrosis of the
liver [132] and lung [133] in vivo. It repressed TGF-β1, collagen 1 type 2, and collagen 3 type 1 in
human buccal fibroblasts [134]. Tanshinone is obtained from Salvia miltiorrhiza which is the Chinese
herbal Danshen. This material consists of dihydrotanshinone I, tanshinone I, and tanshinone IIA
and has anti-inflammatory and antioxidant activity. Tanshinone epigenetically interacts with the
p53 pathway which is downregulated in OSF [135]. Salvianolic acid B is also extracted from Salvia
miltiorrhiza. In systemic sclerosis, it is antifibrotic and inhibits fibroblast proliferation and ECM gene
transcription [136]. In a recent clinical trial, it was demonstrated that salvianolic acid B combined
with corticosteroid improved mouth opening and reduced the burning sensation in OSF [137,138].
An in vitro study showed that salvianolic acid B inhibited collagen biosynthesis and increased collagen
degradation [139].

Other natural compounds with potential anti-OSF efficacy include epigallocatechin-3-gallate
(EGCG), aloe vera, curcumin, lycopene, and honey. EGCG is the most abundant catechin in tea. It is
an antioxidant and suppresses cellular ROS [140]. In vitro studies showed that EGCG suppressed
several fibrogenic genes such as early growth response-1, connective tissue growth factor, and
transglutaminase-2 (TGM-2) [140–143]. Aloe vera is a succulent in the Liliaceae. It contains various
minerals and vitamins and possesses anti-inflammatory activity. Aloe vera reduces the inflammasome
formation in human macorphages [144]. Aloe vera is extensively applied in dentistry [145].
A meta-analysis disclosed that aloe vera alleviates the burning sensation of OSF during the first
two months of treatment [146]. Curcumin is derived from the rhizomes of Curcuma longa. It is a natural
phenolic compound commonly used as a dietary supplement and a food additive. Curcumin has
anti-inflammatory, antioxidant, and anticancer properties. It suppresses the connective tissue growth
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factor TGF-β [147] and iNOS [148] and decreases cellular fibrogenic activity. Curcumin effectively
ameliorates the burning sensation [149] and improves mouth opening [150] in OSF patients. Lycopene
is a carotenoid found in tomatoes and watermelon. It reduces oxidative damage to lipids, proteins, and
DNA. Ingestion of lycopene may mitigate oxidative stress in the entire body. A clinical trial indicated
that oral lycopene intake improved mouth opening and alleviated the burning sensation in OSF
patients [151,152]. Honey is a sweet and viscous food produced mainly by bees. No matter if in ancient
times or in modern medicine, honey has been used to help wound healing with its anti-inflammatory,
antioxidant, and anti-bacterial properties [153]. Honey inhibits the lipoxygenase [154], scavenges
the free radicals [155], inhibits IL-1, IL-10 and COX-2 expression [154], and inhibits NF-κB signaling
pathway [156]. Scientists apply honey against oral diseases such as halitosis, oral submucous fibrosis,
chemotherapy-induced stomatitis, and radiotherapy-induced oral mucostitis [157]. Combining honey
with turmeric significantly ameliorates the burning sensation of OSF patients [158]. Table 2 lists all
known conservative OSF therapies and their molecular targets.

Table 2. Summary of the conservative therapy of OSF and the molecular targets of each therapy.

Physical Therapy Molecular Targets References

Hyperbaric oxygen
treatment (HBO)

Promote the apoptosis of fibroblast, and inhibit TNF-α, TGF-β, and the
activation of collagen synthesis. [62,111,112]

Drug therapy Molecular Targets References

Dexamethasone Anti-inflammation (block the action of inflammatory mediators) [119,159]

Methylprednisolone Anti-inflammation (block the action of inflammatory mediators) [119]

Betamethasone Anti-inflammation (block the action of inflammatory mediators) [120]

Hyaluronidase Hydrolyze the hyaluronan [121]

Chymotrypsin Hydrolyze the collagen [122]

Pentoxifylline Anti-inflammation.
Inhibits TNF-α and leukotriene synthesis [123,160]

Colchicine Anti-inflammation, neutralized cytokines (TGF-β, IL4, IL6)
Increase collagenolytic activity [126]

Natural compounds
remedies Molecular Targets References

Butylidenephthalide Decrease α-SMA and fibronectin and type 1 collagen A1 expression
Inhibit myofibroblast activity (migration and contraction) [75]

Glabridin Decrease α-SMA, type I collagen, and TGF-β
Inhibit myofibroblast activity (migration and contraction) [131]

Asiatic acid Inhibit TGF-β1, collagen 1 type 2, and collagen 3 type 1 [134]

Tanshinone reactivate p53 [135]

Salvianolic acid B with
Triamcinolone acetonide

Inhibit the transcription of procollagen gene COL1A1 and COL3A1
Decrease TIMP-1/-2 expression

Inhibit the transcription and release of CTGF, TGF-β1, IL-6 and TNF-α
Increase MMP-2/-9 activity

[137–139]

EGCG
Inhibit TGF-β1 to suppress early growth response-1 (Egr-1)

Suppress the cellular ROS
Inhibit the CTGF and TGM-2 expression

[140–143]

Aloe Vera Anti-inflammation
Reduce inflammasome formation

[161,162]
[144]

Curcumin Inhibit p53, TGF-β, and iNOS
Reduce CTGF [148,152]

Lycopene Antioxidants [151,152]

Honey

Anti-inflammation, anti-oxidation
Inhibit lipoxygenase, IL-1, IL-10, COX-2

Scavenge free radicals
Inhibit NF-κB signaling pathway

[153]
[154]
[155]
[156]
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5. Conclusions

OSF is prevalent among Asians with a betel nut chewing habit. OSF disrupts collagen homeostasis
by increasing the production and decreasing the clearance of collagen and inducing structural and
compositional abnormalities. Aberrant oral submucous collagen deposition may be activated by
inflammation, ROS production, and mutations. Clinical diagnosis of OSF is performed through
functional and molecular pathology techniques. OSF symptoms include the loss of oral function
manifested by restricted mouth opening, trismus, xerostomia, and dysphagia. Detection of OSF by
molecular pathology methods focuses on biomarkers that induce abnormal collagen deposition and
includes both invasive and noninvasive analyses. The invasive detection method identifies biomarkers
in solid tissue and sera. The noninvasive method detects biomarkers in saliva and examines the mucosa
using optical instruments. Molecular OSF treatment represses the biomarkers disrupting collagen
homeostasis. In general, drug treatments for OSF are efficacious. Nevertheless, individuals susceptible
to OSF and possibly to the further development of OSCC should abandon unhealthy lifestyle practices,
such as betel nut chewing and tobacco smoking, and consume natural foods with anti-inflammatory
and antioxidant properties.
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Abbreviations

OSF oral submucous fibrosis
WHO World Health Organization
HPV human papilloma virus
EMT epithelial-mesenchymal transition
ECM extracellular matrix
TGF-β transforming growth factor-β
LOX lysyl oxidase
TIMP tissue inhibitor of the matrix metalloproteinase
PAI plasminogen activator inhibitor
MMP matrix metalloproteinase
CTGF connective tissue growth factor
ROS reactive oxygen species
OSCC oral squamous cell carcinoma
HIF-1α hypoxia-inducible factor-1α
VEGF vascular endothelial growth factor
FGF fibroblast growth factor
PDGF platelet-derived growth factor
EGFR epidermal growth factor receptor
HBOT hyperbaric oxygen therapy
PCNA proliferating cell nuclear antigen
iNOS inducible nitric oxide synthase
ZEB1 Zinc finger E-box binding homeobox 1
H&E Hematoxylin and Eosin
IHC immunohistochemical
2-DE two-dimensional electrophoresis
CYPA cyclophilin A
NCOA7 nuclear receptor coactivator 7
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MALDI-IMS matrix-assisted laser desorption ionization imaging mass spectrometry
nanoLC nano liquid chromatography
IMP3 insulin-like growth factor II mRNA-binding protein 3
WIF1 Wnt inhibitory factor-1
SFRP1 secretion of the frizzled-related proteins 1
α-SMA α-smooth muscle actin
E-SOD erythrocyte superoxide dismutase
GPx glutathione peroxidase
LDH lactate dehydrogenase
MDA malondialdehyde
8-OHdG 8-hydroxy-2-deoxyguanosine
OCT optical coherence tomography
FTIR fourier transform infrared spectroscopy
NADH nicotinamide adenine dinucleotide
TCM traditional Chinese medicine
TGM-2 transglutaminase-2
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