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Abstract: Background: Carbon monoxide (CO) poisoning is an important public health issue around
the world. Research indicates that many factors may be related to the rate of CO uptake and
elimination in the human body. However, some factors related to CO uptake and elimination are
considered controversial. Relatively little attention has been devoted to review and synthesis of
factors affecting CO uptake and elimination. Purpose: This paper provides a critical scoping review of
the factors and divides them into four aspects, including environmental, demographic, physiological
and treatment factors. Methods: We searched the scientific databases for research that has proposed
a mathematical equation as a synthesis of quantities related to CO poisoning, CO elimination,
CO uptake, CO half-life, CO uptake and elimination and their relationships. After excluding the
studies that did not meet the study criteria, there were 39 studies included in the review and the
search was completed before 16 December 2019. Results and conclusion: This review discusses most
of the factors that impact the rate of CO uptake and elimination. Several factors may be related to CO
uptake and elimination, such as CO concentration, the duration of exposure to CO, age, sex, exercise,
minute ventilation, alveolar ventilation, total haemoglobin mass and different treatments for CO
poisoning. Although some potential factors were not included in the review, the findings are useful
by presenting an overview for discussing factors affecting CO uptake and elimination and provide a
starting point for further study regarding strategies for CO poisoning and the environmental standard
of CO.

Keywords: carbon monoxide; CO uptake; CO elimination

1. Introduction

Exogenous carbon monoxide (CO) results from the incomplete combustion of carbon-containing
molecules, and endogenous CO is formed within the body by metabolic processes [1]. CO is a
neurotransmitter in the brain and peripheral autonomic nervous system but is also a poison in high
enough quantities [2]. Here, we consider uptake to be due to breathing in exogenous CO, and excretion
to include both exogenous and endogenous sources. CO is transported across the lungs into the
bloodstream and binds preferentially to haemoglobin in the blood, forming carboxyhaemoglobin
(COHb); the affinity of haemoglobin for CO is around 210 times greater than that for oxygen [3,4].
Inhaling excess CO can lead to a situation where there is inadequate oxygen transported by haemoglobin,
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and the human body will then suffer from hypoxia [3,5]. CO poisoning results in symptoms that range
from headache to unconsciousness, depending on the dose.

Once exposure to exogenous CO ceases, the body’s mechanisms for excreting CO can return the
COHb level to baseline. The typical baseline level of people unexposed to exogenous CO is around
0.8% COHb. For this process, many studies have shown that the half-life for COHb in the body is
about 4 h [6].

CO enters the human body through the lungs, is transported via the blood system and enters the
tissue/muscle system. Since the CO partial pressure is higher in the vascular system than in tissue, CO
enters and can be stored in the tissue/muscle system. This CO transport process is reversible. If the
partial pressure of CO is lower in the ambient environment than in the vascular system, then CO is
released from the tissue to the blood and then to the lungs to be exhaled [7]. However, due to the
stronger affinity of CO for Hb, there is a baseline COHb concentration in the blood.

Several factors are known to relate to CO uptake and excretion, including minute ventilation rate
(VE), alveolar ventilation rate (VA), arterial oxygen tension, haem mass and haemoglobin mass. VE is
the total rate of ventilation, and VA is the rate of the gas exchange via the alveolar surface during
normal breathing. There is a relationship between VE and VA. The equation used is VA = VE − fVD,
where f is the respiration rate (1/min), and VD is the dead space (mL) [1,8–10].

Haemoglobin is the main oxygen carrier in the human body. It contains a haem prosthetic group
that has an iron atom, and it binds to oxygen to form oxyhaemoglobin. By this method, the haemoglobin
takes the oxygen through the body [11]. In physiology, CO affects the oxygen–haemoglobin dissociation
curve (ODC). Because CO has such a high affinity with haemoglobin, it decreases the blood oxygen
concentration significantly [12].

Although several factors relating to CO uptake and elimination in the human body have been
described, we did not find an overview of the situation worldwide. This review aimed to summarise
the literature on factors that relate to CO uptake and elimination in the human body. Furthermore,
we divided the factors into different dimensions to present a clear relationship between each factor.
If we understand the factors that affect the rate of CO uptake and elimination, we will be able to
predict the CO concentration in the human body and may be able to give suggestions for more effective
treatment of CO poisoning.

In this paper, several factors are described that relate to the rate of CO uptake and elimination,
which include environmental, demographic, physiological and treatment factors. The related factors
contain different dimensions, from physical exposure to physiological metabolism.

2. Materials and Methods

2.1. Scope and Search Strategy

Scientific databases, including PubMed, EMBASE and Web of Science, were searched for studies.
The search strategy used a combination of keywords related to carbon monoxide poisoning and
elimination, carbon monoxide poisoning and uptake, carbon monoxide poisoning and half-life and
carbon monoxide poisoning and equation. We also manually searched the references of every primary
study and review article for further publications to make sure all relevant publications were included.

2.2. Inclusion and Exclusion Criteria

In the literature review, certain study inclusion and exclusion criteria were applied. Particularly,
the review only included data-based studies on human subjects that appeared in peer-reviewed
journals in the English language that had the full text available. Theses, dissertations or presentation
abstracts that were not published in peer-reviewed journals were excluded. Also, the authors screened
the titles and abstracts to exclude irrelevant publications.
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2.3. Search Results and Study Characteristics

The initial search identified 394 studies by the keywords. The references from the papers were
checked to see if there were papers that needed to be considered. After deleting duplicative papers
and screening the titles and abstracts, 39 studies met the criteria (Figure 1). We identified 39 studies
published since 1945 and the search was completed on 16 December 2019.

Figure 1. Summary of review process.

3. Results and Discussion

These 39 studies were divided into four aspects, including environmental, demographic,
physiological and treatment factors.

3.1. Environmental Factors

When measuring the rate of CO uptake and elimination, the first point to consider is the dose of
CO to which the subjects are exposed. There are several environmental factors related to CO exposure,
including CO concentration in the ambient air, the duration of CO exposure, the oxygen concentration
in the ambient air and altitude.

3.1.1. CO Concentration in Ambient Air and Duration

From the literature, the main factor that may relate to the rate of CO uptake and elimination is
ambient CO concentration. In Forbes et al.’s study, the authors obtained more than 100 observations
from seven healthy male laboratory workers. When the concentration of CO increased in the inspired
air, the rate of CO uptake would also rise [13]. Moreover, Peterson and Stewart created an experiment
for 22 subjects. Two subjects (subjects 21 and 32) breathed in 200 ppm CO, and two other subjects
(subjects 1 and 12) breathed in 100 ppm CO. As a result, for subjects who breathed in 200 ppm CO,
their COHb reached 10% in around 60 min. However, for the subjects who breathed in 100 ppm CO,
their COHb reached 10% by 200 min later [8].

The duration of CO exposure affects CO uptake and elimination. In a multicompartment model,
researchers tried to predict the CO washout time from different durations. Bruce and Bruce matched
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the simulation model with the measured data from Benignus et al.’s study and found that the model
predicted COHb concentration well [14,15]. They simulated the same dose of CO through two different
scenarios of CO exposure. One was exposed to 10,000 ppm CO for 5 min, and the other was exposed
to 1250 ppm CO for 40 min. The result for the elimination time of the long duration was slower than
for the short duration [15].

3.1.2. Oxygen Concentration in Ambient Air

In Forbes et al.’s study, the authors made subjects breathe CO in the air environment and also in a
pure oxygen environment. Then, they compared the rate of CO uptake of the subjects. The ratio of CO
uptake rate in the pure oxygen environment compared with in air was around 0.77 during rest and
0.62 during hard work. The reason is that there would be much more oxygen competing with CO if
the subjects breathe CO in oxygen than in air. Therefore, the CO uptake will also be slower in oxygen
than in air [13].

3.1.3. Altitude

Some researchers found that altitude may be a factor that governs the rate of CO uptake and
elimination [13,16]. Collier and Goldsmith modified the Coburn–Forster–Kane (CFK) equation by
adding altitude as a factor affecting CO uptake and elimination [16]. For example, the partial pressure
of oxygen decreases when the altitude increases. Therefore, when people breathe the same amount
of CO, it may cause a higher CO concentration at higher altitudes than at sea level. The reason may
be due to the lower partial pressure of oxygen at high altitudes, which means there is less oxygen to
compete with CO and the COHb half-life increases. Moreover, altitude may also affect the ODC to the
left, which increases haemoglobin’s affinity to bind to oxygen [16]. However, Forbes et al. recorded the
CO uptake of three subjects at sea level, 16,000 ft and 40,000 ft. The results showed that the CO uptake
rate increased by increasing the altitude due to higher VE [13].

All the factors described above are mainly divided into three parts, namely, the CO concentration,
the duration of CO exposure and the partial pressure of CO. When people are exposed to high
concentrations of CO or high partial pressure of CO, the rate of CO uptake increases. However,
when considering the duration of CO exposure, even though subjects are exposed to a lower
concentration of CO, they have a longer elimination time if the exposure time is increased. Both the
CO concentration and duration of CO exposure are critical environmental factors related to the rate of
CO uptake by, and washout from, the human body.

3.2. Demographic Factors

In many disease-related studies, we could find demographic factors that may be relevant to the
disease [17,18]. In some studies, age and sex were reported to relate to the rate of CO uptake and
elimination [19,20].

3.2.1. Age

In Klasner et al.’s study, the authors focused on CO poisoning in the paediatric population.
Compared with previous studies, they found that children had a shorter COHb half-life than adults.
For 26 children, the mean half-life of COHb was 44.0 min on 100% oxygen at 1 atm. However,
the half-life of COHb in adults was around 80 min in the same situation. The authors assumed that
the reason for this was the difference in minute ventilation between children and adults. Although
children have a smaller tidal volume than adults, they have faster respiratory rates, which leads to an
increase in their VE [19,21].

Moreover, there are still several factors that may change with age, including the volume of haem,
blood volume, muscle myoglobin mass and lung function. Therefore, further studies need to be done
to understand the age effects.
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3.2.2. Sex

Tracing back to Pace et al.’s study, they found a sex-related difference in the half-life of COHb.
The half-life of COHb elimination by breathing 100% oxygen at 2.5 atmosphere absolute (ATA) was
22.3 min for men and 15.1 min for women. However, the authors did not explain the reason for the
sex-related difference [22]. Although some studies showed a sex-related difference, there were still
other studies that found no sex-related difference in the rate of CO uptake and elimination [9,23]. In a
large natural experiment, 184 people were exposed to CO in a public high school for around 2.5 h.
The researchers gave questionnaires to the victims and analysed the data. They found no differences
between ages, sexes and smokers and nonsmokers [23]. Moreover, Weaver et al. found that sex did not
have a significant influence on half-life [9].

Zavorsky et al. did find a sex-related difference for the half-life of CO elimination and revealed
the factors behind this effect. The results showed that women had a shorter half-life of CO elimination
than men. The factors found to influence the rate of CO elimination were VA and total haemoglobin
mass [20].

3.2.3. Smoking

When someone smokes a cigarette, the smoker is likely to be exposed to CO concentrations of
around 400–500 ppm and experience a higher COHb concentration than a nonsmoker. The COHb
concentration is usually less than 5% in nonsmokers and more than 5% in smokers [24]. Another
study also showed that COHb is different between smokers and nonsmokers in London. Smokers
have COHb levels of around 5%–8% compared with nonsmokers, who have COHb levels of about
1%–3% [25]. This is in contrast with the study of Burney et al. where no differences were observed [23].

3.2.4. Exercise

The level of exercise or activity of subjects may have some influence on the rate of CO uptake
and elimination. In Forbes et al.’s study, the rate of CO uptake in the subjects was higher during hard
work than during rest [13]. Filley et al. also found that the rate of CO uptake was different between
subjects at rest and exercise. When the subjects increased the level of exercise, the minute ventilation
and the rate of CO uptake also rose [26]. However, the rate of CO uptake was not significantly different
between either a low (~45 W) or moderate (~90 W) power output measured by a cycle ergometer in an
experiment involving 29–37-year-old subjects [27].

Demographic factors, such as age, sex and exercise, are related to the rate of CO uptake and
elimination. However, the physiological factors of minute ventilation, alveolar ventilation and total
haemoglobin mass likely explain the demographic observations.

3.3. Physiological Factors

When people breathe in CO, the CO gas enters the lungs and then transfers via the alveoli into
the vascular system. Through the blood circulation, most of the CO binds to haemoglobin and is
transferred from the arterial to the venous blood. Besides the blood, some of the CO also crosses into
the tissue and binds to it, leading to the formation of carboxymyoglobin [7]. Consequently, like lung
and cardiovascular functions, muscle function may play a role in CO circulation in the human body
and it is related to the rate of CO uptake and elimination. In Penney’s book, he stated that the two
main physiological factors that affect the rate of CO uptake and elimination are the ventilation and
diffusion rates of CO [28].
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3.3.1. Lung Function

Ventilation Rate

Many studies have discovered that the ventilation rate may affect the rate of CO uptake and
elimination [1,13,19,26,29,30]. When people breathe at a high ventilation rate, they tend to absorb more
CO into the lungs and blood. However, a high ventilation rate can also exhale more CO than a low
ventilation rate over the same duration [1,13]. In a study by Zavorsky et al. (2014), the results showed
that men have a more prolonged washout time of CO than women, and the authors tried to explain the
result. After they tested different factors in the subjects, they found that the alveolar ventilation and
total haemoglobin mass may be the reasons that explain the difference in the CO half-life. When people
have increased alveolar ventilation, the CO elimination time decreases [20].

However, in Bruce and Bruce’s model (2006), they found that the half-life of COHb has a higher
correlation (r = 0.714) with Vb/VAwo (blood volume/ventilation during washout) than ventilation
alone. Because the CO is exhaled directly from the lungs and carried by the blood, the limiting factor
may be this ratio [15].

Diffusion Capacity of CO (DLCO)

Between the alveolar and pulmonary capillaries, gas passes the pulmonary membrane by simple
diffusion. The diffusion capacity “is the ability of the lungs to transfer gas from inhaled air to the
red blood cells in pulmonary capillaries” [26]. The diffusion capacity is affected by molecular species,
body size, rate of work, temperature and pressure [8]. The DLCO is widely used to test patients’
lung function in hospitals nowadays [31]. The mean values for DLCO were found to be 28.05 ±
5.07 mL/min/mmHg for men and 20.79 ± 4.03 mL/min/mmHg for women [32]. The CFK equation,
an equation for the study of the endogenous production of CO, CO distribution, CO uptake and
elimination, contains the pulmonary diffusing capacity as a factor that may affect the rate of CO uptake
and elimination. When the diffusion capacity is higher, it means that CO has a great ability to pass
through the membrane, and the rate of the CO uptake and elimination is increased [1,33,34]. However,
in Filley et al.’s study, the authors found that the ventilation rate may play a more important role in the
rate of CO uptake and elimination [26].

Chronic Obstructive Pulmonary Disease (COPD)

COPD is defined as an obstruction of the airways that makes it hard to breathe. COHb levels
were found to be significantly higher in COPD patients compared with the normal population [35,36].
Some COPD patients have a lower diffusing capacity for CO in the lungs [37–39]. In Crowley et al.’s
study, their data suggested that the half-life of COHb is around 6.5 h in COPD patients compared with
healthy subjects, who have a COHb half-life of about 2–5 h [40]. Therefore, COPD patients may have a
slower rate of CO elimination than healthy people due to the lower gas exchange and poor respiratory
mechanics. However, Crowley et al. explained that there was no dramatic difference of COHb half-life
between COPD patients and normal subjects, so it might be the sedentary life of COPD patients that
causes the longer COHb half-life [40].

3.3.2. Cardiovascular Function

Blood Volume

When CO enters the vascular system, most of the CO combines with haemoglobin as COHb.
At the end of CO exposure, most of the CO stays in the blood. Consequently, the blood volume may
be an important factor that relates to CO uptake and elimination. In Pugh’s study, the average blood
volume was around 78 mL/kg [41]. In the CFK equation, blood volume is one of the factors affecting the
rate of CO uptake and elimination [1]. Furthermore, in Bruce and Bruce’s study, their model predicted
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that if people have a large blood volume, they carry more CO in the body and have an increased rate
of CO uptake and elimination [15].

Haemoglobin Mass

Haemoglobin is the crucial factor that determines the maximum amount of oxygen uptake.
The average haemoglobin mass is about 11.6 g/kg [41]. However, when compared with oxygen, CO has
around 210 times greater affinity for haemoglobin [4]. In Zavorsky et al.’s study, the authors suggested
that the total haemoglobin mass affects the rate of CO uptake and elimination [20]. However, the effects
of total haemoglobin mass on the rate of CO uptake and elimination require further investigation.

Diffusion Rate of CO Flux from Blood to Muscle Compartment

The blood-to-muscle diffusion coefficient (Dmco) refers to the diffusion rate of the CO entering
the muscle compartment. In a multicompartment model, Bruce and Bruce (2006) set the Dmco to zero
and tried to determine how it would influence the half-life for CO washout. When the Dmco was set
to zero, the half-life increased. Therefore, this means that no CO entered the muscle compartment,
and all the CO decreased by exhalation from the lungs [15]. Moreover, in 2008, the authors tested
the model with experimental data, including human and animal data [14,23,42,43]. They found their
model could fit well with the experimental data when changing the Dmco in different conditions [44].

Muscle Mass

Not only can haemoglobin bind to CO in muscle cells, but myoglobin also contains haem, to which
CO can bind. Muscle tissue can take up CO over a prolonged period, even after the end of exposure.
For a young adult male, the muscle compartment may account for about 41% of the total body mass [45].
In their study, Möller and Sylvén assumed that every gram wet weight of muscle would contain
about 4.7 mg of myoglobin [46]. Take a 70 kg man, for example, who may, approximately, have 135 g
of myoglobin. Each myoglobin molecule contains a haem molecule that could bind up to 178 mL
of CO. Therefore, the muscle compartment could be an essential place to store CO and increase the
half-life of CO elimination. Although muscle may be a factor, it is less critical for the half-life of COHb.
The reason is that the volume of CO removed from muscle is less than the volume of CO removed
from the blood [15].

Anaemia

Anaemia refers to a low haemoglobin level or low red blood cell count in the blood or increased
destruction of red blood cells. In Woehlck et al.’s study (2001), the authors predicted that patients would
have more severe CO poisoning according to the haematocrit level. They explained that patients with
low haemoglobin tend to have a higher COHb concentration than people with normal haemoglobin
after exposure to CO. When the subjects breathed in the same CO concentration, the rate of COHb
increased more rapidly in the subjects with a lower haematocrit level than a higher haematocrit
level [47].

Among physiological factors, besides ventilation rate and diffusion capacity (which have been
emphasised for a long time), there are still many factors that need to be considered. For example, our
review indicates that blood volume, total haemoglobin mass, muscle mass and disease may influence
the rate of CO uptake and elimination. However, the physiology of the human body is known to be
complicated. Some factors may have a relationship with other factors. Isolating the role of any specific
factor will require careful study.

3.4. Treatment Factors

The most common treatment for CO poisoning is breathing 100% oxygen as soon as possible.
Moreover, high-pressure oxygen or hyperbaric oxygen (HBO) therapy also has been used in several



Int. J. Environ. Res. Public Health 2020, 17, 528 8 of 14

countries as a solution for CO poisoning. The rate of CO elimination may relate to the atmospheric
pressure or percentage of oxygen. Higher atmospheric pressure and percentage of oxygen result in a
faster CO elimination rate [19,29].

3.4.1. 100% Oxygen

Weaver et al. (2000) conducted a study to understand which factors may influence the COHb
half-life. Through their retrospective chart review from 1985 to 1995, they showed that the half-life of
COHb decreases with the increase of arterial oxygen tension. As a result, they found that the half-life
of COHb was around 74 min for patients treated with 100% oxygen at atmospheric pressure, which
was shorter than for patients only breathing in air [9].

There are several methods to provide 100% oxygen to patients, such as a rebreathing reserve
mask, high-flow nasal cannula (HFNC) oxygen and oxygen therapy with continuous positive airway
pressure (CPAP) [48–51]. In Kim et al.’s (2019) study, HFNC did not reduce the CO half-life compared
with a rebreathing reserve mask [49]. When comparing normobaric oxygen therapy with 1 h of CPAP
therapy, Bal et al. discovered that patients receiving CPAP therapy had a shorter CO half-life than
those receiving normobaric oxygen therapy. The authors assumed that CPAP therapy increases the gas
exchange area and improves ventilation due to the positive pressure going into the alveoli [50].

3.4.2. HBO Therapy

Treating CO-poisoned patients with HBO therapy is still controversial [6,52,53]. There are different
policies in different countries. However, Pace et al. found that high-pressure oxygen could increase
CO elimination in CO-poisoned patients [22]. In Ernst and Zibrak’s study, they found that the half-life
of COHb would be approximately 4 h on air, 1.5 h on oxygen and less than 20 min during HBO
therapy [54].

3.4.3. Carbogen

Carbogen is a mixture of carbon dioxide and oxygen gas. Usually, CO2 is set at 5%–10% in
O2 [55,56]. When patients breathe in carbogen, their brain CO2 sensor detects that more CO2 is stored
in the body, and as a result, the brain sends a signal to increase alveolar ventilation, thus decreasing
the half-life of COHb [56,57].

The 100% oxygen and HBO therapies are based on the theory that the alveolar partial pressures
of oxygen would be affected by the inhaled partial pressure of oxygen. When increasing the partial
pressure of oxygen, there is more oxygen that can compete with CO to bind with haemoglobin. Then,
the rate of CO elimination would be raised. However, using HBO therapy for CO-poisoned patients
is still controversial. Although HBO therapy is not recommended for CO-poisoned patients in the
United Kingdom, it is a treatment for CO-poisoned patients that is widely used in Taiwan.

4. Conclusions

In the literature review, some environmental, demographic, physiological and treatment factors
were found to have an impact on the rate of CO uptake and elimination (Tables 1 and 2). Among
environmental factors, the rate of CO uptake increases by raising the CO concentration or reducing the
oxygen concentration of the inhaled gas. Moreover, the altitude can alter the rate of CO uptake due
to the different partial pressure of oxygen at different altitudes. The duration of CO exposure is an
important factor. If people were exposed to CO for a long time, even if the concentration of CO were
low, it would also have an adverse impact and reduce the rate of CO elimination. That is why attention
is needed not only for acute CO poisoning but also chronic CO poisoning, which is often ignored.



Int. J. Environ. Res. Public Health 2020, 17, 528 9 of 14

Table 1. The factors related to CO uptake.

Field Factor Results Experiment Control Reference

Environment

CO concentration increase CO uptake rate increase

Range: 0.01%–0.2% CO Forbes et al. (1945)

Range: 0–523 CO ppm Peterson and Stewart (1970)

Range: 8.7–1000 CO ppm Peterson and Stewart (1975)

Duration of exposure longer CO uptake amount
increase

Range: 0–270 min Forbes et al. (1945)

Range: 15–480 min Peterson and Stewart (1970)

Range: 0–1440 min (50 CO ppm) Benignus et al. (1994)

O2 concentration increase CO uptake rate decrease Oxygen Air Forbes et al. (1945)

Altitude increase CO uptake rate increase 16,000 ft;
40,000 ft 0 ft Forbes et al. (1945)

Exercise increase

CO uptake rate increase Hard work Rest Forbes et al. (1945)

CO uptake rate increase Light exercise; moderate
exercise Resting Filley et al. (1954)

No difference Moderate exercise Low exercise Tikuisis et al. (1992)

Physiology

Ventilation rate increase
CO uptake rate increase Range: 6–30 L/min Forbes et al. (1945)

CO uptake rate increase Range: 5.8–105 L/min Filley et al. (1954)

Diffusion capacity of CO (DLCO)
increase

CO uptake rate increase 36.3 cm3/min/mmHg 16.9 cm3/min/mmHg Filley et al. (1954)

CO uptake rate increase Range: 5–30 mL/min/torr Bruce and Bruce (2003)

CO uptake rate increase - - Gosselin et al. (2009)

Blood volume increase CO uptake rate increase - - Coburn et al. (1965)

Diffusion rate of CO flux from
blood to muscle compartment in

crease
CO uptake rate increase Range: 0–100 mL/min/torr Bruce et al. (2008)

Muscle mass Less important - - Bruce and Bruce (2006)

Anaemia CO uptake rate increase Haematocrits of 18% and
30%

Haematocrits of 42%
and 60% Woehlck et al. (2001)

Note: 1 torr = 1 mmHg, a unit of pressure based on an absolute scale; 1 cm3 = 1 mL.
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Table 2. The factors related to CO elimination.

Field Factor Results Experiment Control Reference

Environment

CO concentration increase CO half-life longer 200.8 CO ppm for 60 min 51.6 CO ppm for 60 min Peterson and Stewart
(1970)

Duration of exposure longer CO half-life longer 1250 CO ppm for 40 min 10,000 CO ppm for 5 min Bruce and Bruce (2006)
(same CO dose in two groups)

O2 concentration increase CO half-life shorter
100% oxygen - Weaver et al. (2000)

2.5 atm, 100% oxygen
(HBO) - Pace et al. (1950)

Demography

Age increase
No difference

Range: 9–86 years old Burney et al. (1982)

>40 years old <40 years old Weaver et al. (2000)

CO half-life shorter 4–12 years old - Klasner et al. (1998)

Sex

No difference
Female Male Burney et al. (1982)

Female Male Weaver et al. (2000)

CO half-life shorter
Female Male Pace et al. (1950)

Female Male; Zavorsky et al. (2014)

Smoking No difference Smokers Nonsmokers Burney et al. (1982)
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Table 2. Cont.

Field Factor Results Experiment Control Reference

Physiology

Ventilation rate increase CO half-life shorter

Range: 4–10 L/min Coburn et al. (1965)

15 and 30 L/min 3 and 6 L/min Selvakumar et al. (1993)

Range: 5–20 L/min Kreck et al. (2001)

Range: 4–40 L/min Zavorsky et al. (2014)

Chronic obstructive
pulmonary disease (COPD)

No difference/CO half-life
slightly longer COPD patients Normal subjects Crowley et al. (1989)

Blood volume increase CO half-life shorter
- - Coburn et al. (1965)

Range: 0.3–0.7 (Vb/VAwo) Bruce and Bruce (2006)

Haemoglobin mass increase CO half-life longer Male Female Zavorsky et al. (2014)

Diffusion rate of CO flux from
blood to muscle compartment

increase
CO half-life shorter Range: 0–2 mL/min/torr Bruce et al. (2003)

Muscle mass Less important - - Bruce and Bruce (2006)

Anaemia CO half-life shorter Anaemia Polycythaemia Zavorsky et al. (2014)

Treatment

100% oxygen CO half-life shorter 100% oxygen - Weaver et al. (2000)

High-flow nasal cannula
(HFNC) No difference 100% oxygenwith high

flow 100% oxygen Kim et al. (2019)

Continuous positive airway
pressure (CPAP) CO half-life shorter 100% oxygenwith positive

pressure 100% oxygen Bal et al. (2019)Caglar et
al. (2019)

Hyperbaric oxygen (HBO)
therapy CO half-life shorter

2.5 atm, 100% oxygen - Pace et al. (1950)

3 atmosphere absolute
(ATA), 100% oxygen 1 ATA, 100% oxygen Peterson and Stewart

(1970)

Carbogen CO half-life shorter Hyperventilation(6% CO2
in O2) Without isocapnia Sein Anand et al. (2017)

Note: 1 torr = 1 mmHg, a unit of pressure based on an absolute scale.
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Demographic factors, such as age, sex, smoking and exercise, are not direct factors relating to the
rate of CO uptake and elimination. Included in these factors may be physiological factors, such as
minute ventilation, alveolar ventilation and total haemoglobin mass, which are direct factors affecting
the rate of CO uptake and elimination. Other physiological factors, including muscle mass and
diffusion capacity, can also influence the rate of CO uptake and elimination. Consider the treatments,
for example: the three treatments for CO poisoning increase the rate of CO elimination by raising
the partial pressure of oxygen and the ventilation rate. Therefore, these treatments are based on the
physiological reactions that have been tested in past studies.

This review discussed most of the factors that impact the rate of CO uptake and elimination.
Information remains limited and there are numerous other potentially important factors that could
influence CO update and elimination, such as genetics, disease, vulnerable groups, children, the elderly,
weight and so forth. Thus, there may be different treatment strategies for groups with different
characteristics. Further studies focused on this field may find better ways to increase the rate of CO
elimination in CO-poisoned patients.
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