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Abstract: Standardized precipitation evapotranspiration index (SPEI) is an acknowledged drought
monitoring index, and the evapotranspiration (ET) used to calculated SPEI is obtained based on the
Thornthwaite (TH) model. However, the SPEI calculated based on the TH model is overestimated
globally, whereas the more accurate ET derived from the Penman–Monteith (PM) model recommended
by the Food and Agriculture Organization of the United Nations is unavailable due to the lack of
a large amount of meteorological data at most places. Therefore, how to improve the accuracy of
ET calculated by the TH model becomes the focus of this study. Here, a revised TH (RTH) model is
proposed using the temperature (T) and precipitable water vapor (PWV) data. The T and PWV data
are derived from the reanalysis data and the global navigation satellite system (GNSS) observation,
respectively. The initial value of ET for the RTH model is calculated based on the TH model, and the
time series of ET residual between the TH and PM models is then obtained. Analyzed results reveal
that ET residual is highly correlated with PWV and T, and the correlate coefficient between PWV and
ET is −0.66, while that between T and ET for cases of T larger or less than 0 ◦C are −0.54 and 0.59,
respectively. Therefore, a linear model between ET residual and PWV/T is established, and the ET
value of the RTH model can be obtained by combining the TH-derived ET and estimated ET residual.
Finally, the SPEI calculated based on the RTH model can be obtained and compared with that derived
using PM and TH models. Result in the Loess Plateau (LP) region reveals the good performance of
the RTH-based SPEI when compared with the TH-based SPEI over the period of 1979–2016. A case
analysis in April 2013 over the LP region also indicates the superiority of the RTH-based SPEI at
88 meteorological and 31 GNSS stations when the PM-based SPEI is considered as the reference.

Keywords: SPEI; temperature; TH model; RTH model; PWV

1. Introduction

Climate change in drought/humidity is closely related to human activity and production and
has an important impact on socioeconomic and regional ecological development [1,2]. Some drought
indexes, such as Palmer drought severity index (PDSI), standardized precipitation index (SPI),
and standardized precipitation evapotranspiration index (SPEI), have been proposed to monitor and
quantify drought [1,3–5]. Drought is a water deficit phenomenon caused by low precipitation in a
given period of time [4]. Under the background of global change characterized by warming, changes
in temperature and precipitation and other factors affect the balance of surface water revenue and
expenditure, which ultimately changes the surface drought/humidity situation [6,7].
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At present, three types of meteorological drought indices are commonly used for drought
monitoring. First, the PDSI is calculated based on soil water balance [3]. This index has been constantly
revised and improved since its proposal. However, the inherent limitations of this index still exist;
such defects include having a scale of drought assessment of 9–12 months and being affected by the
index of the previous four years due to its autoregressive characteristics [8]. Second, the SPI can
study drought at different spatial scales and has good comparability with PDSI in 6–12 months [4].
Although this index has been used in some drought studies [8–12], it only considers the contribution of
precipitation. Third, the SPEI synthesizes the advantages of PDSI in evaporation and SPI on multiple
time scales [5]. This index is commonly used in drought research worldwide [13–15].

Evapotranspiration (ET) is one of the most important parameters in SPEI calculation, which can
be calculated using various formulas. In calculating SPEI, ET is obtained based on the Thornthwaite
(TH) model [16], which only requires temperature because global temperature data are easy to obtain.
However, aerodynamic and radiation terms are neglected when calculating ET based on the TH formula,
and the ET cannot be calculated when the average monthly temperature in winter is less than 0 ◦C.
At present, the Penman–Monteith (PM) model is the standard calculation method of ET recommended
by the Food and Agriculture Organization (FAO) of the United Nations. The American Society of Civil
Engineers analyzed the accuracy of 20 related formulas and compared them with the measured data of
a lysimeter under 11 climatic conditions distributed around the world. The compared result reveals
that the PM formula was proven to be close to the measured value in arid and wet areas [17]. Sheffield
et al. found that the TH model overestimated the values of drought monitoring index in global trends
over the past 60 years [18]. Although more accurate ET values can be obtained using the PM model,
this model requires many meteorological parameters. Generally, the meteorological data used in the
PM model cannot be obtained, and accurate ET is unavailable in most areas of the world. Therefore,
a more accurate model must be established to calculate ET with less meteorological data.

With the emerging of global navigation satellite system (GNSS) meteorology [19], the high-precision
precipitable water vapor (PWV) can be obtained with the root mean square (RMS) value of
1–3 mm [20–24]. In recent years, PWV has been applied to various disaster events, such as extreme
rainfall [25,26], floods [25,27], and hurricanes [28]. In addition, the relationship between GNSS-derived
PWV and drought has also been investigated. For example, the drought in the Yunnan Province of
China can be detected based on the abnormal trend of PWV and vertical crustal deformation [29].
Wang et al. found that the nonlinear trend of PWV can be used to monitor drought and flood disasters
in Australia [30]. The GNSS-derived PWV is used in this paper to establish its relationship with ET.

In this paper, a revised TH (RTH) model is developed by introducing the PWV. The Loess Plateau
(LP) area is in the arid and semi-arid areas of northern China. This area is severely affected by
extreme climatic events, such as drought and extreme precipitation, which makes it an ideal place for
drought monitoring [31]. Therefore, the LP region is taken as the study area in this work, in which
88 meteorological stations and 31 GNSS stations are selected for the experiment. The ET residual
between PM and TH models is initially obtained, and the relationships between ET residual and
PWV/temperature are then further analyzed. Therefore, a revised TH (RTH) model is established by
combining the TH-derived ET and the ET residual estimated based on the residual model. Finally,
the RTH-based SPEI can be calculated and compared with that from TH- and PM-based SPEI. This
paper is organized as follows: Section 2 describes the data used and the methods; the Validation
experiment is performed, and corresponding results and discussion are presented in Section 3; the
conclusion is summarized in Section 4.

2. Data and Methods

2.1. Study Area

Located on the second step of China, LP is a complete loess type and typical area of
geomorphological development in the world, and its average elevation is approximately 1000 m.
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From northwest to southeast, the maximum height difference is approximately 2000 m [32]. The climate
of the LP belongs to the typical continental monsoon climate, which is mainly affected by the polar
dry and cold airflow in winter and spring, and the climate is cold and windy. In summer and
autumn, the climate is mainly affected by the high western Pacific subtropics and the low pressure
in the Indian Ocean, which is hot and rainy [33]. The annual average precipitation is approximately
466 mm, with evident spatial variation. The annual precipitation increases from northwest to
southeast, with rainfall of 200–750 mm, and 65% of the precipitation distributes from June to September.
The estimated annual potential ET is considerably higher than that of precipitation, ranging from
865 mm to 1274 mm. The northwest region is a typical semi-arid region, which makes it a typical
region for drought monitoring [33].

2.2. Retrieval of GNSS and ERA-Interim PWV

PWV can be obtained from some techniques, such as radio sounding, remote sensing, and lidar
but with corresponding shortcomings such as low temporal-spatial resolutions, high cost, and low
precision [34]. GNSS technique can also retrieve PWV with the advantages of low cost, all-weather
conditions, and high precision. However, zenith total delay (ZTD) is first obtained before calculating
the PWV using the GNSS technique. The ZTD is an average value by projecting some values of
slant path with different azimuths and elevation angles into a vertical direction, and the accuracy
of GNSS-derived ZTD is approximately 4 mm [35]. When the radio signal crosses the troposphere,
the corresponding delay will be generated, which is influenced by the atmospheric refraction effect [36].
In this study, the ZTD data is calculated using the GNSS observations derived from Crustal Movement
Observation Network of China (CMONOC) based on GAMIT/GLOBK software (http://www-gpsg.
mit.edu/~{}simon/gtgk/down.htm). ZTD consists of zenith hydrostatic delay (ZHD) and zenith wet
delay (ZWD), where the ZHD can be precisely calculated based on an empirical model, such as the
Saastamoinen model [37]. Therefore, the ZWD parameter, which is used to calculate PWV, can be
obtained by extracting ZHD from ZTD. The specific formula for calculating PWV from ZWD is as
follows [38]:

PWV =
105

(k 3/Tm + k′2)Rv
ZWD

where Tm is the water-vapor-weighted atmospheric mean temperature, which can be calculated by the
empirical model based on the observed temperature [39,40]. k′2, k3 and R are the physical constants
with values of 16.25 K/hPa, 3.776 × 105 K2/hPa, and 461.495 J/K/kg, respectively.

The PWV value of the meteorological stations is interpolated using the PWV data of the four
surrounding grid points. This data is from the fourth-generation atmospheric reanalysis of the global
climate (ECMWF ERA-Interim), which covers rich data from 1979 to the present. ERA-Interim provides
PWV, pressure, temperature, and other meteorological variables at grid points with different horizontal
resolution (0.125◦ × 0.125◦ to 3◦ × 3◦) globally. In this study, the monthly PWV values from the
ERA-Interim reanalysis data with the spatial resolution of 0.25◦ × 0.25◦ were selected. The PWV values
at meteorological stations are obtained based on the bilinear interpolation method using the above data.

2.3. Meteorological Data

Daily meteorological data of 88 stations that are evenly distributed in the LP region over the period
of 1979–2016 were collected (Figure 1), which include highest and lowest temperature, precipitation,
relative humidity, sunshine duration, and 2 m wind speed. These data are downloaded from the China
Meteorological Sharing Network (http://data.cma.cn/) and have been rigorously checked by CMA’s staff.
The work includes checking and marking the wrong and missing data, as well as supplementing those
data before release. The monthly corresponding data were obtained using the daily meteorological data.
The monthly temperature and precipitation of the Yang Kun dataset derived from the Qinghai–Tibet
Plateau Scientific Data Center (http://www.tpedatabase.cn/portal/MetaDataList.jsp) were also used
to interpolate the corresponding meteorological data at GNSS stations [41]. The specific process

http://www-gpsg.mit.edu/~{}simon/gtgk/down.htm
http://www-gpsg.mit.edu/~{}simon/gtgk/down.htm
http://data.cma.cn/
http://www.tpedatabase.cn/portal/MetaDataList.jsp
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of generating such a dataset can be found in [41] and [42]. The temperature and precipitation are
interpolated using the corresponding data of the four surrounding grid points derived from the Yang
Kun dataset to calculate the SPEI value at selected GNSS stations.
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Figure 1. Geographic distribution of selected global navigation satellite system (GNSS) and
meteorological stations over the Loess Plateau (LP) region.

2.4. Theory of ET and SPEI Calculation

ET is calculated based on the Thornthwaite (TH) and Penman-Monteith (PM) models, respectively,
in this paper. TH model is widely used because it is easy to use and only needs monthly average
temperature and latitude [43,44]. However, this model does not consider the influence of wind speed,
air humidity, and other factors, and the value of ET is usually underestimated. Based on the energy
balance equation and water vapor diffusion theory, the PM model not only considers the physiological
characteristics of crops but also considers the changes in aerodynamic parameters. The calculated
ET value based on the PM model is accurate. However, this model requires many meteorological
parameters, such as the highest and lowest daily temperature, relative humidity, sunshine hours,
and 2 m wind [17]. The specific processes of calculation ET based on TH and PM model have been
given in Appendix A.

SPEI is an acknowledged good index for drought monitoring because it considers the superiority of
PDSI and SPI. This index includes the temperature variability of PDSI and the multiscalar characteristic
of SPI. Therefore, this index is suitable for drought monitoring with the rapidly changing climate
scenarios. Before the calculation of SPEI, the difference between monthly precipitation and ST is first
obtained, and then accumulating this difference in different time scales. Finally, the SPEI value can be
calculated by standardized the accumulated difference. The specific calculation process has been given
in Appendix B.

2.5. RTH Model

In this paper, the revised TH (RTH) model can be established following the three key steps:

1. Calculating the ET residual between TH and PM model:

VET = PM− TH (1)

2. Analyzing the time series of ET residual and fitting the ET residual model using the GNSS-derived
PWV and temperature:

VET = f (PWV, T) (2)
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3. Obtaining the initial ET value ET0 using TH model and establishing the ETH model using the
ET residual:

ETRTH = ET0 + VET (3)

3. Experimental Results and Discussion

3.1. Missing Data Interpolation

The GNSS stations from the CMONOC are selected, where the GNSS-derived PWV is obtained
following the method proposed by [45]. A total of 31 GNSS stations exist over the LP region (Figure 1),
and the average data missing rate at those stations is 13.8%. Therefore, an interpolated method referred
to as SSAM (singular spectrum analysis for missing data) proposed by Wang et al. was used to
interpolate the missing data at each GNSS station, and this method works well in interpolating the
missing data of long-term PWV time series [46]. Figure 2 shows an example of the interpolated time
series of the PWV time series at XNIN Station (36.6006◦ N, 101.7743◦ E) over the period of 1999–2015.
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Figure 2. Interpolated time series of precipitable water vapor (PWV) at XNIN Station over the period
of 1999–2015.

3.2. Comparison of ET Derived from Different Models

Figure 3a,b presents the calculated average ET values at 88 meteorological stations using TH and
PM models over the period of 1979–2016. It can be observed that the accuracy of TH-derived ET values
is poor at some stations when the PM-derived ET values are regarded as the reference. In addition,
the ET differences of selected stations between the PM and TH models have been presented in the
LP area. It can be observed that the maximum ET difference is almost 45 mm while the minimum ET
difference is approximately 27 mm. Such a phenomenon demonstrates the necessity of establishing the
improved model to correct the ET value.Sensors 2019, 19, 5566 6 of 17 
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Here, the ET residual between PM and TH models are obtained at 83 meteorological stations, and
the relationships between ET residual and PWV/T are presented in Figure 4. It can be concluded that
the ET residual has an evident negative linear relationship with PWV and T when T > 0 ◦C, whereas a
positive linear relationship exists between ET residual and T when T < 0 ◦C. The different phenomena
presented between T and ET residual for cases of T > 0 ◦C and T < 0 ◦C is mainly related to the 0
values of ET when T < 0 ◦C (Appendix A). The relationship between ET residual and altitude of
meteorological stations is also analyzed, and no evident relationship exists. Therefore, a linear model
between ET residual and PWV/T is established and expressed as follows:

VET =

{
56.6205− 2.9494 · PWV + 1.1836 · T T > 0
39.4550− 0.3899 · PWV + 1.854 · T T <= 0

(4)
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3.3. Validation of the RTH Model

To validate the proposed RTH model using the PWV and T over the LP region, only the
meteorological data over the period of 1979–2014 were used to fit the coefficients of the ET residual
model, whereas the data over the period of 2015–2016 were used to perform the validation experiment
at 88 meteorological stations. Here, the ET values calculated by the PM model are regarded as reference.
Figure 5 presents the comparisons of RMS and mean absolute error (MAE) of the ET residual between
PM and TH/RTH models at 88 stations. It can be found that the values of RMS and MAE of the RTH
model are smaller than those from the TH model at all stations when the values derived from the PM
model are considered as reference. The statistical result reveals that the RMS and MAE derived from
the RTH model are 12.3 and 10.2 mm, respectively, which are smaller than that from the TH model
(34.2 and 29.2 mm, respectively). The RMS improvement rate of the RTH model is also calculated when
compared with the TH model, as shown in Figure 6. It can be observed that the RMS improvement
rate at different stations ranges from 22% to 75%, and the statistical result reveals that the average
improvement rate of the RTH model is approximately 61.6%.
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Figure 6. Average RMS improvement rate of RTH model compared with the TH model in the LP region
over the period of 2015–2016.

To further evaluate the complete accuracy of the established RTH model over the LP region,
the scatter plot of monthly ET values calculated by TH, RTH, and PM models is shown in Figure 7. It can
be observed that the RTH-derived ET has a better agreement with PM-derived ET when compared with
that from TH-derived ET. The correlation coefficient between PM- and RTH-derived ET is 0.98, whereas
the value between PM- and PH-derived ET is 0.93. The long-term time series of average ET calculated
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using different methods over the period of 1979–2016 in the LP region is shown in Figure 8. The time
series of ET derived from the RTH model agrees well with that derived from the PM model, whereas
the value of the TH model is relatively poor, especially for those times with low ET values, where the
ET differences between PM and TH models are large. However, the RTH model established in this
study offers an improvement for those values well, which is also the advantage of the RTH model.
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3.4. Evaluation of RTH-Based SPEI at Meteorological Stations

After the ET value is obtained using the RTH model, the final SPEI can be calculated, which is
called RTH-based SPEI in this study. In addition, the ET value is also calculated based on the PM
and TH models. Therefore, the SPEI can also be calculated by such models, which is called PM- and
TH-based SPEI. The quality of the RTH-based SPEI is the key to determining whether it can be further
used. Therefore, the accuracy of RTH-based SPEI is initially evaluated and compared with TH-based
SPEI when the PM-based SPEI is considered as reference.

The RTH-based SPEI is initially compared with TH-based SPEI at 88 GNSS stations over the
period of 1979–2016, and the average SPEI differences between RTH–PM and TH–PM under 1-, 3-, 6-,
and 12-month scales are presented in Figure 9. Those multi-month scales are selected and compared
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because they correspond to the monthly, seasonal, semi-annual, and annual scales. It can be observed
from Figure 9 that the SPEI differences of RTH–PM are smaller than those from TH–PM, especially for
the 1-, 3-, and 6-month scales, which further indicates the good performance of the RTH-based SPEI at
those month scales.
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Figure 9. Long-term time series of average difference between RTH–PM- and TH–PM-based SPEI
under multi-month scales at 88 meteorological stations over the period of 1979–2016.

Pearson’s correlation is then introduced in comparison to further analyze the relationship between
SPEI calculated based on different models at different multi-month scales. Figure 10 shows the
Pearson’s correlations of SPEI calculated based on different models under different multi-month scales
from 1 to 24. The correlation between RTH- and PM-based SPEI is high at different month scales,
especially for the 12-, 23-, and 24-month scales. Such a result conforms to the conclusion derived from
Figure 9. In addition, it can be observed that the correlation values between TH-PM and RTH-PM
are similar at 12-, 23-, and 24-month scales. This is because the monthly climatic water balance is
standardized during the process of calculating SPEI (Appendix B). In those three scales, the changing
trend of accumulated climatic water balances derived from TH and RTH models are both similar to
those from the PM model. However, the values of the climatic water balance derived from the RTH
model are closer to that from the PM model when compared to the TH model.

The comparison of SPEI calculated using different models is also performed at each meteorological
station under multi-month scales. The RMS values are presented in Figure 11. It can be observed that
the RMS values of RTH-based SPEI are smaller than those of TH-based SPEI at all stations. Table 1
shows the statistical result of the average RMS and MAE of TH- and RTH-based SPEI when compared
with the PM-based SPEI. The result shows that good performance can be obtained for the RTH-based
SPEI. Finally, the average RMS improvement rate of the RTH-based SPEI compared with the TH-based
SPEI is analyzed and presented in Figure 12 when the PM-based SPEI is considered as reference.
It can be concluded that the accuracy of SPEI is improved to different degrees at different stations.
The statistical result reveals that the average improvement rate of the RMS derived from the RTH-based
SPEI is approximately 48.0%, 49.3%, 43.2%, and 9.1% under 1-, 3-, 6-, and 12-month scales in the LP
region, respectively.
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station over the period of 1979–2016, where the left/right squares at each station refer to the RMS
derived from TH- and RTH-based SPEI, respectively.

Table 1. Statistical result of average RMS and MAE of TH- and RTH-based SPEI compared with the
PM-based SPEI in the LP region over the period of 1979–2016.

Index Model
Scale

1 3 6 12 18 24 Mean

RMS
TH 0.46 0.53 0.51 0.35 0.46 0.41 0.45

RTH 0.24 0.27 0.29 0.35 0.36 0.41 0.32

MAE
TH 0.37 0.44 0.44 0.28 0.38 0.33 0.37

RTH 0.20 0.22 0.23 0.28 0.30 0.33 0.26
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3.5. Case of Spatial Analysis of RTH-Based SPEI

The temperature and precipitation derived from the Yang Kun dataset is initially validated
using the corresponding data derived from CMA at 88 meteorological stations. Figure 13 shows the
scatter plots of temperature and precipitation over the period of 1979–2016 in the LP region. It can be
observed that the temperature derived from the Yang Kun dataset agrees well with that from CMA,
whereas the precipitation is relatively poor with that from CMA. The statistical result reveals that
the RMS and bias of temperature and precipitation from the Yang Kun dataset are 3.85/−0.92 ◦C and
0.39/−0.34 mm, respectively. Therefore, the RTH-based SPEI can be calculated at GNSS stations using
the corresponding data from the Yang Kun dataset and GNSS-derived PWV. Figure 14 presents an
example of a comparison of the RTH- and TH-based SPEI at XNIN Station over the period of 1999–2014,
where the PM-based SPEI cannot be calculated due to lack of corresponding data.
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2013. Therefore, this month is selected to analyze the SPEI calculated based on the RTH model.
Figure 15 shows the comparison result of the SPEI calculated using different models at GNSS and
meteorological stations in April 2013. Due to the lack of corresponding meteorological data at GNSS
stations, the PM-based SPEI cannot be obtained at the GNSS stations, which is also the disadvantage of
the PM-based SPEI. It can be observed from Figure 15 that the RTH-based SPEI is superior to TH-based
SPEI under different month scales when the PM-based SPEI is considered as reference, especially in 3-,
6-, and 9-month scales. This result indicates the good performance of the ET estimated based on the
RTH model in this study.

Sensors 2019, 19, 5566 12 of 17 

 

 

Figure 14. Comparison of TH- and RTH-based SPEI at XNIN Station over the period of 1999–2014 
under different month scales. 

According to the recordings of historical drought data of China meteorological network 
(https://cmdp.ncc-cma.net/cn/index.htm), a large surface drought occurred in the LP region in April 2013. 
Therefore, this month is selected to analyze the SPEI calculated based on the RTH model. Figure 15 
shows the comparison result of the SPEI calculated using different models at GNSS and 
meteorological stations in April 2013. Due to the lack of corresponding meteorological data at GNSS 
stations, the PM-based SPEI cannot be obtained at the GNSS stations, which is also the disadvantage 
of the PM-based SPEI. It can be observed from Figure 15 that the RTH-based SPEI is superior to TH-
based SPEI under different month scales when the PM-based SPEI is considered as reference, 
especially in 3-, 6-, and 9-month scales. This result indicates the good performance of the ET estimated 
based on the RTH model in this study. 

 
Figure 15. Comparison of SPEI calculated using different models at GNSS and meteorological stations 
in the LP region in April 2013 under multi-month scales, where the first, second, and third columns 
are the SPEI calculated based on TH, RTH, and PM models under different month scales. 

Figure 14. Comparison of TH- and RTH-based SPEI at XNIN Station over the period of 1999–2014
under different month scales.

Sensors 2019, 19, 5566 12 of 17 

 

 

Figure 14. Comparison of TH- and RTH-based SPEI at XNIN Station over the period of 1999–2014 
under different month scales. 

According to the recordings of historical drought data of China meteorological network 
(https://cmdp.ncc-cma.net/cn/index.htm), a large surface drought occurred in the LP region in April 2013. 
Therefore, this month is selected to analyze the SPEI calculated based on the RTH model. Figure 15 
shows the comparison result of the SPEI calculated using different models at GNSS and 
meteorological stations in April 2013. Due to the lack of corresponding meteorological data at GNSS 
stations, the PM-based SPEI cannot be obtained at the GNSS stations, which is also the disadvantage 
of the PM-based SPEI. It can be observed from Figure 15 that the RTH-based SPEI is superior to TH-
based SPEI under different month scales when the PM-based SPEI is considered as reference, 
especially in 3-, 6-, and 9-month scales. This result indicates the good performance of the ET estimated 
based on the RTH model in this study. 

 
Figure 15. Comparison of SPEI calculated using different models at GNSS and meteorological stations 
in the LP region in April 2013 under multi-month scales, where the first, second, and third columns 
are the SPEI calculated based on TH, RTH, and PM models under different month scales. 

Figure 15. Comparison of SPEI calculated using different models at GNSS and meteorological stations
in the LP region in April 2013 under multi-month scales, where the first, second, and third columns are
the SPEI calculated based on TH, RTH, and PM models under different month scales.



Sensors 2019, 19, 5566 13 of 17

4. Conclusions

An RTH model is proposed in this study and the RTH model is established based on the analysis
of the relationship between PWV/T and ET residual. The initial value of ET for the RTH model is
calculated using the TH model, and the time series of ET residual between TH and PM models are
fitted based on multiple linear regression. An experiment is performed in the LP region, and 88
meteorological stations that are evenly distributed in the LP region over the period of 1979–2016 are
selected. 31 GNSS stations derived from CMONOC located in this region are also used to analyze the
performance of the RTH-based SPEI.

Comparison results show that the ET estimated based on the RTH model is superior to the
traditional TH model, and the statistical result reveals that the average improvement rate of RMS
derived from RTH-based ET is approximately 61.6% in the LP region. The RTH-based SPEI is
validated and compared with the TH-based SPEI when the PM-based SPEI is regarded as a reference.
The numerical result indicates the good performance of the RTH-based SPEI, whereas the quality of the
TH-based SPEI is relatively poor at the selected meteorological stations. The statistical result reveals
that the average improvement rate of the RMS derived from the RTH-based SPEI is approximately
48.0%, 49.3%, 43.2%, and 9.1% under 1-, 3-, 6-, and 12-month scales in the LP region, respectively.
Finally, the RTH-based SPEI is tested in a case of April 2013 using the meteorological and GNSS stations.
The results obtained above indicate the improved accuracy of the RTH-based SPEI, and further, verify
the superiority of the proposed RTH model in this paper.
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Appendix A

ET value can be calculated on the basis of the monthly mean temperature based on the empirical
model proposed by [16], which is usually called the TH model and can be expressed as

ET =

{
0 T ≤ 0
16K( 10T

I )
m

T > 0
(A1)

where T is the monthly mean temperature in ◦C; I is the heat index, which is calculated as the sum of
12 monthly index values i; i is calculated using the mean monthly temperature by the first formula
in Equation (A2); m is a coefficient that is dependent on I, as described by the second formula in
Equation (A2); and K is a correction coefficient computed as a function of the latitude and month,
which can be expressed by the third formula in Equation (A2).

i = (T/5)1.514

m = 6.75× 10−7I3
− 7.71× 10−5I2 + 1.79× 10−2I + 0.492

K = (N/12) · (NDM/30)
(A2)

where NDM is the number of days of the month; and N is the maximum number of sun hours, which
is usually obtained as follows:

N = (24/π) ·ws (A3)
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where ws is the hourly angle of the sun rising, which is calculated by

ws = arccos(− tanϕ tan δ) (A4)

where ϕ is the latitude in radians; and δ is the solar declination in radians, which can be obtained by

δ = 0.4093 sin(2πJ/365− 1.405) (A5)

where J is the average Julian day of the month.
In addition to calculating the rough ET value based on the TH model, an accurate ETo value can

be calculated using the PM model [17]. The PM model can be expressed as [47,48]:

ET =
0.408∆(Rn −G) + γ 900

T+273.16 u2(es − ea)

∆ + γ(1 + 0.34u2)
(A6)

where T and u2 are the 2 m average air temperature in ◦C and wind speed in m s−1, respectively; Rn is
the crop surface net radiation in MJ m−2 d−1; G is the soil heat flux in MJ m−2 d−1; es is the saturation
vapor pressure in kPa; ea is the actual vapor pressure in kPa; ∆ is the slope of the vapor pressure curve
in kPa ◦C−1; γ is a psychrometric constant in kPa ◦C−1; 900 is the coefficient for the reference crop;
and 0.34 is the wind coefficient for the reference crop. The preceding eight variables can be calculated
using the daily maximum and minimum temperature, relative humidity, sunshine duration, and 2 m
wind following the formulas of [41].

Appendix B

SPEI can be calculated following the formula proposed by [5], where the monthly climatic water
balance Di of month i is initially computed using the difference between precipitation Pi and PET and
expressed as follows:

Di = Pi − ETi (A7)

The calculated Di values are aggregated at different time scales. A good relationship exists between
SPEI and the log-logistic distribution based on the Kolmogorov–Smirnov test under multi-month scale
on a global scale [13], therefore, SPEI is calculated using the three-parameter log-logistic distribution
based on the standardized D series. The probability distribution function of the log-logistic distribution
for D series can be expressed as

F(x) =
[
1 + (

α
x− γ

)
β
]−1

(A8)

where α, β, and γ are the scale, shape, and origin parameters, respectively, which are obtained using
the L-moment procedure [5].

β = 2w1−w0
6w1−w0−w2

α =
(w0−2w1)β

Γ(1+1/β)Γ(1−1/β)

γ = w0− αΓ( 1+1
β )Γ( 1−1

β )

(A9)

where Γ(1 + 1/β) is the gamma function of (1 + 1/β), and ws is the probability-weighted moments of
order s (s = 0, 1, 2) and can be calculated as follows:

ws =
1
n

n∑
n

(1−
j− 0.35

n
)

s

Di (A10)
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where n is the number of data points, and j is the range of observations in increasing order. SPEI is
then calculated as the standardized values of F(x), as shown as follows:

SPEI = W −
2.515517 + 0.802853W + 0.010328W2

1 + 1.432788W + 0.189269W2 + 0.001308W3 (A11)

where W =
√
−2In(F(x)) when F(x) < 0.5, and W =

√
−2In(1− F(x)) when F(x) > 0.5. SPEI value of 0

represents 50% of the cumulative probability of D series.
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