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Abstract

Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in
structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative
susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common
shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model
consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it
exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-
predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the
competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that
the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in
trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence
trophic interactions.
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Introduction

Predator-prey interactions are fundamental aspects of ecology,

yet it is comparatively recently that non-lethal interactions and the

indirect effects of predators have been considered in detail.

Assemblages of interacting species have long been conceptualized

as food webs, where species interact with one another via

consumer–resource links. Chains of such direct interactions can

also allow species to interact indirectly with one another through

one or more intervening species [1,2]. The trophic cascade

concept incorporates such indirect effects brought about by density

changes in species groups, termed ‘density-mediated indirect

interactions’ (DMIIs, [3]). The result is an oscillating relationship

in the strength of interactions between different trophic levels. In a

simple three-level system, for example, when predation increases,

prey density will be reduced, thus alleviating grazing pressure on

the prey’s resource [3]. A predator can therefore have an indirect

effect on the abundance of primary producers by regulating

herbivore density via consumption [4,5].

The trophic cascade concept has been widely accepted, and

indirect interactions between organisms were originally thought to

have been initiated through these density-mediated routes alone.

For example, classic studies by Paine [6,7] illustrated the

disproportionate effect that the predatory starfish Pisaster ochraceus

had on populations of the mussel Mytilus californianus. Paine [8]

argued that such keystone predators must influence the density of

their prey through preferential consumption, but recent research

suggests that non-consumptive effects may underlie predator

mediated prey coexistence [9]. Indeed, growing evidence demon-

strates that predators can also interact with prey by inducing

modifications in prey phenotype, which can alter interactions with

other species in the system [1]. Such phenotypic responses, termed

‘trait-mediated interactions’ (TMIs, [3]) or more simply, ‘non-

consumptive effects’, can be at the level of development, morpho-

logy, physiology, life history and behavior [10,11] and may

cascade down to affect the prey’s resources (trait-mediated indirect

interactions, or TMIIs). Recent analyses indicate that trait-

mediated effects are generally as strong, or stronger, than the

effects of direct consumption [12–15]. Non-consumptive effects

appear to be particularly prevalent in aquatic ecosystems and have

marked effects on foraging efficiency and foraging effort [14].

Where prey undertake anti-predatory responses, they invariably

incur some cost. For example, vulnerability to predators usually

increases whilst prey forage, but avoiding predators often means

decreasing food intake [16]. Alternatively, prey organisms may be

forced to migrate to poor-quality habitats with a lower predation

risk (e.g., [17]). Both of these responses result in the same outcome:

the prey suffer a reduction in overall resource acquisition, which

results in a trophic cascade affecting the abundance and/or

diversity of the resource (e.g., [5]). At the same time, there may be

implications of such non-consumptive effects on competitive

interactions within food chains. For example, Relyea [18]

demonstrated that the presence of a predator could reverse

competition in amphibian larvae through species differences in

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e23068



morphological plasticity. Similarly, predator effects have been

shown to be modified by prey size, both within [19] and between

species [1,20].

Whereas morphological plasticity and ontogenetic changes in

body size differences may reduce the probability of predation

during an encounter, behavioral avoidance serves to reduce

encounter rates. Furthermore, behavioral avoidance can occur

immediately on encountering a predator whilst undergoing

morphological changes requires a considerably longer time period.

Habitat shifts and reductions in feeding rate in response to a

predator have been documented in a wide range of studies

(reviewed in [15]), and in many cases predator avoidance leads to

an overall reduction in grazing, which in turn leads to a TMII in

which producer biomass increases. Indeed, the strength and

prevalence of foraging–predation risk trade-offs led Schmitz et al.

[15] to suggest that these are the ultimate mechanism behind

trophic cascades.

Aquatic gastropods exhibit a wide range of adaptive morphol-

ogies as protection from predators. Clearly shell strength is an

important defense [21,22] and several gastropod species have been

shown to exhibit inducible increases in shell thickness in response

to waterborne risk cues from predators such as crabs and fish

[5,23–29]. However, shell structure can also provide an effective

form of defence [22]. For example, shells that are highly polished

or have a more discoid shape can be more difficult for predators

such as crayfish and crabs to handle [30]. However, gastropods

can also show a trade-off, or trait compensation, between

morphological and behavioral defences [31,32]. Cotton et al.

[30] demonstrated a negative correlation between morphological

defences and behavioral avoidance strategies across four species of

intertidal gastropod; species with high aspect ratios (tall spires)

were most vulnerable to predation (common periwinkle Littorina

littorea, Fig. 1A) and compensated by showing the highest level of

behavioral avoidance, while the species with low aspect ratios

(short spires: discoid shells) were least vulnerable to predation (flat

topshell Gibbula umbilicalis, Fig. 1B) and showed the lowest

responsiveness.

Here we chose to use these two extremes of trait expression as a

model system for examining how susceptibility to predation can

influence non-consumptive effects. In the first experiment we

tested the a priori prediction that Gibbula (less susceptible) would

respond to predation cues less than Littorina (more susceptible to

predation by crabs, Fig. 1C) and that Gibbula would therefore

continue grazing to a greater extent than Littorina when exposed to

predation cues. In the second experiment we assessed the

competitive ability of these two gastropod species in the presence

and absence of predation cues. As competitive interactions

between intertidal gastropods may be related to their susceptibility

to predation, our second prediction was that the morphologically

vulnerable species (Littorina) would be at a competitive disadvan-

tage and, hence, graze relatively less algal resource, under

predation cue conditions.

Methods

Study organisms
All animal work was carried out in accordance with the ASAB/

ABS Ethical Guidelines. Approval was not necessary for this work

as it involves gastropod molluscs and decapod crustaceans;

invertebrates which require no research permits or approval in

the UK. Likewise, we did not require permits to access the

collection sites, nor to remove animals and algae for laboratory

studies as the collection sites were on public land that was not

National Park land or Government Protected; and there is no

legislation restricting the collection of these organisms. Gastropods

used in the production of predation cues were first humanely killed

by freezing. To minimize the number of individuals used we kept

sample sizes to the minimum suitable for effective statistical

analysis. Furthermore, those individuals used in the trials were

kept for a short time in optimal conditions before being returned to

the shore.

We collected Littorina littorea (L.) and Gibbula umbilicalis (da Costa)

from Hannafore Point, UK (50u 209N, 4u 279W). The snails were

standardized to a small size range for all experiments (average

width 11.95 mm; range 10.7–12.5 mm) and were maintained on

sea lettuce (Ulva lactuca L.) collected from Plymouth Hoe, UK (50u
229N, 4u 089W). There was no significant species difference in shell

width (Experiment 1: t = 0.821, d.f. = 118, p.0.05; Experiment 2:

t = 0.516, d.f. = 118, p.0.05), but Gibbula had a significantly lower

aspect ratio than Littorina (Experiment 1: t = 49.51, d.f. = 118,

p,0.0001; Experiment 2: t = 29.99, d.f. = 118, p,0.001).

Shore crabs (Carcinus maenas L.) were collected from the Plym

Estuary, UK (50u 229N, 4u 079W) and Heybrook Bay, UK (50u
199N, 4u 079W) and were maintained on a diet of common mussels

(Mytilus edulis L.). Overall, nine male crabs were used to prepare

the predation cue water. All of the crabs were undamaged and

relatively large (average carapace width 60.5 mm; range 55.5–

68.2 mm). Throughout the experiment all study organisms were

maintained in aerated seawater (35 PSU) at 15uC.

Experiment 1 – Single species trials
This experiment followed a similar protocol to Cotton et al.

[30]. Sixty snails of each species were food deprived for 48 hours

and then assigned to one of two treatments (control or predation

cue). The 48 hour period of food deprivation ensured that each

focal individual was equally motivated to graze on the algal

Figure 1. A comparison of the morphologies of the model prey
species used in the study. A) The common periwinkle Littorina
littorea displays a high aspect ratio; B) the flat topshell Gibbula
umbilicalis displays a low aspect ratio (discoid morphology); and C)
evidence of crab predation on L. littorea.
doi:10.1371/journal.pone.0023068.g001
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resource provided during the experimental trials. An individual

snail was then placed into a circular plastic dish (diameter

157 mm), filled to a depth of 35 mm with seawater (680 ml) and

allowed to acclimate for one hour prior to the trial. At the start of

each trial a disc of Ulva (diameter 23 mm, area 415 mm2) was

positioned at the centre of the dish and 68 ml of control (normal

seawater) or predation cue was added. Predation cue water was

made separately for each gastropod species and was taken from

two aquaria each containing 1700 ml of seawater in which one

Carcinus had been maintained for 24 hours. Two snails conspecific

to the test species were fed to each crab at the onset of the 24 hour

period and an additional crushed conspecific snail was added to

the tank immediately before the trials. This preparation exposed

the snails to both chemical cues from natural predators, alarm cues

from conspecifics, and effluent from crushed conspecifics. The

mixture provided the prey with several olfactory cues (predator

kairomones and prey death pheromones), a combination that was

chosen in order to maximize anti-predator behavior as it indicates

that predation is actually occurring [28,30,33]. While the

individual dishes contained stationary water, any saturation of

predation cue would be analogous to that experienced by prey

sharing a rock pool with a predator during low tide.

Behavioral data were collected by scan sampling at 15 minute

intervals for the first 300 minutes. Behavior was scored as: Eating,

Moving, Stationary, At waterline/Out of water. Fleeing to the

waterline and exiting the water are well-documented anti-

predatory behaviors performed by gastropods [34–36]. The

overall amount of foraging was quantified from the area of Ulva

grazed. After 24 hours, the Ulva disks were removed, placed

between a sheet of clear acetate and graph paper, and then

scanned into PhotoStudio 5. The area (mm2) of the remaining

algae was then calculated.

Experiment 2 – Two species trials
This experiment followed a protocol similar to Experiment 1.

Sixty snails of each species were food deprived for 48 hours and

were then assigned to one of two treatments (control or predation

cue) in conspecific (Littorina-Littorina, Gibbula-Gibbula) or hetero-

specific (Littorina-Gibbula) pairs. Pairs of gastropods were then

placed in each dish before the addition of Ulva and the control or

predation cue. Three different predation cues were prepared by

feeding a single Carcinus with two snails (corresponding to the

treatment pairing, e.g., Littorina-Gibbula), and adding two crushed

snails of the same species immediately prior to the experiment.

Behavioral and foraging data were collected as for Experiment

1, but because of limitations on the availability of unblemished

sheets of Ulva in October, the disks used were smaller (diameter

13 mm, area 133 mm2). In order to ensure that these disks were

not entirely consumed, trials in Experiment 2 ran for 195 mins.

Behavioral data in these trials can be quantified for each individual

(although they are statistically non-independent), but the amount

of grazing could only be quantified per trial, not per individual

snail.

Statistical analysis
Statistical analyses were performed using SPSS 15. Throughout

we have used the difference between predation cue and control

groups as a measure of effect size (see [30,32]). This is important as

a means of standardization because gastropod species differ in

their background levels of movement and foraging behavior.

We used non-parametric analysis where possible because of

significant heterogeneity of variance that could not be rectified

through transformations. The results of Experiment 1 were

analyzed using Mann-Whitney tests, and the amount of grazing

Figure 2. Interspecific comparisons (mean ± 1 SE) between
Littorina littorea and Gibbula umbilicalis from single species trials.
The values are means, standardized with respect to the control, for each
species. Negative values indicate a reduction relative to the control
while positive values indicate an increase relative to the control. A) the
number of scans in which an individual was recorded out of the water
in predator avoidance (U = 300, d.f. = 58, p,0.025); B) the number of
scans in which an individual was recorded eating Ulva (U = 301, d.f. = 58,
p,0.025); and C) the amount of Ulva eaten at the end of the trial
(U = 234, d.f. = 58, p,0.001).
doi:10.1371/journal.pone.0023068.g002
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in Experiment 2 using Kruskal-Wallis tests. Behavioral data in

Experiment 2 were non-independent within trials, requiring the

use of a repeated measures design. We used the Repeated

Measures General Linear Model in SPSS as there is no non-

parametric equivalent to a two-factor repeated measures ANOVA.

Data for time out of water passed Levene’s test for heterogeneity of

variance, but the data for time spent eating could not be

transformed to achieve homogeneity. However, Underwood [37]

considers large, balanced ANOVA designs to be robust to

heterogeneity of variance and unlikely to lead to a Type 1 error.

Results

Experiment 1 – Single species trials
We found a significant species difference in the main anti-

predator response, climbing to the waterline or out of the water.

The addition of predation cue caused Littorina littorea to spend

significantly more time out of the water than did Gibbula umbilicalis,

which showed very little standardized response to the predator

treatment (U = 300.0, d.f. = 58, p,0.025; Fig. 2A). As a result of

spending more time in predator avoidance during predation cue

trials, Littorina spent significantly less time feeding than Gibbula

(U = 301.0, d.f. = 58, p,0.025; Fig. 2B). Consequently, the

predator treatment reduced the amount of Ulva eaten by Littorina

in 24 hours by over 54%, resulting in Littorina showing a

significantly greater effect size than Gibbula (U = 234.0, d.f. = 58,

p,0.001; Fig. 2C).

Experiment 2 – Two species trials
As in Experiment 1, Littorina showed a far more marked

response than Gibbula to the predation cue. Within trials involving

Littorina and Gibbula pairs, under control conditions Littorina

typically displaced Gibbula from the food and Gibbula generally

responded to displacement by leaving the water. This situation

reversed with the addition of predation cue (Fig. 3A), and the

standardized time spent out of the water shows a significant

interaction of treatment with the experimental species pairings

(GLM repeated measures: within factors Trial*Treatment,

F2,27 = 4.141, p,0.03; between factors Treatment F2,27 = 3.35,

p,0.05). In conspecific pairs, Littorina showed little effect of the

addition of predation cue (Fig. 3A), which is puzzling given the

marked response in Experiment 1. It appears that this lack of effect

is caused by one individual Littorina displacing the other from the

algal resource during control trials, leading to an elevated level of

crawl-out behavior in the absence of predation cue. Gibbula in

conspecific pairs showed a slightly reduced level of crawl out

behavior in predation cue trials, indicating as above that they do

not show high levels of avoidance to the predator treatment.

The results of the foraging activity (Fig. 3B) almost mirror those

of the crawl-out behavior. In conspecific pairs, Littorina showed

depressed foraging activity in the predator treatment while Gibbula

Figure 3. Comparisons (mean ± 1 SE) between Littorina littorea
(white bars) and Gibbula umbilicalis (black bars) from trials with
conspecific and heterospecific pairs. The values are means,
standardized with respect to the control, for each species. Negative

values indicate a reduction relative to the control while positive values
indicate an increase relative to the control. A) the number of scans in
which each individual was recorded out of the water in predator
avoidance (GLM repeated measures: within factors Trial*Treatment,
F2,27 = 4.141, p,0.03; between factors Treatment F2,27 = 3.35, p,0.05);
B) the number of scans in which each individual was recorded eating
Ulva (GLM repeated measures: within factors Trial*Treatment,
F2,27 = 24.918, p,0.0001; between factors Treatment F2,27 = 6.055,
p,0.007); and C) the amount of Ulva eaten at the end of the trial (K-
V x2

2 = 8.476, p,0.015). Bars in C are shown in grey as it was not
possible to determine the amount of Ulva eaten by each individual.
doi:10.1371/journal.pone.0023068.g003
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pairs showed slightly elevated foraging relative to control

conditions. The most marked effect was the highly significant

trial*treatment interaction, in which Littorina-Gibbula trials showed

a marked species difference; Littorina showed a reduction in

foraging behavior compared to controls whereas Gibbula increased

foraging time relative to the control (GLM repeated measures:

within factors Trial*Treatment, F2,27 = 24.918, p,0.0001; be-

tween factors Treatment F2,27 = 6.055, p,0.007).

In the two species trials it was not possible to distinguish the

relative grazing by the two individuals. However, we found a

significant difference between species-pairs in the relative amount

eaten in each treatment (K-W x2
2 = 8.476, p,0.015; Fig. 3C).

Within trials involving Littorina pairs, the amount of grazing in the

presence of predation cue was greatly reduced compared with

controls, while Gibbula pairs and heterospecific pairs showed little

effect of the predator treatment.

Discussion

Recent studies have shown that non-consumptive effects may

significantly affect trophic cascades within rocky intertidal

assemblages. The presence of predatory crabs and fish suppresses

grazing by consumers such as gastropods, amphipods and isopods,

resulting in a greater density and biomass of algae [5,38,39].

Similarly, predatory crabs have been shown to suppress predation

of barnacles by the gastropod Nucella lapillus [5,40,41]. Our study

demonstrates that susceptibility to predation may modify inter-

specific competitive interactions within intertidal food chains,

potentially increasing or decreasing the effect of a predator in

inducing TMIIs. In our model system of two marine gastropods

differing in morphological susceptibility to predation, susceptibility

was linked to their behavioral response to predation risk which, in

turn, influenced their grazing rate and their interaction with one

another. The results supported our a priori hypothesis, that Littorina

littorea, with its higher aspect ratio and greater susceptibility to

predation [30] would display a greater degree of responsiveness to

predation cues, thus showing a larger reduction in feeding under

predation cue conditions than the more discoid Gibbula umbilicalis.

In response to predation cues, Littorina exhibited both

suppressed feeding and anti-predator avoidance behavior, whereas

Gibbula showed little response. These findings are consistent with

those of Cotton et al. [30], which clearly demonstrated a difference

between these two species in their handling times by Carcinus

maenas. The major morphological difference between the species is

their contrasting aspect ratios, which affects their resistance to

predation by crabs as conical shells with larger aspect ratios are

easier to handle than discoid shells with smaller aspect ratios [30].

Furthermore, the results of our second experiment demonstrate

that the behavioral responses of individual species influence

interspecific interactions, with a reversal in competition and fora-

ging success in the presence of predation cues. Gibbula was

displaced from the food when in competition with Littorina, but

when cues from predatory crabs were present Littorina showed an

anti-predator habitat shift that allowed Gibbula greater access to

resources.

The presence of predators has been demonstrated to influence,

and indeed reverse, competitive interactions between prey species

through non-consumptive effects. Relyea [18] showed that the

outcome of competitive interactions between wood frog (Rana

sylvatica) and leopard frog (R. pipiens) tadpoles was reversed in the

presence of predatory dragonfly larvae (Anax spp.); largely through

the effects of predator-induced morphological plasticity. Similarly,

Peacor and Werner [42] demonstrated that non-consumptive

effects affect competition between small and large bullfrog (R.

catesbeiana) tadpoles. Our experiments demonstrate similar preda-

tor effects on competition, but mediated through species

differences in their behavioral responses to predation cues, which

are potentially influenced by differences in predation susceptibility

[30].

With the increasing recognition of the importance of the non-

consumptive effects of predators it is becoming clear that many

effects originally attributed to direct effects may in fact be the

result of non-consumptive indirect effects [9]. For example, in the

context of our study the classic work of Lubchenco [43] was

considered a textbook example of a density-mediated trophic

cascade (e.g., [44,45]). Lubchenco demonstrated that predation by

Carcinus indirectly influences rocky shore algal community

structure and diversity by controlling Littorina density, however,

the non-lethal effects of Carcinus on herbivorous snails can generate

similar outcomes (empirically tested by Trussell et al. [46] and

reviewed in Peckarsky et al. [9]). In order to recognise how such

non-lethal effects may manifest, Preisser and Bolnick [14] recently

used the Lotka-Volterra predator-prey model as a heuristic tool for

understanding the impact of non-consumptive effects on prey

populations. Within this context, predators may affect prey

numbers indirectly by altering their foraging efficiency or their

foraging effort. In general, prey should forage in habitats with the

lowest ratio of mortality (m) to foraging rate (f) the ‘‘m/f rule’’ [47];

when profitable habitats have a high risk of predation, prey may

choose less energetically rewarding habitats with lower risk.

Alternatively, the presence of a predator may cause prey to leave

the habitat temporarily, for example the crawl-out response of

gastropods [32,33]. Both non-consumptive effects reduce net food

intake, but our results indicate that the extent to which this occurs

depends on susceptibility to predation.

In our experiments Littorina was unable to relocate to forage in a

low risk habitat, but frequently left the water to avoid predation,

reducing overall food intake. Gibbula, in contrast, are less

susceptible to crab predation and so following Gilliam and Fraser

[47] can be considered to be less sensitive to m. In the presence of

predation cues Gibbula continued to forage, and indeed in

interspecific competition they benefitted from predation cues as

Littorina departed. Our experiments clearly demonstrate an

interaction modification in which an inferior competitor tempo-

rarily gains the upper hand as a result of a non-consumptive

predator effect. This result highlights one of the many complex

ways in which predators may influence the populations of their

prey and of their primary resources, and strengthens the argument

for further incorporating non-consumptive effects into the study of

food-web dynamics as suggested by Peckarsky et al. [9].
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15. Schmitz OJ, Křivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-
mediated indirect interactions. Ecol Lett 7: 153–163.

16. Abrams PA (1987) Indirect interactions between species that share a predator:
varieties of indirect effects. In: Kerfoot WC, Sih A, eds. Predation: direct and

indirect impacts on aquatic communities. HanoverNew Hampshire, , USA:

University Press of New England. pp 38–54.

17. Grabowski JH, Kimbro DL (2005) Predator-avoidance behavior extends trophic

cascades to refuge habitats. Ecology 86: 1312–1319.

18. Relyea RA (2000) Trait-mediated indirect effects in larval anurans: reversing

competition with the threat of predation. Ecology 81: 2278–2289.

19. Peacor SD (2002) Positive effect of predators on prey growth rate through
induced modifications of prey behaviour. Ecol Lett 5: 77–85.

20. Peacor SD, Werner EE (1997) Trait-mediated indirect interactions in a simple
aquatic food web. Ecology 78: 1146–1156.

21. Dudley R (1980) Crab-crushing of periwinkle shells, Littorina littorea, from two
adjacent geographical provinces. Nautilus 94: 108–112.

22. Vermeij GJ (1993) A natural history of shells. PrincetonNew Jersey, , USA:

Princeton University Press. 216 p.

23. Appleton RD, Palmer AR (1988) Water-borne stimuli released by predatory

crabs and damaged prey induce more predator-resistant shells in a marine
gastropod. P Natl Acad Sci USA 85: 4387–4391.

24. Palmer AR (1990) Effect of crab effluent and scent of damaged conspecifics on
feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus

(L.). Hydrobiologia 193: 155–182.

25. Trussell GC (1996) Phenotypic plasticity in an intertidal snail: The role of a
common crab predator. Evolution 50: 448–454.

26. Trussell GC (2000) Predator-induced plasticity and morphological trade-offs in
latitudinally separated populations of Littorina obtusata. Evol Ecol Res 2: 803–822.

27. Trussell GC, Smith LD (2000) Induced defenses in response to an invading crab
predator: An explanation of historical and geographic phenotypic change. P Natl

Acad Sci USA 97: 2123–2127.

28. Trussell GC, Nicklin MO (2002) Cue sensitivity, inducible defense, and trade-
offs in a marine snail. Ecology 83: 1635–1647.

29. Rundle SD, Spicer JI, Coleman RA, Vosper J, Soane J (2004) Environmental
calcium modifies induced defences in snails. Proc R Soc Lond B Biol Sci

(Supplement) 271: 67–70.

30. Cotton PA, Rundle SD, Smith KE (2004) Trait compensation in marine
gastropods: shell shape, avoidance behavior and susceptibility to predation.

Ecology 80: 1581–1584.
31. DeWitt TJ, Sih A, Hucko JA (1999) Trait compensation and cospecialization in

a freshwater snail: size, shape and antipredator behaviour. Anim Behav 58:

397–407.
32. Rundle SD, Brönmark C (2001) Inter- and intraspecific trait compensation of

defence mechanisms in freshwater snails. Proc R Soc Lond B Biol Sci 268:
1463–1468.

33. Dalesman S, Rundle SD, Coleman RA, Cotton PA (2006) Cue association and
anti-predator behaviour in a pulmonate snail, Lymnaea stagnalis. Anim Behav 171:

789–797.

34. Jacobsen HP, Stabell OB (1999) Predator-induced alarm responses in the
common periwinkle, Littorina littorea: dependence on season, light conditions, and

chemical labelling of predators. Mar Biol 134: 551–557.
35. Dalesman S, Rundle SD, Cotton PA (2007) Predator regime influences innate

anti-predator behaviour in the freshwater gastropod Lynmaea stagnalis. Freshwater

Biol 52: 2134–2140.
36. Dalesman S, Rundle SD, Cotton PA (2009) Developmental plasticity overrides

selection for behavioural avoidance in a freshwater gastropod. Anim Behav 78:
987–991.

37. Underwood AJ (1997) Experiments in ecology: their logical design and
interpretation using analysis of variance. Cambridge, UK: Cambridge

University Press. 524 p.

38. Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, et al. (2010) Predator-prey
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