
plants

Article

Ethylenediaminetetraacetic Acid (EDTA) Mitigates
the Toxic Effect of Excessive Copper Concentrations
on Growth, Gaseous Exchange and Chloroplast
Ultrastructure of Corchorus capsularis L. and
Improves Copper Accumulation Capabilities

Muhammad Hamzah Saleem 1,*, Shafaqat Ali 2,3,*, Muhammad Kamran 4 , Naeem Iqbal 5,
Muhammad Azeem 5 , Muhammad Tariq Javed 5, Qasim Ali 5,
Muhammad Zulqurnain Haider 5 , Sana Irshad 6, Muhammad Rizwan 2 , Saad Alkahtani 7

and Mohamed M. Abdel-Daim 7,8

1 MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze
River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2 Department of Environmental Sciences and Engineering, Government College University Allama Iqbal
Road, Faisalabad 38000, Pakistan; mrizwan@gcuf.edu.pk

3 Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
4 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China;

kamiagrarian763@gmail.com
5 Department of Botany, Government College University, Faisalabad 38000, Pakistan;

drnaeem@gcuf.edu.pk (N.I.); mazeem@gcuf.edu.pk (M.A.); mtariqjaved@gcuf.edu.pk (M.T.J.);
drqasimali@gcuf.edu.pk (Q.A.); drmzhaider@gcuf.edu.pk (M.Z.H.)

6 School of Environmental Studies, China university of Geosciences, Wuhan 430070, China;
sanairshad55@gmail.com

7 Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
salkahtani@ksu.edu.sa (S.A.); abdeldaim.m@vet.suez.edu.eg (M.M.A.-D.)

8 Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
* Correspondence: saleemhamza312@webmail.hzau.edu.cn (M.H.S.); shafaqataligill@gcuf.edu.pk (S.A.)

Received: 7 April 2020; Accepted: 9 June 2020; Published: 16 June 2020
����������
�������

Abstract: Copper (Cu) is an important micronutrient for a plant’s normal growth and development.
However, excess amount of Cu in the soil causes many severe problems in plants—which ultimately
affect crop productivity and yield. Moreover, excess of Cu contents causes oxidative damage in
the plant tissues by generating excess of reactive oxygen species (ROS). The present experiment
was designed to investigate the phytoextraction potential of Cu, morpho-physiological features and
biochemical reaction of jute (Corchorus capsularis L.) seedlings using ethylenediaminetetraacetic acid
(EDTA) of 3 mM under different Cu levels (0 (control), 50 and 100 µM) in a hydroponic nutrient
solution (Hoagland). Our results showed that elevated Cu rates (50 and 100 µM) in the nutrient
solution significantly reduced plant height, fresh and dry biomass, total chlorophyll content and
gaseous exchange attributes in C. capsularis seedlings. As the concentration of Cu in the medium
increased (50 and 100 µM), the level of malondialdehyde (MDA) and oxidative stress in C. capsularis
seedlings also increased, which could have been controlled by antioxidant activity in particular plant
cells. In addition, rising Cu concentration in the nutrient solution also increased Cu uptake and
accumulation in roots and leaves as well as affected the ultrastructure of chloroplast of C. capsularis
seedlings. The addition of EDTA to the nutrient solution significantly alleviated Cu toxicity in
C. capsularis seedlings, showing a significantly increase in plant growth and biomass. MDA contents
was not significantly increased in EDTA-induced plants, suggesting that this treatment was helpful
in capturing ROS and thereby reducing ROS in in C. capsularis seedlings. EDTA modification with
Cu, although the bioaccumulation factor in roots and leaves and translocation factor for the leaves
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of C. capsularis seedlings has significantly increased. These results indicate that C. capsularis has
considerable potential to cope with Cu stress and is capable of removing a large quantity of Cu from
the Cu-contaminated soil while using EDTA is a useful strategy to increase plant growth and biomass
with Cu absorption capabilities.

Keywords: fibrous crop; copper stress; chelating agent; phytoremediation; oxidative stress;
ultrastructure of chloroplast

1. Introduction

Increased concentrations of heavy metals are seriously threatened by soil pollution [1–4]. Copper
(Cu) is an essential plant micronutrient of various heavy metals requiring normal growth and body
development [5–8]. Cu being a micronutrient, cell wall metabolism, nitrogen fixation, protein synthesis,
and many other processes in both physiology and biochemistry play a very important role [9–12].
However, excess Cu in soil is toxic to plants and can affect plant development, physiological processes
such as respiration and photosynthesis, altering DNA structure and endangered plant survival [1,13–16].
Some key factors in Cu’s high soil concentration are the use of fungicides, bactericides and herbicides in
agriculture [2,11]. About 16% of the soil is polluted by heavy metals in China and only about 2.1% of the
soil is tainted with Cu [3,17,18]. Cu is an essential micronutrient and also a cofactor of many enzymes
such as peroxidase (POD) and superoxidase dismutase (SOD) [4,19,20]. However, toxic Cu levels in the
plants increased reactive oxygen species (ROS), such as superoxide radical (O−), H2O2, singlet oxygen
(1O2) and hydroxyl radicals (OH). Antioxidants such as SOD and POD therefore, essential for the
scavenge of ROS [21–25]. Cu also causes excessive oxidative damage to plants due to malondialdehyde
(MDA) content that induces protein peroxidation and bilayer lipid [26–31]. Therefore, in order to
prevent plant Cu toxicity, it is very important to reduce or reduce the concentration of Cu in soil to an
appropriate level.

Phytoextraction, a green technology allowing removing soil contaminants has become increasingly
popular due to fact that it is treated cost-effective and extensively popular technique [32–35]. It is
an environmentally friendly, scientifically accepted and more effective method for the removal of
heavy metals or other substances by fast-growing plant species for the absorption of these toxic
substances into their harvestable parts [17,24,36]. Heavy metals are extracted from the soil to the
roots and transported to the shoots, depending on plant species, soil types, the availability of heavy
metals, the stage of growth and the application of fertilizers [11,12,37]. Numerous plant species
have been used to accumulate various heavy metals, such as lead (Pb), zinc (Zn), copper (Cu) and
cadmium (Cd), etc., [38–40]. Different fibrous species such as Corchorus capsularis, Boehmeria nivea and
Linum usitatissimum have been used for the phytoextraction of different heavy metals due to effective
amount of heavy metals accumulation in their body parts [41–43]. In previous studies, C. capsularis was
used to phytoextract Pb, Zn, Cu and Cd from the soil. Due to the fast growth and enormous biomass
increasement and also owing to physiological and biochemical processes, C. capsularis is more tolerant
to heavy metals than other fibrous crops [42,44,45]. Thus, C. capsularis could be an ideal candidate to
remove Cu from contaminated soil. The detailed characteristics of C. capsularis to accumulate different
heavy metals from the metal contaminated soils are previously discussed in a review of literature by
Saleem et al. [46].

Chelators such as ethylenediaminetetraacetic acid (EDTA) chelate different heavy metals in the
soil. In cause of, most heavy metals with low soil bioavailability and various chelating agents, such as
EDTA, have been applied to plants to improve the bioavailability of metals [47–49]. Organic chelating
agents such as EDTA are more efficient, environmentally friendly and biodegradable compared
to inorganic chelating agents. EDTA is a scientifically accepted chelating agent for improving the
solubility, absorption and stability of metals. Therefore, EDTA was used in many studies to improve
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the accumulation and transfer of metal through the soil, as well as to promote the growth and
development of plants when grown in metal-polluted soils [50,51]. To enhance the metal uptake in
plants, very few amount of chelators are required for example 2-mM EDTA and NTA is enough to
increase the Cd uptake in Sigesbeckia orientalis [52]. Much research has been published on EDTA-assisted
phytoextraction of different heavy metals in many plant species [53–56], but very few studies have
examined the EDTA-assisted Cu C. capsularis phytoextraction effect. The results of this study will
add to our knowledge about by (i) the potential of EDTA for increasing phytoextraction of Cu in
C. capsularis seedlings and (ii) determining the promoting role of morpho-physiological traits, gaseous
exchange attributes and ultrastructural alterations of the chloroplast while alleviates oxidative stress in
C. capsularis seedlings using EDTA as a chelating agent.

2. Materials and Methods

2.1. Plant Growth Conditions and Treatments

Mature seeds of C. capsularis (C-3) released from Bangladesh, washed with distilled water and
sowed in the experimental fields of Huazhong Agricultural University Wuhan, China. The seeds of
jute (Corchorus capsularis) were collected from Bast and Fiber Research Center, Huazhong Agricultural
University, Hubei Province, P.R. China. The same C. capsularis type (C-3) is a hyperaccumulator species
for Cu contaminated soil which was previously used in many studies [29,57–61]. After two weeks of
seed sowing a uniform size of seedlings was collected and converted into a 150 mL flask containing
the Hoagland solution nutrient (pH 6.5) and put in germinating machine, where the volumetric flasks
were placed in the growth chamber (day/night temperature at 25/20 ◦C) with 12 h light (13,000 lx)
and 12 h dark (HP250GS-C, Ruihua Instrument and Equipment Co., Ltd., Wuhan, Hubei, China) of
Huazhong Agricultural University. Plants were able to grow in nutrient solution and nutrient solution
was spiked artificially with various levels of Cu using CuSO4 5H2O (99% purity) and EDTA as follows:
Cu (0 µM/L), Cu (0 µM/L) + EDTA (3 mM), Cu (50 µM/L), Cu (50 µM/L) + EDTA (3 mM) and Cu
(100 µM/L), Cu (100 µM/L) + EDTA (3 mM). The experiment was executed in complete randomized
design (CRD) having one plant in each flask with six replications. The nutrient solution was renewed
three times a week to prevent any microbial or fungal attacks. At juvenile stage EDTA was applied as
already used previously by Chigbo et al. [62]. In this experiment, we used EDTA concentration (3 mM)
which was slightly higher than used by Azhar et al. [63] and Habiba et al. [24]. Nutrient solution
pH was maintained throughout the experiment using 1-M H2SO4 and NaOH at 6.5 ± 0.2. After four
weeks of treatment, all plants were wrapped in different plant parts for different characteristics of
morphophysiological and metal accumulation in different plant parts. All chemicals used were of
analytical grade, procured from Sinopharm Chemical Reagent Co., Ltd.

2.2. Sampling and Data Collection

Plants were collected and plant height, diameter, fresh and dry biomass was measured after
28 days of providing EDTA with a nutrient solution. The height of the plant was determined by
measuring the scale from the tips of the shoot to the root hair. The diameter of the plant was determined
using Vernier (ST22302 SG Devices, Hangzhou, China). Complete fresh weight was determined by
calculating the weight of roots and shoots using a weighing balance, and plants were dried for 72 h at
65 ◦C and dry weight was measured until weight was constant. The leaves have also been collected for
the testing of enzymes and washed in liquid nitrogen at −80 ◦C with distilled water for further analysis.
Roots were immersed in 20-mM Na2EDTA for 15–20 min to remove Cu adhered to the surface of roots.
Then, roots were washed thrice with distilled water and finally once with deionized water and dried
for further analysis [64].
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2.3. Determination of Chlorophyll Contents and Gaseous Exchange Parameters

Leaves were collected for determination of chlorophyll content. For chlorophyll content analysis,
0.1 g of fresh leaf sample was extracted with 8 mL of 95% acetone for 24 h at 4 ◦C in the dark.
The absorbance was measured by a spectrophotometer (UV-2550; Shimadzu, Kyoto, Japan) at 646.6,
663.6 and 450 nm. Chlorophyll content was calculated by the standard method of Arnon [65].

At the same days, gaseous exchange was also measured. Net photosynthesis (Pn), leaf stomatal
conductance (gs), transpiration rate (Ts), and intercellular carbon dioxide concentration (Ci) were
measured from three different plants in each treatment group. Measurements were conducted between
11:30 and 13:30 on days with clear sky. Rates of leaf Pn, gs, Ts and Ci were measured with a LI-COR
gas-exchange system (LI-6400; LI-COR Biosciences, Lincoln, NE, USA) with a red–blue LED light
source on the leaf chamber. In the LI-COR cuvette, CO2 concentration was set as 380 mmol mol−1

and LED light intensity was set at 1000 mmol m−2 s−1, which is the average saturation intensity for
photosynthesis in C. capsularis [66].

2.4. Determination of Contents of Malondialdehyde and Proline and Activities of Antioxidant Enzyme

The degree of lipid peroxidation was evaluated as malondialdehyde (MDA) content. Briefly,
0.1 g of frozen leaves were ground at 4 ◦C in a mortar with 25 mL of 50-mM phosphate buffer
solution (pH 7.8) containing 1% polyethylene pyrrole. The homogenate was centrifuged at 10,000× g
at 4 ◦C for 15 min. The mixtures were heated at 100 ◦C for 15–30 min and then quickly cooled in an
ice bath. The absorbance of the supernatant was recorded by using a spectrophotometer (xMark™
microplate absorbance spectrophotometer; Bio-Rad, USA) at wavelengths of 532, 600 and 450 nm.
Lipid peroxidation was expressed as l mol g−1 using the following formula: 6.45 × (A532−A600) −
0.56 × A450. Lipid peroxidation was measured using a method previously published by Health and
Packer [67]. Proline contents were determined by the method of Bates et al. [68] using a standard curve
prepared with proline.

To evaluate enzyme activities, fresh leaves (0.5 g) were homogenized in liquid nitrogen and
5 mL of 50-mmol sodium phosphate buffer (pH 7.0) including 0.5-mmol EDTA and 0.15-mol NaCl.
The homogenate was centrifuged at 12,000× g for 10 min at 4 ◦C, and the supernatant was used for
measurement of SOD and POD activities. SOD activity was assayed in 3 mL reaction mixture containing
50-mM sodium phosphate buffer (pH 7), 56-mM nitro-blue tetrazolium, 1.17-mM riboflavin, 10-mM
methionine and 100 µL enzyme extract. Finally, the sample was measured by using spectrophotometer
(xMark™microplate absorbance spectrophotometer; Bio-Rad). Enzyme activity was measured using a
method by Chen and Pan [69], and expressed as U g−1 FW.

POD activity in the leaves was estimated using the method of Sakharov and Ardila [69] using
guaiacol as the substrate. A reaction mixture (3 mL) containing 0.05 mL of enzyme extract, 2.75 mL
of 50-mM phosphate buffer (pH 7.0), 0.1 mL of 1% H2O2 and 0.1 mL of 4% guaiacol solution was
prepared. Increases in the absorbance at 470 nm due to guaiacol oxidation was recorded for 2 min.
One unit of enzyme activity was defined as the amount of the enzyme.

2.5. Cu Determination

Dried root and shoot samples were ground in a stainless-steel mill and passed through a 0.1-mm
nylon sieve for Cu analysis. Briefly, 0.1 g of dried sample was digested in HNO3/HClO4 (4:1) solution.
Digested solution was washed in 25-mL flasks and diluted in deionized water until reaching the final
volume of 25-mL. The supernatant was passed through a 0.45-µm filter paper and analyzed for Cu
content by an atomic absorption spectrophotometer (240FS-AA; Agilent).

Bioaccumulation factor (BAF) was calculated as the ratio of Cu concentration in tissues and Cu
concentration in the nutrient solution by using the following formula:

BAF =
Cu concentration in plant tissues

Cu concentration in the nutrient solution
(1)
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while translocation factor (TF) was determined by estimating the concentration of Cu in one part of
plant with respect to the other parts as follows:

TF =
Cu concentration in plant tissues

Cu concentration in roots
(2)

2.6. Transmission Electron Microscopy

For TEM, leaf samples were collected and placed in liquid nitrogen. Small sections of the leaves
(1–3 mm in length) were fixed in 4% glutaraldehyde (v/v) in 0.2-mol/L SPB (sodium phosphate buffer,
pH 7.2) for 6–8 h and post-fixed in 1% OsO4 for 1 h, then in 0.2-mol/L SPB (pH 7.2) for 1–2 h. Samples
were dehydrated in a graded ethanol series (50%, 60%, 70%, 80%, 90%, 95% and 100%) followed by
acetone, filtered and embedded in Spurr resin. Ultra-thin sections (80 nm) were prepared and mounted
on copper grids for observation under a transmission electron microscope (JEOL TEM-1200EX) at an
accelerating voltage of 60.0 kV or 80.0 kV.

2.7. Statistical Analysis

Standard deviation (SD) were considered significant when the P-values were less than 0.05 after
comparison with Tukey Post hoc (HSD). The important treatments used in this study were evaluated
by the regression analysis using Statistix 8.1. The one-way analysis of variance (ANOVA) was used to
analyze differences in different morphologic and physiological traits. Standard errors were considered
significant when the P-values were less than 0.05 after comparison with Tukey Post hoc (LSD) test.
Graphical presentation was carried out using SigmaPlot 12.

3. Results

3.1. Plant Growth and Biomass

Plant growth and biomass were considerably reduced in compared to untreated EDTA in terms
of plant height, plant diameter, fresh and dry bio-mass by adding higher Cu concentrations (50 and
10 µmol/L) in the nutrient solution (P < 0.05) (Table 1). Maximum plant height, plant diameter, plant
fresh weight and plant dry weight reduction were measured at highest Cu treatment, i.e., 100 µmol/L
which caused 52%, 25%, 22% and 35%, respectively as compared with control. While at 50 µmol/L,
the following traits were also decreased and decreased by 35%, 10%, 8% and 17% compared to the
control treatment. The application of EDTA in the nutrient solution of Cu contaminated mixture of
C. capsularis significantly (P < 0.05) revoke metal toxicity by improvement in plant growth and biomass
production. The results revealed that Cu-stressed plants, i.e., 100 µmol/L with the application of EDTA,
i.e., 3 mM exhibited 9%, 7%, 6% and 11% increase in plant height, plant diameter, fresh weight and dry
weight by, respectively, when compared with 100 µmol/L without the application of EDTA.

Table 1. Effect of different concentrations of Cu and with or without the application of EDTA on plant
height (cm), plant diameter (mm), plant fresh weight (g), plant dry weight (g) and total chlorophyll
contents (mg/g fresh weight) of C. capsularis seedlings.

Treatments Plant Height Plant Diameter Plant Fresh Weight Plant Dry Weight Total Chlorophyll

Control 23 ± 0.2 a 2.0 1± 0.03 b 2.43 ± 0.04 b 1.59 ± 0.03 b 3 ± 0.05 b
EDTA 23 ± 0.3 a 2.09 ± 0.01 a 2.58 ± 0.02 a 1.65 ± 0.03 a 3.2 ± 0.09 a
Cu50 15 ± 0.1 c 1.79 ± 0.04 d 2.25 ± 0.04 d 1.33 ± 0.02 d 2 ± 0.04 d

Cu50 + EDTA 16 ± 0.2 b 1.89 ± 0.02 c 2.35 ± 0.03 c 1.43 ± 0.02 c 2.1 ± 0.06 c
Cu100 11 ± 0.2 e 1.51 ± 0.03 f 1.89 ± 0.05 f 1.03 ± 0.02 f 1.4 ± 0.09 f

Cu100 + EDTA 12 ± 0.3 d 1.62 ± 0.02 e 2.01 ± 0.05 e 1.14 ± 0.03 e 1.7 ± 0.03 e

The given values are means ±SD (n = 3). One-way ANOVA was performed and means differences were tested
by highest significant difference HSD (P < 0.05). Different lowercase letters in table indicate significant difference
between the treatments. Different abbreviations are used are as follows: control (0-µmol/L Cu + 0-mM EDTA),
EDTA (0-µmol/L Cu + 3-mM EDTA), Cu50 (50-µmol/L Cu + 0-mM EDTA), Cu50 + EDTA (50-µmol/L Cu + 3-mM
EDTA), Cu100 (100-µmol/L Cu + 0-mM EDTA) and Cu100 + EDTA (100-µmol/L Cu + 3-mM EDTA).
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3.2. Chlorophyll Contents and Gaseous Exchange Attributes

Results regarding with different levels of Cu (0, 50 and 100 µmol/L) with or without the application
of EDTA on total chlorophyll contents of C. capsularis are presented in Table 1. According to the results,
it was observed that increasing level of Cu (50 and 100 µmol/L) in the nutrient solution significantly
decreased the total contents of chlorophyll in the leaves of C. capsularis. However, application of EDTA
to the Cu-stressed plants significantly (P < 0.05) improved photosynthetic pigments in C. capsularis.
The increase in total chlorophyll contents was 21% in 100 µmol/L with EDTA compared to the
corresponding treatment without EDTA use.

In the present study, increasing concentration of Cu in the nutrient solution (50, 100 µmol/L)
significantly decreased Pn, Tr, Gs and Ci of C. capsularis seedlings (Figure 1). These results suggested
that the application of EDTA to Cu treated plants significantly increased gaseous exchange attributes
compared with the plants grown under Cu-only treatment. The application of EDTA to plants treated
with 50 µmol/L induces 8%, 6%, 22% and 7% increase in Pn, Tr, Gs and Ci, respectively compared to
plants grown under 50 µmol/L without EDTA application. In the same way, the plants grown under
100 µmol/L treated with EDTA significantly increased Pn, Tr, Gs and Ci, respectively by 8%, 14%,
27% and 13% compared with the plants grown under 100-µmol/L without the application of EDTA.

Plants 2019, 8, x FOR PEER REVIEW 7 of 20 

 

 

Figure 1. Effect of different concentrations of Cu with or without the application of EDTA on net 

photosynthesis (A), transpiration rate (B), stomatal conductance (C) and intercellular CO2 (D) in the 

leaves of C. capsularis seedlings grown in solution medium with increasing Cu concentrations (0, 50 

and 100 μM) treated with and without 3-mM EDTA. The given values are means ±SD (n = 3). One-

way ANOVA was performed and means differences were tested by highest significant difference 

HSD (P < 0.05). Different lowercase letters in figure indicate significant difference between the 

treatments. 

3.3. Oxidative Stress and Antioxidant Enzyme Activities 

In this research, the influence of different levels of Cu (50 and 100 μmol/L) and application of 

EDTA (3 mM) on lipid peroxidation (MDA content), proline content and antioxidant enzyme 

activity (SOD and POD) in C. capsularis roots and leaves were also examined (Figure 2, Figure 3). 

The use of EDTA, however, reduces MDA, proline contents and SOD and POD activities in C. 

capsularis roots and leaves. Moreover, increasing contents of MDA contents suggested that Cu 

toxicity induced oxidative damage in C. capsularis. Compared to the control treatment, the overall 

increase according to the results in the roots and leaves of 475% and 372%, respectively in MDA 

contents were recorded at Cu100 followed by Cu100 + EDTA (338% and 309%, respectively) and 

Cu50 (207% and 190%, respectively) than the treatment without Cu and EDTA. However, the 

minimum MDA contents in the roots and leaves were found in the treatments where EDTA is 

applied without Cu level (8 and 6 µmoles g−1 FW, respectively) followed by control (13 and 11 

µmoles g−1 FW. The proline in the leaves has substantially been increased (P < 0.05), while EDTA 

has decreased the proline in the roots and leaves of the C. capsularis significantly (P < 0.05) with Cu 

in the nutrient solution. The maximum increase in the roots and leaves of 540% and 533%, 

respectively in proline contents were observed in Cu100 followed by Cu100+EDTA (446% and 

433%) and Cu50 (400% and 336%) than the treatment without Cu and EDTA. However, the 

Figure 1. Effect of different concentrations of Cu with or without the application of EDTA on net
photosynthesis (A), transpiration rate (B), stomatal conductance (C) and intercellular CO2 (D) in the
leaves of C. capsularis seedlings grown in solution medium with increasing Cu concentrations (0, 50 and
100 µM) treated with and without 3-mM EDTA. The given values are means ± SD (n = 3). One-way
ANOVA was performed and means differences were tested by highest significant difference HSD
(P < 0.05). Different lowercase letters in figure indicate significant difference between the treatments.

3.3. Oxidative Stress and Antioxidant Enzyme Activities

In this research, the influence of different levels of Cu (50 and 100 µmol/L) and application of EDTA
(3 mM) on lipid peroxidation (MDA content), proline content and antioxidant enzyme activity (SOD
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and POD) in C. capsularis roots and leaves were also examined (Figure 2, Figure 3). The use of EDTA,
however, reduces MDA, proline contents and SOD and POD activities in C. capsularis roots and leaves.
Moreover, increasing contents of MDA contents suggested that Cu toxicity induced oxidative damage
in C. capsularis. Compared to the control treatment, the overall increase according to the results in the
roots and leaves of 475% and 372%, respectively in MDA contents were recorded at Cu100 followed
by Cu100 + EDTA (338% and 309%, respectively) and Cu50 (207% and 190%, respectively) than the
treatment without Cu and EDTA. However, the minimum MDA contents in the roots and leaves were
found in the treatments where EDTA is applied without Cu level (8 and 6 µmoles g−1 FW, respectively)
followed by control (13 and 11 µmoles g−1 FW. The proline in the leaves has substantially been increased
(P < 0.05), while EDTA has decreased the proline in the roots and leaves of the C. capsularis significantly
(P < 0.05) with Cu in the nutrient solution. The maximum increase in the roots and leaves of 540% and
533%, respectively in proline contents were observed in Cu100 followed by Cu100 + EDTA (446% and
433%) and Cu50 (400% and 336%) than the treatment without Cu and EDTA. However, the minimum
proline contents in the roots and leaves were found in the treatments where only EDTA was applied
(7 and 6 µgg−1 FW) followed by control (8 and 7 µgg−1 FW).
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Figure 2. Effect of different concentrations of Cu with or without the application of EDTA on
malondialdehyde contents (A), proline contents (B), superoxidase activity (C) and peroxidase activity
(D) in the roots of C. capsularis seedlings grown in solution medium with increasing Cu concentrations
(0, 50 and 100 µM) treated with and without 3-mM EDTA. The given values are means ± SD (n = 3).
One-way ANOVA was performed and means differences were tested by highest significant difference
HSD (P < 0.05). Different lowercase letters in figure indicate significant difference between the treatments.

Increased Cu levels in the nutrient solution (50 and 100 µmol/L) were found to significantly
enhance the activities of various enzymatic antioxidants such as SOD and POD in the roots and leaves
of C. capsularis seedlings. However, exogenous supplementation of EDTA decreased the activities of
antioxidant enzymes (Figure 2, Figure 3). SOD was observed at Cu100 in the roots and leaves (66 and
63 U g−1 FW, respectively) and PODs (6640 and 6120 U g−1 FW, respectively), followed by Cu100 +
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EDTA in the roots and leaves in the leaves of C. capsularis (6240 and 5680 Ugg−1 FW, respectively).
Using EDTA (3 mM) significantly reduced SOD and POD enzymatic activity compared to plants grown
without EDTA use. Nonetheless, the minimum value in SOD roots and leaves was observed in plants
grown using EDTA without Cu (9 and 5 U g−1 FW, respectively) and POD (2880 and 2440 U g−1 FW,
respectively) compared to the control.Plants 2019, 8, x FOR PEER REVIEW 9 of 20 

 

 

Figure 3. Effect of different concentrations of Cu with or without the application of EDTA on 

malondialdehyde contents (A), proline contents (B), superoxidase activity (C) and peroxidase 

activity (D) in the leaves of C. capsularis seedlings grown in solution medium with increasing Cu 

concentrations (0, 50 and 100 μM) treated with and without 3-mM EDTA. The given values are 

means ±SD (n = 3). One-way ANOVA was performed and means differences were tested by highest 

significant difference HSD (P < 0.05). Different lowercase letters in figure indicate significant 

difference between the treatments. 

3.4. Uptake and Distribution of Cu 

In this study, determination of Cu concentration in different parts of C. Capsularis (roots and 

leaves) seedlings under various levels of Cu (50 and 100 μmol/L) with or without the application of 

EDTA (3 mM) were also studied. However, the determination of Cu concentration from different 

parts of the plants were measured after 28 days of given the treatments to C. capsularis seedlings 

(Table 2). These results suggested that significantly increased Cu concentration in the nutrient 

solution (P < 0.05) caused an increase in Cu contents in the roots and leaves of C. capsularis. It was 

also noticed that application of EDTA to the Cu-stressed plants also helps in the Cu accumulation in 

C. capsularis. Results also show that the highest concentration of Cu was observed in the roots (57 

mg/kg Cu) while few transported to the leaves (45 mg/kg Cu) compared to regulation at Cu100 + 

EDTA. The maximum Cu concentration was observed in the roots at Cu100 + EDTA (57 mg/kg Cu), 

followed by Cu100 (49 mg/kg Cu) and Cu50+EDTA (37 mg/kg Cu) compared to the display. 

Similarly, Cu100 + EDTA (45 mg/kg Cu) was observed in the leaves, followed by Cu100 (40 mg/kg 

Cu) and Cu50 + EDTA (33 mg/kg Cu) compared to control. These findings showed that application 

of EDTA enhances the Cu accumulation as follows: Cu100 + EDTA > Cu100 > Cu50 + EDTA > Cu50 

> EDTA > control. 
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malondialdehyde contents (A), proline contents (B), superoxidase activity (C) and peroxidase activity
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3.4. Uptake and Distribution of Cu

In this study, determination of Cu concentration in different parts of C. Capsularis (roots and
leaves) seedlings under various levels of Cu (50 and 100 µmol/L) with or without the application of
EDTA (3 mM) were also studied. However, the determination of Cu concentration from different parts
of the plants were measured after 28 days of given the treatments to C. capsularis seedlings (Table 2).
These results suggested that significantly increased Cu concentration in the nutrient solution (P < 0.05)
caused an increase in Cu contents in the roots and leaves of C. capsularis. It was also noticed that
application of EDTA to the Cu-stressed plants also helps in the Cu accumulation in C. capsularis. Results
also show that the highest concentration of Cu was observed in the roots (57 mg/kg Cu) while few
transported to the leaves (45 mg/kg Cu) compared to regulation at Cu100 + EDTA. The maximum Cu
concentration was observed in the roots at Cu100 + EDTA (57 mg/kg Cu), followed by Cu100 (49 mg/kg
Cu) and Cu50 + EDTA (37 mg/kg Cu) compared to the display. Similarly, Cu100 + EDTA (45 mg/kg
Cu) was observed in the leaves, followed by Cu100 (40 mg/kg Cu) and Cu50 + EDTA (33 mg/kg Cu)
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compared to control. These findings showed that application of EDTA enhances the Cu accumulation
as follows: Cu100 + EDTA > Cu100 > Cu50 + EDTA > Cu50 > EDTA > control.

Table 2. Effect of different concentrations of Cu and with or without the application of EDTA on Cu
accumulation in roots (mg/g FW) and shoots (mg/g FW) of C. capsularis seedlings.

Treatments Cu Concentration in Roots Cu Concentration in Shoots

Control 13 ± 2.5 e 10 ± 1.4 f
EDTA 15 ± 2.5 e 15 ± 1.4 f
Cu50 32 ± 0.5 d 26 ± 1 d

Cu50 + EDTA 37 ± 1.2 c 33 ± 0.9 c
Cu100 49 ± 1 b 40 ± 0.8 b

Cu100 + EDTA 57 ± 1 a 45 ± 1 a

Values are means ± SD (n = 3). One-way ANOVA was performed and means differences were tested by highest
significant difference HSD (P < 0.05). Different lowercase letters in table indicate significant difference between the
treatments. Different abbreviations are used are as follows: control (0-µmol/L Cu + 0-mM EDTA), EDTA (0-µmol/L
Cu + 3-mM EDTA), Cu50 (50-µmol/L Cu + 0-mM EDTA), Cu50 + EDTA (50-µmol/L Cu + 3-mM EDTA), Cu100
(100-µmol/L Cu + 0-mM EDTA) and Cu100 + EDTA (100-µmol/L Cu + 3-mM EDTA).

BAF and TF in C. Capsularis seedlings are presented in Figure 4. It was noted that all BAF and TF
values are less than 1 while applying EDTA to Cu-stressed plants showed higher BAF and TF values
compared to plants without EDTA. The minimum value of TF was observed in Cu100 + EDTA (0.77)
while maximum TF value was observed in Cu50 + EDTA (0.88). The highest BAF value was recorded
at Cu50 + EDTA (0.74) in the roots while (0.65) in the leaves. The values of BAF and TF were increased
with the application of EDTA to the Cu stressed plants when grown in the nutrient solution medium.
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Figure 4. Effect of different concentrations of Cu and with or without the application of EDTA on
bioaccumulation factor in roots (A), bioaccumulation factor in shoots (B) and translocation factor in the
shoots (C) of C. capsularis seedlings grown in solution mixture with increasing Cu concentrations (0-,
50- and 100-µM) treated with and without 3-mM EDTA.
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3.5. Transmission Electron Microscopy

In this study, the impact of different levels of Cu (50 and 100 µmol/L) with or without EDTA
application in the nutrient solution on TEM analysis were also measured. TEM photos of C. capsularis
leaf cells under different treatments of Cu and EDTA in the nutrient solution are shown in Figure 5.
These photos showed that high concentration of Cu in the nutrient solution damaged chloroplast
ultrastructure and also affected other bounded organelles. In this study, Cu level (50 µmol/L) in
the nutrient solution damaged the ultrastructure of chloroplast while the introduction of very high
concentrations of Cu (100µmol/L) in the nutrient solution completely dislocates the membrane bounded
organelles such as chloroplast, mitochondria and plastoglobuli. The ultrastructure of chloroplast under
high concentration of Cu in the nutrient solution was recovered/enhanced by external nutrient solution
supplementation of EDTA. However, compared to the Cu-stressed plants, more clear and noticeable
cellular structures (especially the ultrastructure of chloroplasts) was observed in supplemented
EDTA treatments.
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Figure 5. Transmission electron microscopic photos of C. capsularis seedlings leaf cells. Different
lowercase values used in these photos are as follows: (A) control (10,000) (B) EDTA (10,000) (C) 50-µM/L
Cu (10,000) (D) 50-µM/L Cu + 3-mM EDTA (10,000) (E) 100-µM/L Cu (10,000) (F) 100-µM/L Cu + 3-mM
EDTA (10,000).

4. Discussion

Results from this study suggested that increased concentrations of Cu (50 and 100 µmol/L) in
nutrient solution (P < 0.05) significantly decrease plant growth and biomass relative to control (Table 1).
High concentration of Cu in growth medium significantly reduced plant growth and biomass reported
in many previous studies [5,9,70–74]. The decrease in plant growth and biomass under high Cu
concentration in the nutrient solution may be due to high Cu accumulation in different parts of
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C. capsularis (Table 2) triggering phytotoxic effects [16,75–77]. The toxicity of elevated levels of metal
ions upon the pH, composition and concentration of medium and species [7,11,78]. The toxic Cu
concentration in the medium can cause nutrient imbalance by binding with iron and manganese
oxides that affect the productivity of plants and crop yield. The destabilization of plant growth and
development in high concentrations of Cu are commonly observed reactions [5,13,74,79,80].

With the rise in Cu concentration in the nutrient solution, total chlorophyll content and gaseous
exchange attributes were also reduced (Table 1, Figure 1). Increasing level of Cu concentration in
the medium significantly decrease photosynthesis in the leaves. However, the main effect of Cu
concentration is inhibition of electron transport chain, reduce photosynthesis rate and ultrastructure of
chloroplast [75,81]. Ahmed and Slima [82] reported that the significant decrease in chlorophyll contents
in C. capsularis when subjected to different heavy metals such as Pb, Cu, Cr, Fe and Zn. The decrease
in chlorophyll contents under Cu stress has been studied previously [15,24,83,84] while reduction in
gaseous exchange attributes under Cd stress has been studied by Ali et al. [85]. The drop in chlorophyll
in the leaves of C. capsularis may be due to the displacement of Mg ion which is required for synthesis
of chlorophyll [7,24,86].

Cu in excess also involves in the generation of large amount of reactive oxygen species (ROS)
because of depletion of low molecular antioxidants and distribution of metabolic pathways that shows
oxidative stress in plants [5,13,21,87–89]. ROS production in the leaves is scavenging by antioxidants
such as SOD and POD [16,17,90–93]. In this analysis, high concentration of Cu in the nutrient solution
causes high MDA content, proline, and increased enzymes with antioxidant activities such as SOD
and POD in C. capsularis roots and leaves (Figure 2, Figure 3). These results are in agreements with
previous studies using Cu as heavy metals [24,26,85,90,94]. It was also reported that excess Cu increases
lipid peroxidation indicating that prevalence in membrane bounded organelles [5,16,28]. In addition,
oxidative stress rises in C. capsularis roots and leaves. The increase of Cu in a nutrient solution which
is a stress factor that causes impaired plant growth and development due to Cu toxicity (Figure 2).
The contents of proline in the plant tissues are beneficial in signal transduction associated with Cu
toxicity and avoids distortion of the membrane due to oxidative stress. Similar results were showed
by [10] when they studied Boehmeria nivea under different levels of Cu and noticed that proline contents
in the leaves were continuously increased with the increase in Cu concentration in the soil. To decrease
the oxidative stress in the plants, plants have developed effective antioxidants such as (SOD and POD).
In the present study, the enzymatic activities of SOD and POD in the roots and leaves of C. capsularis
were also increased with the increase in Cu concentration in the nutrient solution (Figure 2C,D).
The process of ROS detoxification in the plants is dispensable by the activation of these antioxidants
which ultimately scavenge these species (ROS) [16,22,73,95]. The increase in antioxidants under
Cu-stressed plants were observed in Boehmeria nivea [43] and Oryza sativa [16]. However, continuously
increasing in the activities of SOD and POD under high concentration of Cu indicating that C. capsularis
can tolerate better than other many plant species. Moreover, the persistent increase in antioxidant
activity may be due to changes in gene expression and protein function [91,96,97]. However, better
growth and development of a plant under low concentration of Cu is also associated with active
antioxidant defense system [4,17,98–100].

The uptake and translocation of heavy metals in the plants grown under metal contaminated soil
mainly depends upon the metal supply and growth conditions [10,12,54,101]. Results of this study
indicated that Cu concentration in roots and leaves increased as Cu concentration in the nutrient
solution increased (Table 2). The highest concentration of Cu in the roots and leaves was estimated at
100 µmol/L, i.e., 49 and 40 mg/kg, respectively, and Cu was also found to be highly accumulated in
the roots while being transported little to the harvestable parts of the plant (Table 2). These findings
are agreement with the findings of Bhattacharya et al. and Niazy and Wahdan [42,45] whom found
a high concentration of Cu, Co, Ni and Fe in the C. capsularis and was transported to the stems
and leaves. One more possible reason behind this is that the time period of Cu treatment was only
28 days. Bhattacharya et al. [42] studied the mechanism behind this and reported that in early stage of
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C. capsularis iron plaque in formed in the roots and inhibits the transportation of As to the aboveground
parts of the plants. However, in the lateral stage of the growth As was highly transported to the
above ground parts with little accumulation in the roots. It is also believed that the restriction of the
plants to uptake/accumulate different metal contents in their aboveground parts of the plant from
the roots can be considered as a tolerance mechanism of a plant against metal stress [77,102,103].
However, the maximum concentration of Cu was accumulated in the roots with little transported to
the shoots; this is why the values of TF were less than 1 (Figure 3). The highest value of BAF in the
roots and leaves were 0.63 and 0.51, respectively, while highest value of TF was 0.81 recorded at Cu50.
These findings are similar to the findings of Ahmed and Slima [82], who studied different heavy metals
and noticed that under high concentration of Cd and Ni the values of BAF and TF in C. capsularis
were less than 1. Yoon et al. [104] and Chen et al. [17] studied Gentiana pennelliana and Moso bamboo,
respectively, and noticed that Cu strongly accumulated in the roots, while little was transported into
the shoots—rendering both BAF and TF values less than one in all treatments. In our previous study,
we noticed that high concentrations of Cu in the soil (a pot experiment) destroyed the cellular structure
of C. capsularis plants due to high metal toxicity that directly affected photosynthetic machinery [58].
While in another study, we noticed that fertilization of P improved membrane bounded structures
which were investigated with TEM analysis in C. capsularis plant [29].

EDTA significantly increased plant growth and biomass compared to Cu-stressed plants (Table 1).
Application of EDTA increased plant growth and development in Dianthus chinensis, Chlorophytum
comosum and Zea mays [15,105]. The increase in plant growth and biomass using EDTA in Cu-stressed
plants may be due to the enhanced gaseous exchange attributes using EDTA (Figure 1). Another
possible reason is the formation of chelate with the Cu2+ that may reduce the toxic effects of Cu [24,47,48].
Although the application of EDTA is independent of metal stress as it increased plant growth and
biomass (even under normal conditions), this may be due to increased nutrient uptake and/or EDTA
induced chelation of metals decreasing free metal ions in plants, as suggested by Kanwal et al. [56].
In the present study, chlorophyll contents and gaseous exchange attributes were also increased by the
application of EDTA, as compared to plants grown without application of EDTA (Table 1, Figure 1).
The conversion of light energy into photochemical reactions is more efficient under the application of EDTA
in Cu-stressed plants may also play a key role in improving growth and development [49,106]. Increased
photosynthetic pigments and gaseous exchange attributes under EDTA agree with Kanwal et al. [56]
who reported that application of EDTA under lead-stressed-Brassica napus plants. Kanwal et al. [56]
also reported that application of EDTA reduced oxidative stress under high concentration of lead
as indicated by decrease in MDA contents which showed similar trends with our study (Figure 2).
Moreover, increase in photosynthetic rate may be due to the protective role of EDTA on photosynthetic
machinery by reducing the metal free ions and increase the activities of antioxidants which ultimately
reduced oxidative stress in C. capsularis [53,107]. The application of EDTA can form chelates with Cu2+

and can reduced oxidative stress generated by Cu toxicity (Figure 2). The increase in the antioxidative
enzymes (SOD and POD) known as mediators for oxidative stress in plants may protect a plant from
the toxic effects of ROS. Moreover, increasing activities of SOD and POD could increase the ability of
a plant to scavenge ROS and prevent oxidative stress in plants [53,108]. In the present experiment,
increasing growth, biomass, gaseous exchange attributes and alleviates oxidative stress is directly
linked with the activities of antioxidants (Figure 2) with the application of EDTA under elevating levels
of Cu in the nutrient solution.

The application of EDTA further increase the concentration of Cu in the roots and leaves of
C. capsularis under different levels of Cu in nutrient solution (Table 2). It was also noticed that the values
of BAF and TF were also increased with the application of EDTA compared with the plants without the
application of EDTA under Cu treated plants (Figure 3). The increase in Cu uptake with the application
of EDTA in Cu-stressed plants may be due to chelating of EDTA with Cu [55,56,109,110]. However,
increase in growth and biomass with the application of EDTA in Cu-stressed plants is suggesting that
C. capsularis is tolerant to Cu stress with active antioxidative defense system (Figure 2). The application
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of EDTA increase metals availability has been reported in many previous studies [24,47,51,56,111].
One more possible reason behind this mechanism is that roots are capable of liberating trace metals from
dissociated organometallic compounds and this process increase metal uptake in the plants [24,84,112].
There is a very limited literature available on TEM analysis under Cu stress with the supplementations
of chelating agent (EDTA). However, in a previous study, we noticed that Cu toxicity on ultrastructure
of chloroplasts can be overcome by adding phosphorus in the soil [29].

5. Conclusions

Based on these results, high concentrations of Cu in the nutrient solution decreased plant growth,
biomass, chlorophyll contents and gaseous exchange attributes, while inducing oxidative damage
by generated high amount of ROS in the tissues of the plant. The negative impact of Cu toxicity in
C. capsularis can be overcome by the application of EDTA, which increases plant growth, biomass
and chlorophyll by ameliorating the oxidative stress (MDA contents) generated by Cu toxicity due
to capturing free oxide ions and/or Cu-chelation. Moreover, application of EDTA also assisted
phytoextraction of Cu in C. capsularis and can regulate plant growth and development and may be a
green alternation to conventionally costly and not environment friendly physical–chemical technologies.
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