
Global Gene Expression Analysis of the Interaction
between Cancer Cells and Osteoblasts to Predict Bone
Metastasis in Breast Cancer
Michal Rajski1,2, Brigitte Vogel1, Florent Baty3, Christoph Rochlitz1,4, Martin Buess1,5*

1 Division of Medical Oncology, Department of Biomedicine, Basel University, Basel, Switzerland, 2 Institute of Physiology, University of Zürich, Zürich, Switzerland,

3 Division of Pneumology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland, 4 Division of Medical Oncology, Basel University Hospital, Basel, Switzerland, 5 Division of

Oncology, St. Claraspital, Basel, Switzerland

Abstract

Background: Bone metastasis is a main cause of morbidity in breast cancer. Since breast cancer is a heterogeneous disease,
the interactions of cancer cells with the skeletal host cells might also be diverse. We hypothesized that gene expression
signatures induced by heterotypic interaction of breast cancer cells and osteoblasts might be of clinical relevance.

Methodology/Principal Findings: We established an ex vivo co-culture model using benign breast epithelial cells or a panel
of 5 malignant breast epithelial cells in combination with primary human osteoblasts and determined associated gene
expression changes with HEEBO microarrays. Pretreatment gene expression profiles of 295 early stage breast cancers
published from the Netherlands Cancer Institute with a median follow up of 12.6 years allowed evaluating in vitro effects in
the in vivo situation.The effects of the interaction between osteoblasts and breast cancer cell lines of different origin were
very heterogeneous. Hs578T cells started to proliferate in co-culture with osteoblasts, SKBR-3 induced a TGF-b response and
MDA-MB231 cells showed two distinct sets of up-regulated genes: A set of interferon response genes associated with an up-
regulation of STAT1 was in vivo remarkably coherent providing a basis for segregation of tumors into two groups. In a uni-
variate analysis, early stage tumors with high expression levels (n = 136) of this gene set had a significantly lower overall
survival rate (p = 0.005) (63% at 10 years) than tumors with low expression levels (n = 159) (overall survival: 77% at 10 years).
The second gene set was associated with IL-6 and did not significantly change the overall survival rate (p = 0.165), but was
significantly associated with a shorter time to bone metastasis (p = 0.049; 74% vs. 83% at 10 years).

Conclusion/Significance: An IL-6 gene expression pattern induced by heterotypic interaction of breast cancer cells with
osteoblasts in vitro is associated with a higher rate of bone metastasis in vivo.
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Introduction

Bone is the most common site of breast cancer metastasis, and

this type of metastasis is frequently the main cause of morbidity in

patients with breast cancer. Bone metastases are associated with

pain, decreased mobility, fractures, neurologic compromise and

symptoms of hyper-calcemia [1]. Approximately 70% of patients

with metastatic breast cancer develop bone metastases as their

disease progresses [2]. Cancer metastasis to distant organs is

modulated by inherent properties of metastatic cancer cells and

the host microenvironment encountered by those cancer cells.

During the process of metastasis, cancer cells may acquire

additional capacity for progression under the influence of the

host microenvironment, and conversely, the host environment

may be changed by the presence of cancer cells. The reciprocal

interactions between cancer cells and the host environment are

critical for the progression of metastasis to target organs; in fact,

this concept was stated by Paget a hundred years ago as the ‘‘seed

and soil’’ hypothesis [3].

Metastasis formation in the bone is a complex process that

requires cooperative reciprocal interaction between tumor cells

and the cellular environment of the bone, which includes

osteoclasts and osteoblasts [4]. These interactions involve a

plethora of soluble and cellular components that interplay in a

process of coordinated expression and mutual signaling [5].

Multiple single factors have been described in numerous reports to

be involved in bone metastasis formation; for example, growth

factors, such as bone morphogenetic proteins (BMPs), transform-

ing growth factor b (TGF-b), insulin-like growth factors (IGFs),

and fibroblast growth factors (FGFs) have been shown to play

important roles. In addition, previous studies have indicated the

importance of membrane-bound molecules, such as cadherins,

and extracellular matrix components, including laminin, collagens

and matrix metalloproteinases (MMPs) [5]. However, it is likely
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that there are other factors that remain unidentified. The interplay

between the various factors and their combined effects on bone

metastasis also remain to be further characterized.

Like primary tumors, metastases are not merely aggregates of

malignant epithelial cells; instead, in many respects, they are

organ-like structures that include host stromal cells, such as

fibroblasts, inflammatory cells, endothelial cells, which form the

vasculature and the parenchymal cells of the target organ, like the

osteoblasts that form the bone. The malignant cells themselves

intermingle and interact with all of these cell types. There is

growing evidence that besides the cellular processes within the

tumor cells, a relevant contribution to tumor progression is

provided by the cells of the tumor microenvironment. On the

molecular level, genomic gene expression studies analyzing many

different carcinomas have illustrated in detail the complexity of the

tumors and the diversity of the associated non-epithelial cell types

[6–9]. Inductive interactions between these different cell types

have been shown to play not only a morphogenetic role but also

an important mechanistic role in the pathogenesis and progression

of malignancy [10]. Thus far, osteoblasts have been mainly viewed

in the context of bone formation and skeletal remodeling [11].

However, relatively little is known about the paracrine effects of

these tumor-osteoblast interactions. In breast cancer, it was

commonly thought that during osteolytic metastasis, when the

bone is mainly degraded by the activation of osteoclasts, the signal

exchange between cancer cells and osteoclasts (e.g., osteoprote-

gerin and RANKL) plays the major role and that the

bisphosphonates hinder osteolytic bone degradation, thereby

releasing matrix bound growth factor, which stimulates metastatic

progression [12]. However, substantial evidence has indicated that

the osteoblasts also have a role in this interplay and that some

effects of these agents could be due to the disruption of the

paracrine metastasis-promoting signaling that occurs as a result of

the interaction between the cancer and osteoblast cells [4]. Such

reciprocal inductive signaling has been well known from the

developmental biology perspective and has again attracted special

attention with the development of the concept of cancer stem cells

and their stem cell niches [13]. In this respect, osteoblastic cells are

of special interest because breast cancer cells display long latency

periods in the bone before metastasis formation [14]. This

observation indicates that osteoblasts and their precursors, the

mesenchymal stem cells, might form a niche for metastasis-

initiating cells [15]. The ability of osteoblasts to regulate the

hematopoietic stem cell niche would support this hypothesis.

Whether this niche [16] can be influenced by pharmacologic

intervention e.g. zolendronic acid or denosumab and hinder

metastatic relapse in the adjuvant situation is a matter of debate

[17]. Therefore, characterizing heterotypic cell-cell interaction

effects on a global gene expression scale might help to better

understand the currently used agents and eventually lead to the

identification of novel targets that could be used to interrupt these

paracrine stimulatory signaling pathways.

Breast cancer is a heterogeneous disease, which implies that the

tumor-osteoblast interactions might also be diverse. Tumor-

osteoblast interactions have not yet been well characterized on a

genome-wide scale, and they have not been compared among

different tumor subtypes. We recently used an approach of in vitro

co-culture experiments to characterize heterotypic interactions

with DNA microarrays to systematically describe the global effects

that the tumor-fibroblastic stroma interaction has on gene

expression. We identified a strong induction of the interferon

response by specific tumor cells that were co-cultured with a

diverse set of fibroblasts, and this response correlated with a subset

of breast cancers that had an unfavorable prognosis in vivo [10].

Furthermore, we studied tumor-endothelial interactions and

realized that the interaction of endothelial cells with a subset of

CD44+/CD242 breast cancer cell lines induces a signature of

‘‘tumor-endothelial cell-induced M phase/cell cycle’’ genes, which

are associated with an unfavorable outcome in human breast

cancer. [18].

In this study we investigated the effects of heterotypic

interaction between different breast cancer cell lines and and

human osteoblasts on the global gene expression programs to

obtain clues to the signaling mechanisms that are involved in bone

metastasis. We speculated that the interactions between tumor and

osteoblast cells lead to the induction of gene expression signatures

that are clinically relevant. These interactions might account for a

significant proportion of the unexplained information in the gene

expression data from various tissue specimens. Given the evidence

that interactions between cells can play critical roles in tumor

progression, these data might be even more meaningful than

prominent expression patterns, which are driven by the propor-

tional representation of a given cell type in a tissue. With this

approach we identified different interaction patterns and demon-

strated that the IL-6 gene expression signature is predictive for the

development of bone metastasis.

Methods

The study was approved by the ethics committee: Ethikkom-

mission beider Basel, Switzerland (approval No. 271/05) including

the analysis of publicly available datasets of breast cancer patients.

For the retrospective analysis of datasets, the ethics committee

waived individual consent of these patients whose data were

analyzed anonymously.

Cell culture
Human mammary epithelial cells (HMECs) (Cambrex Bio

Science Walkersville, Walkersville, MD) were expanded in

mammary epithelial basal medium that was supplemented with

bovine pituitary extract, human EGF, insulin and antibiotics

(Clonetics, Cambrex Bio Science Walkersville, Walkersville, MD).

MCF-7, T47D, MDA-MB-231, SKBR-3, and Hs578T cells

(ATCC, Atlanta, GA) were propagated in DMEM with 4.5 g/l

glucose (Gibco, Grand Island, NY) that was supplemented with

10% FBS (HyClone, Logan, UT), glutamine, 100 U/ml penicillin

and 100 mg/ml streptomycin (Gibco, Grand Island, NY). Normal

human osteoblasts (NHOst) (Lonza Walkersville, Walkersville,

MD) were expanded in Clonetics Osteoblast Basal Medium

(OBMTM) (Lonza Walkersville, Walkersville, MD) supplemented

with osteoblast growth medium (OGMTM) SingleQuotsH (Lonza

Walkersville, Walkersville, MD) and 10% FBS. For the co-culture

experiments and control cell cultures, cells were cultivated for

48 hours at a total density of 30,000 cells/cm2 (15,000 tumor

cells/cm2 and 15,000 normal human osteoblast cells/cm2) in

Clonetics Osteoblast Basal Medium (OBMTM) supplemented with

0.2% FBS without any further additives. This medium served as a

good universal medium for all of the cells in this study.

Proliferation assays
Direct cell counting. For cell counting, pre-starved cells

were plated in quadruplicate in 24-well plates at a density of 8500

cells/cm2. After 24 and 48 hours, the cells were trypsinized and re-

suspended in 0.2 ml FACS buffer that contained 0.5% BSA and

2 mM EDTA in PBS. The total cell number was determined using

a cell counter.

Comparison of cell proliferation in response to different

conditioned media. To obtain the conditioned medium, 10e6
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Hs578T or NHOst cells were extensively washed to avoid transfer

of any stimuli from the regular cell growth media. The cells were

kept at a density of 50,000 cells/cm2 in osteoblast basal medium

that contained 0.2% FBS without additional supplements for

48 hours. The medium was then aspirated and filtered through a

0.2 nm pore filter. In parallel, in a 12-well plate, 34,000 NHOst or

Hs578T cells/well were starved for 24 hours in osteoblast basal

medium that contained 0.2% FBS without supplements. For the

stimulation experiments, NHOst or Hs578t cells were washed

once with PBS and incubated for 24, 48 or 72 hours in 50%

osteoblast basal medium that contained 0.2% FBS and 50%

conditioned medium. Osteoblast basal medium with 0.2% FBS

was used as a negative control (vehicle medium), NHOst cell

culture supernatant that was diluted 1:2 in vehicle medium was

used as an autologous medium control, and full osteoblast basal

medium supplemented with Single Quots as described above was

used as a positive control. To determine cell proliferation in

response to stimulation with conditioned medium, the cells were

directly counted after 24, 48 and 72 hours using a cell counter.

Experiments were done in triplicate.

Real-time quantitative PCRs
To determine IL-6 mRNA levels, cells were kept under the

conditions described above and harvested after 48 hours. For real-

time quantitative PCR, cDNA was prepared with the Maxima

First Strand cDNA Synthesis Kit (Fermentas #K1641, Fermentas

International, Inc., Burlington, Ontario, Canada). For amplifica-

tion, we used the MESA GREEN qPCR MasterMix Plus

(Eurogentec # RT-SY2X-20, Eurogentec S.A., Belgium) with

300 nM of the following primers: IL-6 Forward: 59 - TAC CCC

CAG GAG AAG ATT CC - 39, Reverse: 59 - GCC ATC TTT

GGA AGG TTC AG - 39; hRPL-19 Forward: 59- GCC CAT

CTT TGA TGA GCT TC - 39, Reverse: 59 - GTG GCA AGA

AGA AGGF TCT GG - 39. All primers were designed with

PrimerBank [19]. Reactions were detected on an Applied

BioSystems 7000 real-time PCR instrument.

ELISAs
For IL-6 enzymatic linked immunosorbent assays, we used the

Human IL-6 Quantikine Immunoassay (R&D Systems, Abingdon,

OX14 3NB United Kingdom) according to the manufacturer’s

recommended instructions.

RNA isolation and amplification
For microarray experiments, single-cell cultures or co-cultures

were incubated for 48 hours to allow reciprocal signal exchange.

After discarding the culture medium and washing the cell layer

once with PBS, total RNA was isolated by lysing the cells in the

culture dish with RLT buffer (Qiagen, Valencia, CA) and

extracting the RNA with the RNeasyH Mini Kit (Qiagen). Five

hundred nanograms of total RNA were amplified using the

Message AmpTM II aRNA Kit (Ambion, Austin, TX). The RNAs

and the amplification products were checked for integrity by

electrophoresis in a 1% agarose gel in MOPS buffer.

cDNA Microarrays and Hybridization
For global gene expression analysis, we used HEEBO micro-

arrays. The HEEBO microarrays consist of 44,544 70-mer probes

that included the following: (a) constitutive exonic probes (30,718),

(b) alternatively spliced/skipped exonic probes (8,441), (c) non-

coding RNA probes (196), (d) BCR/TCR genic/regional probes

(372), (e) other probes (843), and (f) controls and empty spots as

negative controls for background fluorescence (3974). HEEBO

microarrays were produced at the Stanford Functional Genomic

Facility (Stanford, USA). Complete details regarding the clones on

the arrays may be found at: http://www.microarray.org/sfgf/

heebo.do.

For microarray experiments, 8 mg amplified RNA (aRNA) was

mixed with doping controls. Samples were vacuum dried, resolved

in coupling buffer and labeled with Cy5 dye. Labeled samples

were pooled with equal amounts of reverse colored Cy3-labeled

amplified reference RNA from Stratagene (Stratagene, CA, USA).

The labeled aRNA was purified with the AminoAllyl MessageAmp
TM II aRNA Amplification Kit (Ambion) according to the

manufacturer’s suggested protocol and fragmented using frag-

mentation reagents (Ambion). The fragmented probes were added

to a hybridization buffer containing Cot/PolyA/tRNA (0.05 mg/

uL each), 0.3% SDS, and 3.36 SSC and supplemented with

HEPES buffer. Following a denaturing step at 100uC, the probe

was placed on the microarray for competitive hybridization. After

18 hours, slides with hybridized probes were sequentially washed

and immediately dried in an ozone-free environment.

Data Analyses and Clustering:
Array images were scanned using an Axon Scanner 4000B

(Axon Instruments, Union City, CA), and image analysis was

performed using Genepix Pro, version 5.0 3.0.6.89 (Axon

Instruments). The raw data files were stored in the Stanford

Microarray Database [20] . Data are expressed as the log2 ratio of

fluorescence intensities of the sample and the reference for each

element on the array. In addition, MIAME compliant microarray

data were submitted to Gene Expression Omnibus (GEO) [21]

and are accessible through GEO (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE29036).

The (Cy5/Cy3) ratio is defined in the Stanford Microarray

Database (SMD) as the normalized ratio of the background-

corrected intensities. Spots with aberrant measurements that were

due to obvious array artifacts or poor technical quality were

manually flagged and removed from further analysis. A filter was

applied to omit measurements where the fluorescent signal from

the DNA spot was less than 50% above the measured background

fluorescence that surrounded the printed DNA spot in either the

Cy3 or Cy5 channel. Genes that did not meet these criteria for at

least 80% of the measurements across the experimental samples

were excluded from further analysis. Valid data were filtered to

exclude elements that did not have at least a 3-fold deviation from

the mean 2 samples. Data were analyzed using unsupervised

hierarchical clustering [22] (average linkage, un-centered correla-

tion) and were displayed with the Treeview software (http://rana.

lbl.gov/EisenSoftware.htm).

GO::TermFinder
GO::TermFinder is comprised of a set of object-oriented Perl

modules for accessing Gene Ontology (GO) information to

evaluate and visualize the collective annotation of a list of genes

to GO terms [23]. It can be used to draw conclusions from

microarrays by calculating the statistical significance of each

annotation.

Determination of the heterotypic interaction effect on
gene expression

To facilitate the identification of heterotypic interaction effects

on global gene expression in a mixed co-culture experiment, gene

expression data were normalized based on the proportional

contribution of each cell type to transcript abundance. Given that

the average gene does not change due to heterotypic interaction

Prediction of Bone Metastasis in Breast Cancer
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and that there are simple additive effects to be considered, a linear

regression fit was used for normalization. To determine the

contribution of each cell type to the combined gene expression

pattern in the linear regression model, the expression levels of the

monocultures were considered the predictors, and the expression

levels of the co-culture were considered the response.

Specifically, a set of equations (1-n) was established (one per

gene): en
co-culture = ((a6en

monoculture1)+((1-a)6en
monoculture2))6In,

where e represented the expression level of the gene, a represented

the proportional contribution of mRNA from the respective

monoculture, n represented the number of genes measured on the

microarray and I represented the interaction coefficient. We

assumed that the average gene is not influenced by heterotypic

interaction in the mixed co-culture, which is represented as I = 1.

Since the dataset over e1-n is skewed, a linear regression fit was

empirically identified based on Gamma errors and identity link as

a good model to calculate a. The equations 1-n can then be solved

for I1-n , which results in a profile of interaction effects for the

genes1-n. These interaction effects can be analyzed in much the

same way as conventional gene expression measurements.

Human breast cancer dataset
The dataset for breast cancer contained 295 tumors that were

analyzed on a 25,000 spot oligonucleotide array [24]. In brief,

patients were diagnosed and treated at the Netherlands Cancer

Institute (NKI) for early stage breast cancer (stage I and II)

between 1984 and 1995. The clinical data were updated in

January 2005. The median follow-up for patients who are still alive

is 12.3 years.

The ‘‘IL-6 gene signature’’ consisting of 72 gene IDs (63 unique)

was mapped to the spots on the NKI array using Unigene build

no. 184 (released on 06-09-2005). As a result, we obtained 28

unique spots for each of 295 patients. The ‘‘interferon response

genes regulated by STAT1 signature’’ consists of 94 (62 unique)

genes. A procedure similar to that of the ‘‘IL-6 gene signature’’

was applied, resulting in 26 unique spots for each patient.

Expression measurements for each gene were mean centered. The

resulting dataset was subjected to hierarchical clustering [22] with

average linkage clustering and displayed with Treeview (http://

rana.lbl.gov/EisenSoftware.htm).

Distant metastasis was analyzed as a first event only (Distant

Metastasis-Free Probability: DMFP). If a patient developed a

local recurrence, an axillary recurrence, a contra-lateral breast

cancer, or a second primary cancer (except for non-melanoma

skin cancer), she was censored at that time, and the subsequent

distant metastases were not analyzed. This decision is based on

the theoretical possibility that the locally recurrent or second

primary cancers could be a source for distant metastases. An

ipsilateral supra-clavicular recurrence was soon followed by a

distant metastasis in all but one patient. Thus, an ipsilateral

supra-clavicular recurrence was considered to be the first clinical

evidence of metastatic disease for this analysis, and patients were

not censored at the time of ipsilateral supra-clavicular recur-

rence. Overall survival was analyzed based on death from any

cause, and patients were censored at the last follow-up. Data

with time to bone metastasis were taken from the paper by Bos

et al. [25].

To stratify patients based on differential IL-6 gene expression,

we used a threshold above or below the value of a reference pool of

mRNA. There were 178 patients that expressed the IL-6 gene at

levels below the reference and 117 patients that expressed the IL-6

at levels above the reference gene. Data with time to bone

metastasis were taken from the paper by Bos at al. [25].

Centroid correlation
The method of calculating the centroid for each patient was

described previously [26],[27]. The centroids were profiles that

consisted of the average gene expression value for each of the

patients. Briefly, the centroids for the genes that represented the

‘‘IL-6 gene signature’’ and other previously described signatures

were calculated based on the NKI dataset. To test the similarity

between the signatures, the correlation between values of different

centroids was checked for each patient. The correlation was

calculated using Pearson’s correlation coefficient using the R

software [28].

General statistic methods
Normally distributed data were analyzed using Student’s t-test.

Differences were considered as statistically significant when

p,0.05. All statistical tests were performed using the R statistical

software (version 2.10.1) [28]. Survival curves were obtained using

the Kaplan-Meier estimator and Cox proportional hazards

regression models were fitted (R package ‘‘survival’’).

Results

Design of a tumor-osteoblast co-culture model
As a model for investigating changes in gene expression in

response to epithelial-osteoblast interactions in bone metastases of

breast carcinomas, cells that represented either benign or

malignant epithelial cell compartments and cells that represented

skeletal compartments were examined in an in vitro mixed co-

culture setting. These two types of cells were co-cultivated for 48 h

in a low-serum medium [0.2% fetal bovine serum (FBS)] to allow

reciprocal signal exchange with minimal background from

undefined molecular signals that are inherent in fetal bovine

serum. We examined the effects of co-cultivation on each cell

pairing in two independent biological replicates. The gene

expression profiles of the co-cultures were compared to the

expression profiles of the corresponding cells that were kept in

monoculture using HEEBO microarrays that contained 44,544

70-mer oligonucleotide probes. To establish this experimental

approach, we first focused our experiments on the breast cancer

cell line Hs578T, the primary human osteoblast cells NHOst and

the co-culture of these two cell types. The data that passed our

filter of data quality and a filter for data distribution were

organized using unsupervised hierarchical clustering of the

replicate experiments to provide an overview of the effects on

global gene expression (Figure 1A). Biological replicates clustered

together and the differential gene expression patterns of NHOst

and Hs578T cells confirmed that these cell types have distinct

default gene expression patterns. In the co-culture, most genes

displayed intermediate expression levels, which closely approxi-

mated the proportionally weighted average of their expression

levels in the two cell types in monoculture. Despite setting up the

co-culture with equal cell numbers of Hs578T and NHOst cells,

the gene expression pattern after co-cultivation was dominated by

the pattern of the Hs578T cells. However, one set of genes (86

gene IDs, 80 unique genes) showed a consistent increase in

transcript abundance in the co-culture when compared to either

monoculture, which suggested that the induction of these genes

was an effect of the co-cultivation of the breast cancer and

osteoblast cells.

Interestingly, out of 46 genes within this gene set identified using

GO::TermFinder [23] 17 (37%) were involved in nucleic acid

metabolic processes, as determined by GO-terms; PSMC3IP,

HMGB1L1, SFPQ, MCM3, PPP2CA, ORC6L, ABCE1, PA2G4,

CHEK1, SF3A3, PPIH, CDC7, PCNA, MAGOH, RAN,

Prediction of Bone Metastasis in Breast Cancer
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NOP58, and HMGB2 (Figure S1). The frequency of the genes

that are involved in this function was significantly enriched

(p = 0.049) compared to the background of 922 genes passing the

data quality and data distribution filters, as shown in the heat map

of Figure 1 and present in GO::TermFinder database. Out of these

17 genes, 5 (MCM3, ORC6L, CHEK1, CDC7, and PCNA) are

directly annotated as involved in DNA replication. The up-

regulation of these gene sets suggests proliferation of the co-culture

of the breast cancer cells (Hs578T) and osteoblast cells.

As implied by the higher expression of the ‘‘proliferation’’ gene

signature, the proliferation rate, as determined by direct cell

counting over time, was significantly higher in the co-culture of

Figure 1. Effects of a heterotypic interaction between normal human osteoblasts and breast cancer cells. (A) Biologically independent
replicates of NHOst, Hs578T, and the mixed co-culture of NHOst and Hs578T were kept for 48 hours at low serum conditions and characterized by
DNA microarray profiling. We performed hierarchical clustering of 1923 elements that display a greater than 3-fold variance in expression in more
than 2 different experimental samples. Genes are represented in rows and experiments in columns. Unsupervised hierarchical clustering of the
experiments grouped the biological replicates together. The vertical black bar marks a cluster of genes that were higher expressed in all co-cultures
compared to both monocultures, which indicated that they were induced by the heterotypic interaction. Further analysis of these genes revealed
that they were specific for proliferation and mitosis. (B) The proliferation rate of NHOst and Hs578T cell monocultures and of their 1:1 co-culture was
determined by measuring increases in cell number by direct cell counting. Quadruplicates of pre-starved cells were plated at a density of 8500 cells/
cm2 and after 48 hours the cell number was determined using a cell counter All figures represent averages from four replicates, and error bars denote
standard deviation. The increase in cell number of the co-culture is significantly higher than the increase in both of the monocultures (p = 0.0084, un-
paired, two-tailed t-test). (C) Hs578T cells and NHOst cells were incubated for 24 hours with conditioned media (CM) from NHOst cells or Hs578T cells,
respectively, and compared to a negative control of the same cells incubated with autologous medium. All experiments were performed in triplicates.
After 24 hours cell numbers were measured by the cell counting with FACS. (D) The expression values of the genes in the ‘‘tumor-osteoblast cell-
induced M phase/cell cycle’’ gene signature were extracted from a published expression study of 295 early stage breast cancers from the Netherlands
Cancer Institute. Genes and samples were organized by hierarchical clustering. The tumors were segregated into two groups that were defined by
high or low expression levels of the 36 genes matching the proliferation gene cluster. The histogram below the heat map represents the differences
in the sums of log2 ratios among groups. Based on the distributions, the sums of the log2 ratios for the ‘‘proliferation’’ transcripts were over-
expressed in the majority of the cases in the right branch of the cluster compared to the left branch of the cluster (32/113 versus 105/45 scores
below/above reference zero value, respectively). (E+F) Correlation of the ‘‘proliferation’’ gene signature with distant metastasis-free survival (DMFS)
(E) and overall survival (OS) (F). Kaplan-Meier curves for the clinical outcomes of the indicated tumors that exhibited high (red curve) and low (black
curve) expression of the ‘‘proliferation’’ signature are shown.
doi:10.1371/journal.pone.0029743.g001
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Hs578T and NHOst cells than in isolated Hs578T or NHOst cell

monocultures (p = 0.0084, un-paired, two-tailed t-test)

(Figure 1B).

We speculated that specific factors secreted by Hs578T cells

might increase the growth of the NHOst cells or vice versa.

Towards this aim, we reciprocally incubated one cell type in

conditioned medium from the other cell type. In fact, when the

conditioned medium from the NHOst cells was applied to Hs578T

cells, the Hs578T cells proliferated at significantly higher rate than

when incubated in autologous medium, as measured by relative

increases in cell numbers (p = 0.0019, un-paired, two-tailed t-test)

(Figure 1C). Conversely, conditioned medium from Hs578T cells

did not stimulate the proliferation of NHOst cells. This result

indicates that a stimulatory factor secreted by the osteoblast cells

creates an environment that induces tumor cell proliferation.

We investigated the effects on global gene expression in

response to heterotypic cell-cell interaction as a simple, controlled,

ex vivo model of tumor-osteoblast cell interaction. We reasoned that

identifying and characterizing gene expression patterns that were

characteristically induced by the interaction between specific pairs

of cells in culture might enable us to recognize and interpret

specific features in the expression profiles of human cancers that

represent similar interactions between tumor and osteoblasts in

vivo. To verify the relevance of our in vitro experiments, we

examined the expression levels of the genes found to be induced in

the co-culture of Hs578T and NHOst cells in the global gene

expression data of early stage breast cancer biopsies from 295

patients from the Netherlands Cancer Institute (NKI), which is

publicly available information [24]. The cluster of 36 (36 present

in NKI out of 80 unique) ‘‘proliferation’’ genes showed strikingly

coherent variation in expression among these patients with cancer,

which enabled these patients to be divided into two groups

(Figure 1D). One group had a relatively high expression level of

the ‘‘proliferation’’ genes, and the other group was characterized

by a relatively low expression level. To visualize the difference in

expression levels between groups, we calculated the scaled gene

expression score for each tumor by summing up the log2 based

gene expression ratios of the 36 genes building the proliferation

cluster measured in each of the 295 breast cancer samples while

taking into account the direction of the gene expression. The

distributions of the scores for the two main branches were

significantly different (p,2.2e-16, un-paired, two-sided t-test). The

left branch (average score; 23.93+/25.3) and the right branch

(average score; 3.8+/25.4) are shown in the histogram below the

heat map in Figure 1D. Based on the distributions, the sums of the

log2 ratios for the ‘‘proliferation gene’’ transcripts were over-

expressed in the majority of the cases in right hand side branch of

the cluster, as compared to left hand side branch of the cluster (32/

113 versus 105/45 scores below/above reference zero value,

respectively). To simplify further discussion, we named this

signature the ‘‘proliferation’’ signature.

To assess the potential biological relevance of this gene

expression signature, distant metastasis-free survival and overall

disease-specific survival were compared between the two groups.

Early stage tumors with high expression levels (n = 145) of this

particular gene set had a significantly lower distant metastasis-free

survival (p = 0.017; 56.9% at 10 years) and overall survival rate

(p = 0.001; 60.5% at 10 years) than tumors with low expression

levels (n = 150; metastasis-free survival: 68.1% at 10 years; overall

survival: 79.9% at 10 years) (Figures 1E and 1F).

Because breast cancer is clinically and molecularly a heteroge-

neous disease, we selected a few representative breast cancer cell

lines to sample this heterogeneity and explore the effects of a

heterotypic culture by analyzing subtype-specific and shared

response patterns. We focused on epithelial-osteoblast interactions,

which were analyzed by co-cultivating NHOst cells with normal

breast epithelial cells (HMECs) or 5 widely used breast cancer cell

lines (MCF-7, T47D, SKBR-3, Hs578T and MDA-MB-231, each

of which represents a different subtype of breast cancer).

The changes in gene expression that were due to heterotypic

interactions were subtle when compared to the large intrinsic

variation in expression patterns among the involved cell types, as

illustrated in Figure 1A for the cell pairing of Hs578T and

NHOst cells. To identify the gene expression changes that resulted

from cell-cell interactions, it was necessary to control for the simple

additive effects that reflect the proportional contribution of the two

cell types to the total abundance of each gene’s transcript in co-

culture. Elimination of these proportionally weighted additive

contributions allowed for the isolation of supra-additive interaction

effects. The fact that the transcript levels of most genes did not

change in response to co-culture allowed us to develop a linear

regression model that was based on the transcriptional profiles of

each monoculture and fitted to the co-culture data for normal-

ization. For each gene, the ratio of the measured transcript level

and the level that was estimated by the linear regression model

provided a measure of the heterotypic interaction effect.

Interaction effects, which are represented as gene-expression

changes (induction or repression), were converted to quantitative

values that can be analyzed for similarities and disparities over

multiple different pair-wise interactions between two cell types

with the same tools that are used to analyze conventional gene

expression data, as described previously [18].

There was obvious heterogeneity in the responses of the

different pairs of cells to co-cultivation as shown by the heatmap

of heterotypic interaction effects (Figure 2). Again, in this type of

analysis which represented induction or repression of genes and

not absolute expression values, a set of genes was shown to be

induced in co-culture with Hs578T and NHOst that was not

induced in co-culture with normal breast epithelial cells, HMECs,

which confirmed the validity of this approach. To test for

enrichment in a specific functional gene ontology, we applied

the GO::TermFinder tool and found that a set of 37 genes which

was highly enriched for genes associated with ‘‘cell division’’

(p = 0.00026) and the ‘‘M phase of the cell cycle’’ (p = 0.00016).

This set of ‘‘tumor-osteoblast cell-induced M phase/cell cycle’’

genes included CCNB1, NCAPD2, CDC20, CCNA2, KIF20A,

CDCA3, PTTG1, UBE2C, AURKA, DLGAP5, and KIF18A

(Figure S2).

The HER2-positive breast cancer cell line, SKBR-3, in co-

culture with NHOst cells induced the TGF-b gene and a set of

TGF-b response genes (including up-regulation of the tropomy-

osins TPM1, TPM2, TPM4), supporting previous studies that

have demonstrated the critical role of TGF-b signaling during

formation of bone metastases [29]. Furthermore, an interesting

interaction effect was found when we cultured MDA-MB-231 cells

with NHOst cells. The MDA-MB-231 cells induced an interferon

response with an up-regulation of characteristic interferon

response genes, including 29,59-oligoadenylate synthetase 1

(OAS1), signal transducer and activator of transcription 1

(STAT1), IFIT, and interferon-induced transmembrane proteins

(IFITMs). To analyze these effects in further detail, we focused on

utilizing the co-culture of these two cell lines.

Two specific gene sets are induced by the interaction
between MDA-MB-231 cells with NHOst cells

The interaction between MDA-MB-231 cells and NHOst cells

in co-culture strongly induced two gene sets. In the first gene set,

most of the induced genes have been identified to be regulated by
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interferon (Figure 3A), such as the genes OAS1, IFITM1,

IFITM2, interferon response factor 9 (IRF9), b-2 microglobulin

(B2M) and STAT1, which is the principal transcriptional regulator

of the interferon response genes. In the monocultures, the

expression of this gene set was higher in NHOst cells than in

MDA-MB-231 cells. These genes were used to formulate a list of

‘‘interferon response genes regulated by STAT1’’ (Table S1). In

the second gene set, which did not display much overlap with the

first set, (2 genes only; MT-TK, SERPINE1, Figure S3), there

was also up-regulation of interferon-regulated genes, such as IFI44

and IFIT1; genes related to apoptosis, such as caspase 7 (CASP7)

and BCL2-antagonist/killer 1 (BAK); and proteasome genes, such

as proteasome activator subunit 2 (PA28 beta), proteasome subunit

beta type 8 (large multifunctional peptidase 7), and proteasome

Figure 2. Gene expression changes in multiple co-cultures of breast cancer cell lines with osteoblasts. Overview of collapsed data from
repeat co-culture experiments of six benign and malignant epithelial cell lines with NHOst cells. In a gene expression profiling experiment 7
monocultures and 6 co-cultures with NHOst were analyzed independently in duplicates. Genes with missing data in more than 20% of the arrays
were removed, leaving 10774 gene IDs. Based on this dataset, the calculation of the interaction factors were performed separately for all co-cultures,
as described in the Methods section. The interaction factors of the 6 co-cultures were further analyzed for their distribution, and factors with a
standard deviation of ,2 in at least two co-cultures were eliminated, leaving interaction factors for 635 genes, which are shown as a heat map
(unsupervised hierarchical clustering). Red and green denote induction and repression due toheterotypic interaction. The magnitude of induction or
repression is represented by color intensity. Specific clusters involved in IFN signaling, a ‘‘tumor-osteoblast cell-induced M phase/cell cycle’’ signature
and response to TGF-b are marked.
doi:10.1371/journal.pone.0029743.g002
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subunit beta type 9 (large multifunctional peptidase 2). A

prominent gene of this set is interleukin-6 (IL-6), a cytokine

with a wide variety of biological functions that is primarily

involved in inflammation and the maturation of B cells [30]. A

positive correlation between inflammation and cancer has been

well established [31]. IL-6 has also been shown to be involved in

the regulation of cell proliferation (in particular smooth muscle

cell proliferation), the regulation of apoptosis and angiogenesis,

and the positive regulation of osteoblast differentiation, all

processes that might be involved in the development of bone

metastases, as determined by SOURCE, a web-based database

that brings together information from a broad range of

resources, and provides it in manner particularly useful for

genome-scale analyses [32]. Furthermore, there are genes that

are known to be regulated by IL-6 through the STAT3 pathway,

such as BST2 and pleiotrophin, which play a role in bone

remodeling. Though both of the gene sets are up-regulated due

to heterotypic interaction between MDA-MB-231 and NHOst

cells, the genes of the first set were more highly expressed in

NHOst cells (average expression: 0.036 above reference) than in

MDA-MB-231 cells (average expression: 21.065 below refer-

ence); however, the genes of the second set were more highly

expressed in the MDA-MB-231 cells (average expression:

20.104) than in the NHOst cells (20.881). The set of genes

that build the second cluster was used to formulate the ‘‘IL-6

gene signature’’ (Table S2).

Figure 3. ‘‘Interferon response genes regulated by STAT1 signature’’ and ‘‘IL-6 gene signature’’ in co-culture. (A) Biologically
independent replicates of the monocultured normal human osteoblasts (NHOst), the breast cancer cell line MDA-MB-231, and the mixed co-culture of
NHOst and MDA-MB-231 cells were incubated for 48 hours under low serum conditions and characterized by DNA microarray hybridization. The
figure shows the heat map of the hierarchical clustering of a total of 1461 elements that display a greater than 1.5-fold variance in expression of at
least 2 different experimental samples. The co-culture of NHOst and MDA-MB231 induced two prominent sets of genes: An ‘‘interferon–response
genes regulated by STAT1’’ signature and an ‘‘IL-6 gene signature’’ (zoomed image). (B) Real time PCR confirms a significantly higher expression of IL-
6 mRNA in the co-culture than in either of the two monocultures (p = 4e-7; un-paired, two-tailed t-test). (C) As implied by the higher expression levels
of IL-6 mRNA, the IL-6 concentration in the co-culture supernatants, as determined by ELISA, were significantly higher than the average concentration
of the two monocultures. (p = 0.0046; un-paired, two-tailed t-test). (D) Also IL-6 was significantly more highly induced in NHOst cells stimulated with
conditioned medium from MDA-MB-231 cells than in MDA-MB-231 cells stimulated with conditioned medium from NHOst (p = 0.045; un-paired, two-
tailed t-test).
doi:10.1371/journal.pone.0029743.g003
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Increased IL-6 expression and cytokine levels in the
co-culture of MDA-MB-231 and NHOst cells

To validate our gene expression data from the microarrays

using an independent experimental approach, we examined the

IL-6 mRNA expression levels with real-time quantitative PCR.

For these experiments, we again co-cultured NHOst cells with

MDA-MB-231 cells. In parallel, we cultured NHOst cells

stimulated with the cell culture supernatant of MDA-MB-231

cells, and vice versa, for 24 hours in duplicate. Cell culture

supernatants and RNA were isolated from each culture condition

and IL-6 mRNA expression levels and protein concentration in

the cell culture supernatant were analyzed. As shown in

Figure 3B, the expression of IL-6 mRNA is significantly higher

in the co-culture of MDA-MB-231 cells and NHOst cells than in

either of the two monocultures (p = 4e-7; un-paired, two-tailed t-

test). As implied by the higher expression levels of IL-6 mRNA, the

IL-6 concentrations in the co-culture supernatant, as determined

by ELISA, was significantly higher than the average concentration

of the two monocultures. (p = 0.0046; un-paired, two-tailed t-test)

(Figure 3C). Also IL-6 was significantly more induced in NHOst

cells, which showed the lower IL-6 expression, when stimulated

with conditioned medium from MDA-MB-231 cells than in MDA-

MB-231 cells stimulated with conditioned medium from NHOst

(p = 0.045; un-paired, two-tailed t-test) (Figure 3D).

Effects of the ‘‘interferon response genes regulated by
STAT1’’ and the ‘‘IL-6 gene signature’’ in primary breast
cancer

To determine the effects of these two gene sets in primary

tumors, we evaluated changes in their expression patterns in the

published data from 295 early stage (stage I and II) breast cancer

specimens from the Netherlands Cancer Institute (NKI) [24]. The

‘‘interferon response genes regulated by STAT1’’ showed a

strikingly coherent variation in expression among these patients

with cancer, which enabled them to be divided into two groups.

We were able to cluster the breast carcinomas based only on the

expression of the ‘‘interferon response genes regulated by STAT1’’

by separating them into two main clusters, with one cluster that

displayed high-level expression levels of most of these genes and

the other that displayed lower expression levels (Figure 4A).

Distant metastasis-free survival and overall disease-specific survival

were examined between the two groups. Early stage tumors with

high expression levels (n = 136) of this particular gene set were

characterized by lower distant metastasis-free survival (p = 0.2;

61% at 10 years) and significantly lower overall survival rates

(p = 0.0046; 63% at 10 years) than tumors with low expression

levels (n = 159; distant metastasis-free survival: 63% at 10 years;

overall survival: 77% at 10 years) (Figures 5A and B).

The ‘‘IL-6 gene signature’’ also segregated the breast carcino-

mas of the NKI dataset in two groups, allowing the analysis of

prognostic relevance (Figure 4B). This signature did not

significantly correlate with overall survival (p = 0.164). However,

interestingly, it displayed a trend toward formation of distant

metastasis (p = 0.056) and was significantly associated with time to

metastasis in the bone (as the primary site of metastasis; p = 0.048).

Early stage tumors with high expression levels (n = 138) of this

particular gene set had significantly reduced bone metastasis-free

survival (74% at 10 years) than tumors with low expression levels

(n = 157; metastasis-free survival: 83% at 10 years) (Figures 5 D–
F). Interestingly, using the expression levels of the IL-6 gene alone

we were unable to discriminate patients into two groups with a

different amount of time to bone metastasis (p = 0.34, data not

shown) as was the ‘‘interferon response genes regulated by

STAT1’’ signature (Figure 5C).

Correlations with other prognostic gene-expression
signatures

Because the signatures described above are prognostic markers

in human breast cancer, we sought to determine whether they

might be related to other previously published gene expression

signatures that are useful prognosticators in the NKI dataset.

Therefore, we correlated the signatures based on their centroids,

which represent the average expression values of all genes building

the signature in a single tumor specimen, using Pearson’s

correlation test. We investigated the relationship between the

‘‘IL-6 gene signature’’ or the ‘‘proliferation’’ signature and three

previously identified gene expression signatures (Figure 6). The

first signature is composed of 70 genes [33] and was identified by a

supervised analysis of a subset of the NKI early stage breast cancer

dataset [24]. This signature has been shown to predict freedom

from metastasis at 5 years. The ‘‘IL-6 gene signature’’ and the

‘‘proliferation’’ signature did not correlate with the ‘‘70-gene’’

signature (r2 = 20.477 and 20.531). The second signature, known

as the ‘‘wound signature,’’ was identified in vitro by exposing

fibroblasts to serum to mimic a wound response, and it has been

shown to predict the risk of breast cancer progression [34]. The

‘‘proliferation’’ signature correlated with the ‘‘wound signature’’

(0.541), whereas the ‘‘IL-6 gene signature’’ did not correlate well

with the ‘‘wound signature’’ (0.269). The ‘‘proliferation’’ gene

signature correlated with the luminal B profile, as defined by

Soerlie et al. [26], with an r2 value equal to 0.451. The ‘‘IL-6 gene

signature’’ also correlated with the luminal B profile, with an r2

value of 0.524. The detailed list of correlation values for all

signatures that we analyzed may be found in Table S3. These

results suggest that the ‘‘IL-6 gene signature’’ might add additional

information to some of the formerly described signatures.

Discussion

The main objective of this study was to examine and

characterize the effects of heterotypic cellular interactions to gain

insight into the diverse underlying biological mechanisms of

skeletal metastasis of breast cancer, with a specific focus on the

interaction between epithelial tumor cells and osteoblasts.

Metastasis is a complex process that involves integrated activity

of various genes that function at discrete steps, including

angiogenesis, invasion, intravasation, survival in the circulation,

extravasation, and homing and proliferation at the sites of

metastasis [35]. To isolate specific, direct interactions from the

more complex interactions that involve multiple cell types in a

whole tissue or organism, we used a simple ex vivo co-culture

model. Because certain important heterotypic interactions might

require direct cell-cell contact, we focused on a co-culture model

where the two cell types were mixed in equal proportion. In this

report, we described the systematic genomic analysis of this simple

in vitro system that simulates direct and indirect interactions

between benign and malignant epithelial cells and osteoblast cells.

Common gene sets induced by tumor-osteoblast
co-cultures

As expected, based on our experience examining tumor-

fibroblast [10] and tumor-endothelium interactions [18], the

picture of heterotypic interaction effects from the survey of diverse

tumor cells with osteoblasts is complex and reflects the different

abilities of normal and malignant cells to send and respond to

signaling molecules. Our data show that the effects of the tumor-
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osteoblast interactions differ among breast cancer cell lines that are

representative of different breast cancer subtypes. This is not

astonishing because it is well known that various breast cancer cell

lines have different capacities to induce bone metastasis [36].

SKBR-3 cells, during their interaction with NHOst cells, induced

a TGF-b response with up-regulation of the expression of genes

such as TPM and others. This is in line with the previous results

utilizing a transgenic model, in which a constitutively active TGF-

b induced increased levels of metastasis in the bones of mice [29].

T47D cells induced TFF-1, which had previously been identified

to be over-expressed in primary breast cancers that preferentially

relapse to the bone [37]. TFF-1 also correlated with bone

metastasis in an independent cohort in vivo [36].

A prominent theme in our co-culture experiments was the

expression of a set of genes that was characteristic of the mitotic

phase of the cell cycle, which we called the ‘‘tumor-osteoblast cell-

induced M phase/cell cycle’’ gene expression signature. This

observation of gene expression levels is consistent with the

phenotypic features of the cells, which displayed a higher

proliferation rate in their respective co-cultures. In our study,

the mere co-existence of two cell types of different origin, such as

the Hs578T breast cancer cells and NHOst osteoblast cells,

appears to be sufficient to induce this response. Cooperate

induction between cells of different lineages is well known from

developmental biology studies, in which stem cells cooperate with

their environmental cells to form the stem cell niche. This stem cell

niche concept has also been introduced in cancer. Cells with stem

cell characteristics have been prospectively isolated from breast

cancer using CD44 and CD24 as markers, which are present on

Hs578T and MDA-MB-231 cells. The stem cell-like cells with

highly potent tumor initiating properties, as they were described

by Al Hajj et al. [38], clearly exhibited the CD44+/CD242

signature but were also characterized by additional markers.

Others have shown that CD44+/CD242 cell lines contain these

tumor-initiating cells [39–41], but we did not specifically focus on

these stem cell-like cells or explicitly select for them.

MDA-MB-231 cells, which have been shown to induce bone

metastasis in a murine model system [42], displayed two

prominent patterns of gene expression caused by the interaction

with osteoblasts: a signature of ‘‘interferon response genes

regulated by STAT1’’ (Table S1) and a signature associated

with IL-6 expression, the ‘‘IL-6 gene signature’’ (Table S2). The

microarray data of IL-6 could be confirmed by detecting an

induction of IL-6 mRNA by real-time PCR and the IL-6 protein

Figure 4. ‘‘Interferon response genes regulated by STAT signature’’ and ‘‘IL-6 gene signature’’ in early stage breast cancer. (A) The
expression values of genes in the ‘‘interferon response genes regulated by STAT1 signature’’ were extracted from a published gene expression study
of 295 early stage breast cancers from the Netherlands Cancer Institute [24]. Genes and samples are organized by unsupervised hierarchical
clustering. The tumors segregated into two groups defined by high (blue bar below the heatmap) or low (golden bar below the heatmap) expression
levels of 26 genes matching the ‘‘interferon response genes regulated by STAT1 signature’’. (B) For the ‘‘IL-6 gene signature’’ an analogous analysis
was performed, resulting in tumors segregated into two groups based on the expression levels of 28 genes. The two main clusters of tumors with
high and low expression levels are marked with colored bars below the heatmap (blue and golden respectively).
doi:10.1371/journal.pone.0029743.g004
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by ELISA in the co-culture. Furthermore, based on stimulation

with conditioned media we have shown that IL-6 is mainly

induced in the osteoblasts rather than in the MDA-MB-31 tumor

cells. From this experiment we conclude that a secreted factor is

sufficient to stimulate IL-6 induction, however we cannot exclude,

that in addition direct cell-cell contact might influence expression

of IL-6 in co-culture. IL-6 has been described to be involved in the

stress response induced by the invasion of an osteoblastic matrix by

Figure 5. Effects of the ‘‘interferon response genes regulated by STAT1 signature’’ and ‘‘IL-6 gene signature’’ on bone metastasis
formation. Kaplan-Meier plots for overall survival (OS) (A,D), distant metastasis-free survival (DMFS) (B,E) and bone metastasis-free survival (BMFS)
(C, F) estimates are shown for the ‘‘interferon response genes regulated by STAT1 signature’’ and the ‘‘IL-6 gene signature’’. P-values are given for the
Cox regression analysis. The ‘‘IL-6 gene signature’’ segregated tumors with a significant difference in BMFS. The colors of the curves correspond to the
colors of the bars below the heatmaps of figure 4 A and B.
doi:10.1371/journal.pone.0029743.g005
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breast cancer cells [43]. This cytokine is known to attract and

activate osteoclasts [44] and likely contributes to the tumor-host

microenvironment in vivo. In particular, IL-6 has been implicated

in the pathogenesis of osteolysis associated with Paget’s disease

[45], Gorham-Stout syndrome [46], and multiple myeloma [47].

IL-6 levels in breast cancer patients have been found to correlate

with the clinical stage of the disease as well as with the rate of

recurrence [48]. High IL-6 serum levels in breast cancer patients

have been identified as an unfavorable prognostic indicator. A

similar observation has been made in colorectal cancer [49].

In breast cancer, IL-6 is known to activate STAT3, which has

been shown to be an important signaling molecule that is

associated with an unfavorable prognosis; in fact, the principal

mechanism of STAT3 activation is via the IL-6/gp130/Jak

pathway [50]. STAT3 also plays an essential role in stem cell

biology. Mammospheres are useful and well-established models to

study stem cell biology in breast cancer. Interestingly, mammo-

spheres from lymph node invasive breast carcinoma tissues have

been shown to express IL-6 mRNA at higher levels than

mammospheres from matched non-neoplastic mammary glands

[41]. In addition, IL-6 mRNA was detected only in basal-like

breast carcinoma tissues, an aggressive breast carcinoma variant

that displays stem cell features [51]. Confirming our results, the

precursors of osteoblasts, mesenchymal stem cells, in co-culture

with MDA-MB-231 cells also massively induced IL-6 levels [15].

This suggests a role of IL-6 in breast cancer stem cell biology.

Considering the central role that bone plays in metastasis

formation, eventually becoming a niche for breast cancer stem

cells, one might imagine that intervention might cure more

patients if these pathways would be specifically blocked. The

Figure 6. Correlations of the ‘‘IL-6 gene signature’’ with other published prognostic gene signatures in early stage breast cancer.
Scatter plots showing the relationship between the value of the centroids of the ‘‘70-gene signature’’ [24], the ‘‘wound signature’’ [53], the ‘‘luminal
type B signature’’ [26], the ‘‘proliferation’’ signature and the ‘‘IL-6 gene signature’’ in the NKI study. Each point in the scatter plots represents a single
one of the 295 tumors analyzed in the NKI dataset. A 565 pair-wise scatter plot matrix of the five gene signatures is shown. Columns and rows are
labeled in the diagonal panels, i.e. the first top right panel represents data for the centroids of the ‘‘Wound’’ signature plotted against the centroids of
the ‘‘IL-6 gene signature’’. The overall correlation between each pair of expression signatures across this set of 295 samples is indicated in each panel.
doi:10.1371/journal.pone.0029743.g006
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bisphosphonate zolendronic acid, which significantly decreases

bone morbidity, was tested in an adjuvant situation to prevent

breast cancer relapse. The results were mixed, indicating that

there might be a subgroup of patients that would benefit from this

type of therapy. The effect of adjuvant zolendronic acid on overall

survival appeared small at first, but we cannot exclude the

possibility that certain subgroups might benefit. The ‘‘IL-6 gene

signature,’’ which identified patients at the highest risk for bone

metastasis, might be a method to more efficiently select patients for

such an approach. Blocking IL-6 directly also has shown mixed

results thus far. Genes of the ‘‘IL-6 gene signature’’ would be

potential targets for such an approach. A gene signature, rather

than a single molecule, might be a more powerful method for

selecting the right patients to treat with a certain therapy. In our

example, the ‘‘IL-6 gene signature,’’ in contrast to IL-6 alone, was

of statistically significant prognostic value. This could eventually

improve the cure rate of this specific breast cancer subgroup.

Prognostic and predictive factors have been well established in

breast cancer, but less is known about which metastatic site will be

affected. Kennecke et al. [52] linked breast cancer subtypes with

the occurrence of metastasis at specific sites (brain, liver, lung,

bone, distant nodal, and pleural/peritoneal). They identified

luminal B type tumors as having the highest frequency of bone

metastasis. This is interesting because the ‘‘IL-6 gene signature’’

mostly correlated with luminal B type tumors. A better prediction

of the specific site of metastasis would improve surveillance and

eventually prevent relapse. Relapse in the bone represents an

incurable situation today, but timely detection could eventually

prevent morbidity caused by bone metastasis.

Metastasis formation is a complex process involving multiple

cell types. Thus far, we have modeled the interaction of tumor cells

with osteoblasts. In our previous work, we studied the interaction

of tumor cells with fibroblasts in the primary tumor microenvi-

ronment, which allowed us to define an interferon response gene

set [10] and characterize tumor-endothelial cell interactions [18],

thereby linking cancer cells that have stem cell characteristics

(CD44+/CD242) with the highly proliferative tumor phenotype.

Therefore, we are now prepared to study the more complex

interactions among more than two cell types in parallel, and our

co-culture technique may allow us to further explore the more

complex interactions among the multiple molecules that operate in

these cells to orchestrate the process of cancer metastasis. Our

studies suggest that in vitro modeling of specific processes and

features of the tumor microenvironment can provide a valuable

interpretive framework for the analysis of associated gene

expression patterns in more heterogeneous in vivo samples and

for the identification of the effects of heterotypic cellular

interactions.

Conclusion
In this study, we used breast cancer cell lines and osteoblasts in

systematic co-culture experiments, which allowed us to character-

ize changes in gene expression. The gene signatures presented

herein derived from the tumor-osteoblast co-culture might become

promising predictors of the response to therapies for bone

metastasis and could provide valuable hints about the role of IL-

6 and its associated genes in bone metastasis formation.

Supporting Information

Figure S1 Graphical visualization of the output from
GO::Termfinder for biological process ontology. GO-

graph layout that includes the significant GO nodes of the

‘‘interferon response genes regulated by STAT1 signature’’,

derived from 63 clones compared to a background of 922 clones.

The colour of the nodes is an indication of their Bonferroni

corrected P-value (orange , = 1e-10; yellow 1e-10 to 1e-8; green

1e-8 to 1e-6; cyan 1e-6 to 1e-4; blue 1e-4 to 1e-2; tan .0.01).

(TIF)

Figure S2 Graphical visualization of the output from
GO::Termfinder for biological process ontology. GO-

graph layout that includes the significant GO nodes of the ‘‘IL-6

gene signature’’, derived from 62 clones compared to a

background of 345 clones. The color of the nodes is an indication

of their Bonferroni corrected P-value (orange, = 1e-10; yellow 1e-

10 to 1e-8; green 1e-8 to 1e-6; cyan 1e-6 to 1e-4; blue 1e-4 to 1e-2;

tan .0.01).

(TIF)

Figure S3 Venn diagram depicting the overlap of the
‘‘interferon response genes regulated by STAT1 signa-
ture’’ (62 genes) and the ‘‘IL-6 gene signature’’ (63
genes).

(TIF)

Table S1 List of genes in the ‘‘interferon response genes
regulated by STAT1 signature’’. The gene name, the gene

symbol and the clone ID are listed.

(XLSX)

Table S2 List of genes in the ‘‘IL-6 gene signature’’. The

gene name, the gene symbol and the clone ID are listed.

(XLSX)

Table S3 Correlations between the ‘‘70-gene signa-
ture’’, the ‘‘wound signature’’, the ‘‘luminal type B
signature’’, the ‘‘proliferation’’ signature and the ‘‘IL-6
gene signature’’ in the NKI dataset. Summary of the r2

values describing the correlation between each pair of the 5

different gene expression signatures.

(TIF)
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