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In studies of polygenic disorders, scanning the genetic variants can be used to identify variant combinations.
Combinations that are exclusively found in patients can be separated from those combinations occurring in con-
trol persons. Statistical analyses can be performed to determinewhether the combinations that occur exclusively
among patients are significantly associated with the investigated disorder. This research strategy has been ap-
plied inmaterials from various polygenic disorders, identifying clusters of patient-specific genetic variant combi-
nations that are significant associated with the investigated disorders. Combinations from these clusters are
found in the genomes of up to 55% of investigated patients, and are not present in the genomes of any control
persons.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A polygenic disorder is caused by the combined effects of multiple
genes. Within this concept, it is implicit that the combination of genetic
variants constituting or contributing to the basis of the disorder will not
normally be present in healthy subjects who are not genetically related
to the patients. Although many common disorders are considered to be
polygenic, no genetic variant combination has been identified as clearly
being basis of a polygenic disorder. This is largely because very few ge-
netic variants were known until recently. Researchers have now identi-
fied a huge number of genetic variants, facilitating the search for
combinations. However, the large number of known variants gives
rise to an immense number of combinations, presenting mathematical,
statistical, and computational challenges.

The theoretical number of possible combinations can be calculated
using the formula n! / r!(n− r)!, where n represents the number of ge-
netic variants analyzed in a study, and r represents the number of genet-
ic variants per combination. If the genetic variants are SNP genotypes,
the formula is n! / r!(n − r)! × 3r. Thus, if 100 variants are analyzed,
the theoretical number of 10-variant combinations would be
1.73 × 1013. Likewise, if 500,000 SNPs are analyzed, there would theo-
retically be 2.3 × 1012 two-variant combinations and 3.4 × 1018 three-
variant combinations. However, it is not yet known how many genetic
variants are present in the combinations related to any polygenic disor-
der; there must be at least two, but the upper limit is uncertain.

Notably, analyses of variant combinations are also affected by the
unclear genetic homogeneity or heterogeneity of polygenic disorders.
. on behalf of Research Network of C
While a polygenic disorder showing genetic homogeneity would be as-
sociated with only one combination of genetic variants, a genetically
heterogeneous polygenic disorder would be associated with multiple
different genetic variant combinations. In the latter circumstance, the
number of responsible genetic variant combinations could be small
and correspond to a limited number of genotypes, or could potentially
be very large. Since the total number of combinations could be thou-
sands of billions, if a disorder is associated with even just a small per-
centage of these combinations, this could correspond to billions of
combinations. Thus, it cannot be excluded that, for some polygenic dis-
orders, the number of genotypes could be equal to the number of
patients.

2. Methods for Studying Combinations of Genetic Variants

2.1. Technical Methods

Genome-wide association studies and studies of selected genes can
produce datasets that include billions of possible genetic variant combi-
nations. Scanning and analyzing this huge amount of data can be impos-
sible, even with relatively powerful computers. In addition to increased
computer power, two technological developments have helped reduce
the time needed to scan for combinations:massively parallel computing
by graphics processing units (e.g., Nvidia GPU's) [1,2], and cloud com-
puting [3,4].

Analyses of genetic variant combinations also require specialized
software. For this purpose, algorithms and data mining tools have
been developed based onmethods such as regression analysis, Bayesian
statistics, Boolean algebra, and array mathematics [5]. A recent review
lists 27 publicly available applications for analyzing combinations of
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genetic data [6]. While some of these applications are complex, simple
tools are also available. For example, the Excel function COUNTIFS can
be employed to analyze combinations of only two genetic variants
from a small variant pool [7].

Combinations occurring exclusively in patients can be obtained by
analyzing combinations of 1, 2, 3, …, n SNP genotypes successively.
Starting with the single SNP genotypes, those occurring exclusively in
patients are selected and are not used for further combinations because
they would all automatically be patient specific. The remaining SNP ge-
notypes are now scanned for combinations of 2 SNP genotypes and
those occurring exclusively in patients are selected and are not used
for further combinations. The remaining combinations of 2 SNP geno-
types are now scanned for combinations of 3 SNP genotypes and those
occurring exclusively in patients are selected, and are not used for fur-
ther combinations. In the end this procedure results in collections of sin-
gle SNP genotypes, combinations of 2 SNP genotypes, combinations of 3
SNP genotypes, etc., all occurring exclusively in patients.

This procedure can be used with all types of genetic variants as well
as with many clinical data.

2.2. Non-technical Methods

If a study of genetic variants includes too many combinations to
allow analysis with the available technical tools, various methods can
be applied to select smaller subgroups of combinations. For example,
chi-square or similar tests can be used to analyze the distribution of
each single genetic variant between patients and control subjects.
Then the genetic variants with low p values can be paired with each
other single variant to form two-variant combinations. This procedure
can be repeated with the two-variant combinations to form three-
variant combinations, and again with the three-variant combinations
to generate four-variant combinations [8]. Similarly, biological criteria
can be used to select single genetic variants of interest [9], which can
then be used to form combinations with all of the variants.

Another way to drastically reduce the number of evaluated combi-
nations is to analyze only combinations that are exclusively present in
patients. This process would involve an initial scanning for combina-
tions of genetic variants, followed by the selection of combinations oc-
curring only in patients. Table 1 shows an example of combinations
found exclusively in patients [10].

A total of 803 SNPs were analyzed for combinations of three SNP ge-
notypes present in 607 bipolar patients and 1354 controls. Table 1
Table 1
Scanning 803 SNPs for combinations of three SNP genotypes.

Number of combinations of
3 SNP genotypes

Theoretical number with 803 SNPs, calculated as
803! / 3!(803–3)! × 33

2,321,319,627

Found by scanning the material from 1354 control
subjects and 607 bipolar patients

1,985,613,130

Common among both controls and patients 1,719,002,329
Found in 1354 control persons only 208,699,590
Found in 607 patients only 57,911,211
Found in single patients 45,285,770
Common among 2 patients 9,557,540
Common among 3 patients 2,277,107
Common among 4 patients 578,259
Common among 5 patients 156,343
Common among 6 patients 41,019
Common among 7 patients 10,990
Common among 8 patients 3002
Common among 9 patients 826
Common among 10 patients 261
Common among 11 patients 70
Common among 12 patients 22
Common among 13 patients 2
Common among ≥9 patients 1181
shows the distribution of the 57,911,211 combinations found exclusive-
ly in patients. Permutation tests revealed that all patient-specific combi-
nations could be random findings, even the 1181 combinations that
were common among nine or more patients. However, among these
1181 combinations, some clusters of combinations were significantly
associated with bipolar disorder [10].

2.3. Statistics

For the analysis of polygenic disorders, chi-square, z-test or similar
tests can be applied to determine whether the distribution of a genetic
variant combination significantly differs between patients and control
subjects. To assess whether combinations found exclusively in patients
are significantly associated with the disorder, permutations tests can be
performed, which are useful for analyzing many different genetic vari-
ant combinations selected from a dataset [11]. A permutation test can
be applied to evaluate the assumption that genetic variant combinations
present in many patients are more likely to be significantly associated
with the disorder than combinations found in few patients. In a permu-
tation test, the null hypothesis is that the observed data are exchange-
able (permutable) with respect to groups—in this investigation, the
patients and controls. This analysis involves the random re-
distribution of indices for patients and controls, creating new groups
of pseudo-patients and pseudo-controls of the same sizes as the original
groups. This is repeated—for example, 1000 times—and the combina-
tions found exclusively in pseudo-patients and common to many
pseudo-patients are identified in each of the 1000 permutations. If the
number of pseudo-patients harboring these combinations is the same
or higher than in the original dataset in more than 50 of the 1000 per-
mutations (p N 0.05), the null hypothesis is validated, suggesting that
it may be a random occurrence that combinations were found exclu-
sively in patients and were common to many patients.

In polygenic disorders showing pronounced genetic heterogeneity,
there may be too few patients harboring the same combinations of ge-
netic variants to confirm a statistically significant association between
any single combination and the disorder. In such cases, statistical analy-
ses can be performed using clusters or subgroups of many combina-
tions. For example, a cluster can include selected combinations that
contain a common SNP genotype. In another type of subgrouping, a
chi-square test or z-test can be used to analyze the SNP genotype distri-
bution between patients and controls, with the aim of selecting combi-
nations that include an SNP genotype with a low p value. A third
possible method is to select clusters in which each combination con-
tains an SNP genotype related to a particular biological function or path-
way [12]. If several clusters can be constructed from a sample of
combinations, and each of these clusters is analyzed by a permutation
test, the p values are corrected for multiple tests by the Benjamini-
Hochberg correction [13].

Table 2 presents an example of a cluster, inwhich all of the combina-
tions contain a common SNP genotype.

Table 2 shows an example of a cluster that is significantly associated
with bipolar disorder. This cluster comprises 16 combinations of four
SNP genotypes (from the 803 SNPs analyzed in Table 1). Among the
607 bipolar patients, 73 had at least one of these combinations in their
genomes. These combinations were not found in the genomes of any
of the 1355 control persons [8].

3. Combinations of Genetic Variants in Clinical Studies

Clinical studies of genetic variant combinations have primarily fo-
cused on potential associations between two-variant combinations
and the disorder of interest. A review of several early studies did not
find compelling statistical evidence validating the vast majority of
reported interactions [6], and more recent studies support this conclu-
sion [14–16]. A study including thousands of patientswith breast cancer
and control participants revealed no significant interactions among



Table 2
A cluster of 16 combinations of four SNP genotypes.

SNP1 genotype = YWHAH_rs1049583c is found in all 16 combinations.

SNP2 genotype SNP3 genotype SNP4 genotype

1 TNC_rs1411456b CNTN1_rs278913b CNTNAP2_rs10272638b

2 TNC_rs1411456b NFASC_rs2802853b KCNQ3_rs10092250a

3 TNC_rs1411456b CNTN1_rs11179168b NFASC_rs9194b

4 TNC_rs1411456b CNTN1_rs1056019b CNTNAP2_rs10272638b

5 KCNQ2_rs6062929a NRCAM_rs11974486b MBP_rs8090438a

6 KCNQ2_rs6062929a KCNN3_rs7547552b ERBB4_rs707284a

7 KCNQ2_rs6062929a MBP_rs12959623b MAG_rs1034597b

8 ANK3_rs7906905b SPTBN4_rs11672523b KCNQ2_rs6011841a

9 CNTNAP2_rs10238991b CNTN1_rs1056019b KCNC1_rs1012105a

10 P2RX7_rs1718119b IMPA2_rs3974759b ANK3_rs10761454a

11 CNTN1_rs278913b TNC_rs7035322b CNTNAP2_rs10272638b

12 MBP_rs8090438a CNTNAP2_rs2972112a GSK3B_rs2037547a

13 KCNN3_rs7547552b CNTN1_rs444927b CNTNAP2_rs10464461a

14 CNTN1_rs278913b CNTNAP2_rs17170126b KCNN3_rs6426998b

15 SCN2B_SCN4B_rs645530b ATP1A2_rs11585375a NRCAM_rs11974486b

16 TNR_rs223982b CNTNAP2_rs10277654c NRG1_rs2466094b

a Wild-type homozygote.
b Heterozygote.
c Variant homozygote.
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2.5 billion possible two-SNP combinations [16]. Using an algorithm,
APSampler [17], combinations of up to five genetic variants have
been analyzed in studies of multiple sclerosis [18,19]. And in net-
works of genetic variants, combinations of several genetic variants
have been identified as associated with various disorders [20–23].

None of the above-mentioned studies has separately studied combi-
nations occurring exclusively in patients. In one investigation of bipolar
disorder (summarized in Table 1), four clusters of combinations that
were exclusively found in patientswere significantly associatedwith bi-
polar disorder (p b 0.001). These four clusters contained 49, 46, 45, and
32 combinations, and combinations from these clusters were present in
the genomes of 48, 37, 41, and 41patients, respectively. One of these pa-
tient groups showed significantly more manic and depressive episodes
than the other three groups [24]. Only 11 patients had combinations
from two different clusters in their genome. A follow-up study investi-
gated combinations of four SNP genotypes (summarized in Table 2),
and found that a cluster containing 16 combinations was significantly
associated with bipolar disorder [8]. A total of 73 patients showed
some of these 16 combinations in their genomes, and 20 of these pa-
tients were also in one of the four above-described clusters with combi-
nations of three SNP genotypes. Overall, 209 of the 607 patients with
bipolar disorder had combinations from the identified clusters in their
genome, whereas these combinations were not present in the genomes
of any of the 1355 control participants.

Another study analyzed 16 SNPs in 370patientswith neuroblastoma
and 803 control persons [25]. Scanning the material revealed 14,307
combinations of three SNP genotypes among these 16 SNPs. Of these
combinations, 12,772 were common to both patients and controls,
while 322 were found only in patients. A cluster containing 24 of
these patient-specific combinations was significantly associated with
neuroblastoma (p b 0.00001), and these combinations were present in
the genomes of 32 patients with neuroblastoma. Among these 32 pa-
tients in the cluster, 20 (63%)were high-risk neuroblastoma cases, com-
pared to a 43% proportion of high-risk cases among the 370 included
neuroblastoma patients. This indicated enrichment of high-risk neuro-
blastoma cases within the cluster (p b 0.05).

In a study of oral cancer, 325 SNPswere analyzed in 373 patients and
535 control persons [7]. Scanning thematerial revealed 395,193 combi-
nations of two SNP genotypes, including 328,238 combinations that
were common to both patients and controls, and 46,469 present only
in patients. Two clusters of patient-specific combinations were signifi-
cantly associated with oral cancer (p b 0.001). Combinations from
these clusterswere present in the genomes of 205 of the 373 oral cancer
patients, and not in the genomes of any of the 535 control persons. The
two clusters contained 52 and 43 combinations, andwere very different
from each other, with no overlap between the represented SNP geno-
types, indicating two completely different genetic subgroups of patients
with oral cancers. One cluster contained combinations of SNP genotypes
from a single biological pathway, and the patients in this cluster har-
bored relatively large numbers of these combinations in their genomes.
The other cluster contained combinations from three different biologi-
cal pathways, and patients in this cluster showed relatively few combi-
nations in their genomes. These findings suggest that the accumulation
of few genetic variants in several pathways can carry the same disease
risk as the accumulation of many genetic variants in a single pathway.

4. Discussion

There are several methods of scanning a dataset of genetic variants
for combinations of these variants. Small datasets can be directly
scanned for combinations containing only a few variants. In larger
datasets, it may be necessary to scan subsets of the variants to identify
combinations. When a dataset is obtained from groups of patients and
control persons, it can be helpful to separate the combinations occurring
exclusively in patients from the combinations found in both controls
and patients and those occurring exclusively in control persons.

Combinations occurring exclusively in patients may be significantly
associated with the investigated disorder. However, in four studies of
such combinations, no single combination was found to be significantly
associated with the investigated disorder [7,8,10,25]. Obviously, a com-
bination that occurs only once in the study material will be present in
either a patient or a control person, and such a combination will not
be statistically significantly associated with a disorder. However, even
combinations common among several patients and not present in con-
trols are sometimes not found to be significantly associated with the
disorder. This may be at least partly because the groups of patients hav-
ing a common combination are too small to obtain statistical signifi-
cance. To analyze larger groups of patients, it is sometimes possible to
extract clusters of combinations that show some similarity, for example,
where each combination in a cluster contains a common SNP genotype.
Such clusters may show significant association with a disorder. Patients
having one or more of the combinations from a cluster in their genome
are considered to belong to that cluster. A prior study using this method
found that up to 55% of patients had such combinations in their ge-
nomes, whereas none of the control subjects showed any of these com-
binations in their genomes [7].

Investigations of clusters of combinations occurring exclusively in
patients have found that, although clusters are significantly associated
with the disorder, individual combinations from these clusters do not
show significant association with the disorder [7,8,10,25]. These find-
ings raise questions regarding the interpretation of a cluster of combina-
tions that is significantly associated with a disorder. It is possible that a
cluster of combinations that is significantly associated with a disorder
could represent a general risk factor for the disorder, whereas the accu-
mulation of combinations from the cluster in the genome of a patient
may be regarded as a personal risk factor. In this respect, it would be in-
teresting to assess whether the accumulation of many combinations in
the genome results in higher risk or more severe disease, compared to
the accumulation of fewer combinations from the clusters.

There are also unanswered questions regarding the generalizability
of the findings from the few studies of combinations of genetic variants
occurring exclusively in patients [7,8,10,25]. Is it a coincidence that, in
all four studies, the groups of patients harboring a common combination
are too small for any single combination to achieve statistical signifi-
cance? Or is this high degree of genetic heterogeneity typical for poly-
genic disorders? Answering this question will require more studies of
combinations of genetic variants that occur exclusively in patients. For-
tunately, it may be relatively easy to perform such studies as a supple-
ment to new or ongoing studies, or by analyzing the genetic variants
already reported in previous studies.
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