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Microscopy for functional genomics and 
systems biology
High-throughput methodologies such as proteomics, expres-
sion profiling, or protein interaction mapping have established 
an era of systems biology, which aims at understanding bio-
logical processes through comprehensive identification of net-
work components and their interplay (Hartwell et al., 1999). 
Such large-scale approaches can generate valuable parts lists 
and provide basic insight into their modular organization, but 
they do not resolve spatial and temporal aspects of protein 
function and regulation (Megason and Fraser, 2007). Most  
biological processes occur spatially confined at distinct sub-
cellular sites and vary between different cells, thus calling for 
methods capable of sampling spatial and temporal patterns at 
the single cell level.

Fluorescence microscopy provides an ideal tool to study 
complex biological processes with high spatiotemporal reso-
lution. Fluorescent proteins allow one to label virtually any 

cellular structure or signaling component under physiological 
conditions in live cells (Giepmans et al., 2006). A wide range 
of fluorescent biosensors and imaging modalities provides 
the possibility to detect steady-state protein dynamics, post-
translational modifications, protein–protein interactions, and 
small molecules (Lippincott-Schwartz et al., 2003; Giepmans 
et al., 2006). Microscopy has long been tedious and difficult 
to perform in a systematic and quantitative way. Therefore, 
imaging-based assays have in most cases been restricted to 
manual low-throughput experiments, for example, detailed 
mechanistic studies of few selected candidate genes. Recent  
developments in robotics for sample preparation and automa-
tion of microscope control now enable one to perform imag-
ing at a large scale (Pepperkok and Ellenberg, 2006). The key 
challenge often remains the annotation of complex pheno-
typic patterns in huge image datasets. Many studies still rely 
on visual scoring and manual annotation, which is slow, error 
prone, and potentially biased by the user. Significant prog-
ress has been made through the implementation of computer 
vision methods for multidimensional data analysis (Gerlich 
et al., 2001; Gerlich and Ellenberg, 2003) and supervised 
machine learning approaches for automated classification 
of cellular and subcellular phenotypes (Conrad et al., 2004; 
Neumann et al., 2006; Glory and Murphy, 2007; Jones et al., 
2009; Walter et al., 2009).

In this review, we provide an overview of imaging-based 
screening strategies. We focus on biological assay design, auto-
mated image acquisition, and computational analysis. We fur-
ther discuss advanced imaging options and how throughput and 
content of screening assays can be balanced. Finally, we pres-
ent a perspective on how integration of experimental robotics,  
image analysis tools, and large-scale data resources may be 
used to further automate the discovery process.

Biological assays: content versus 
throughput
The most basic readout for imaging-based assays is total cellu-
lar fluorescence intensity of immunodetected antigens or over-
expressed fluorescent reporters (Fig. 1 A). For example, this can 

Fluorescence microscopy is one of the most powerful tools 
to investigate complex cellular processes such as cell divi-
sion, cell motility, or intracellular trafficking. The availabil-
ity of RNA interference (RNAi) technology and automated 
microscopy has opened the possibility to perform cellular 
imaging in functional genomics and other large-scale ap-
plications. Although imaging often dramatically increases 
the content of a screening assay, it poses new challenges 
to achieve accurate quantitative annotation and therefore 
needs to be carefully adjusted to the specific needs of 
individual screening applications. In this review, we dis-
cuss principles of assay design, large-scale RNAi, micro-
scope automation, and computational data analysis. We 
highlight strategies for imaging-based RNAi screening 
adapted to different library and assay designs.
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be used to score the expression of marker genes (Müller et al., 
2005; Loo et al., 2007), DNA content for cell cycle progression 
(Kittler et al., 2007), lipoprotein uptake (Bartz et al., 2009),  
mitochondrial Ca2+ transport (Jiang et al., 2009), or virus entry 
into cells (Pelkmans et al., 2005; Brass et al., 2008; Krishnan  
et al., 2008; Plouffe et al., 2008).

Another class of assays scores cellular morphology  
features (Fig. 1 B). For example, the pattern of cytoskeletal or 
chromatin markers can serve to probe cellular morphologies 
(Bakal et al., 2007; Liu et al., 2009), cell division phenotypes 
(Gönczy et al., 2000; Echard et al., 2004; Sönnichsen et al., 
2005; Neumann et al., 2006; Draviam et al., 2007; Goshima 
et al., 2007), cell cycle progression (Boutros et al., 2004;  
Kittler et al., 2007), or DNA double-strand break repair (Doil 
et al., 2009). Although manual annotation of such assays is 
possible, this way of analyzing the images is very tedious 
and may be user biased. Fortunately, computational machine 
learning methods allow efficient annotation even of subtle 
morphological features (see Computational image analysis for 
quantitative phenotyping).

Fluorescent proteins can also be used to assay biochemical 
events in live cells. GFP-based biosensors have been engineered 
for visualization of protein–protein interactions (Ciruela, 2008) 
and posttranslational modifications (Aye-Han et al., 2009) as 
well as enzyme activity and small molecules (VanEngelenburg 
and Palmer, 2008). Imaging modalities such as fluorescence 
correlation spectroscopy (Haustein and Schwille, 2007), photo-
bleaching and photoactivation (Lippincott-Schwartz et al., 2003),  
and chemical labeling of engineered target proteins (Johnsson,  
2009) further enable the study of steady-state protein dynam-
ics in living cells. All of these methods can, in principle, be  
applied to high-throughput imaging assays, opening new  
possibilities to screen for factors in very specific aspects of  
cellular signaling.

Time-resolved live imaging (Fig. 1 C) provides the highest 
content for assays on complex dynamic processes such as cell 
division (Sönnichsen et al., 2005; Neumann et al., 2006). Live 
cell imaging can be automated to a level that enables genome-
scale RNAi screens (MitoCheck project; Neumann et al., 2010). 
Several commercial microscope platforms support automated 
time-lapse imaging of live cells. The key to live imaging-based 
screening is a stable incubation and careful optimization of the 
light dose to avoid photodamage (Schmitz and Gerlich, 2009). 
The most severe limitation of live imaging in screening is the 
complexity of data annotation.

Screening of hypothesis-derived candidate 
gene sets
Many initial functional genomics screens relied on simple 
intensity-based readouts, which can be scaled relatively eas-
ily to the full genome level. However, this approach provides 
little information on the underlying phenotype and its vari-
ability within the cell population. The application of higher-
content imaging assays that incorporate spatial or temporal 
phenotypic patterns is much more labor intensive and there-
fore can require preselection of candidate genes to perform 
low- to medium-throughput screens (Fig. 2 A).

Figure 1. Examples for imaging-based assays. (A) Intensity-based assay. 
In this screen for human genes associated with West Nile virus infection, 
cell nuclei were labeled with DAPI (blue) and stained by immunofluores-
cence against a viral epitope (red). Genes that reduced the intensity of viral  
epitope staining were scored as hits. (left) Negative control (NT-siRNA).  
(right) Hit (CBLL1-siRNA) identified in the screen. This panel is reprinted 
with permission from Nature Publishing Group (Krishnan et al., 2008).  
(B) Morphology-based assay for genes functioning in the assembly of 
DNA double-strand repair foci. Cells were stained by immunofluorescence 
for 53BP1, a protein which localizes to spontaneously occurring DNA 
damage foci, visible as bright green spots (see negative control; left). In a 
hit obtained in this screen (siRNF168), 53BP1 failed to target to spots and 
was instead dispersed throughout the nucleoplasm. This panel is reprinted 
with permission from Elsevier (Doil et al., 2009). (C) Live imaging-based 
assay for mitotic timing. HeLa cells stably expressing chromatin marker 
H2B-mCherry (Steigemann et al., 2009) were imaged for 24 h on an 
incubated screening microscope (Schmitz and Gerlich, 2009). Mitotic 
phenotypes were detected based on the timing from nuclear breakdown 
(2 min in siCon) until anaphase (28 min in siCon). Cells depleted for the 
spindle checkpoint protein Mad2 prematurely enter anaphase (8 min). 
Images provided by D.W. Gerlich. Bars, 10 µm.
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ing conditions. For this, automated microscopy and computa-
tional image analysis parameters have to be carefully adjusted, 
which still remains the most difficult part for cell biologists. 
Next, negative controls and selected perturbation conditions 
representative for the subsequent large-scale screens should 
be used to perform pilot screens. It is advisable to establish 
standardized quality control procedures already at this stage to  
ensure subsequent consistent recording of the full dataset.

RNAi in screening applications
The discovery of RNAi as a conserved gene-silencing mecha-
nism (Fire et al., 1998; Meister and Tuschl, 2004) has been 
the starting point for functional genomics studies in organisms 
previously inaccessible to systematic genetic perturbations. Sev-
eral types of reagents have been developed to induce RNAi, 
which have also been used in screening applications. In mam-
malian cells, the most common are chemically synthesized 
short double-stranded RNA (dsRNA) oligomers (siRNAs;  
Elbashir et al., 2001), which can be obtained commercially 
as libraries targeting the entire genome or subsets targeting spe-
cific processes or gene families. As an alternative to chemical  

Candidate gene sets can be derived from a low-level 
functional assay in a genome-wide screen. Alternatively, pub-
lished information (e.g., from other large-scale experiments or 
public databases) can serve to compile target gene lists. At this 
level, a basic hypothesis can be incorporated into the screening 
strategy. For example, it may be reasonable to screen only pro-
teins localizing to a certain subcellular structure (Skop et al.,  
2004) or defined classes of enzymes like kinases (Pelkmans  
et al., 2005). The level of detail needed in a functional geno-
mics assay as well as the number of experimental perturbation 
conditions will vary considerably depending on the biologi-
cal question. In some applications, it may be advantageous to 
sample only very few experimental conditions with ultra high– 
content assays such as time-lapse imaging, whereas others  
may not require sophisticated assays and/or lack a rationale to 
define reasonable sets of candidate genes.

In any screening scenario, assay optimization affects both 
sample preparation as well as data analysis strategy. The assay 
optimization often requires more effort and time than that to 
perform the actual screen (Fig. 2 B). Once an assay has been  
established, it needs to be scaled and tested for realistic screen-

Figure 2. Screening strategies. (A) Secondary 
screening on candidate gene sets either de-
rived from genome-wide primary screens (left) 
or derived based on a hypothesis and systems 
biology resources such as genetic interaction, 
proteomics, or bioinformatics data (right). The  
smaller size of perturbation conditions allows 
high-resolution spatial and temporal imaging or 
assays sampling protein mobility (for example,  
FRAP) or protein–protein interaction (for exam-
ple, by fluorescence resonance energy transfer  
[FRET] or fluorescence correlation spectroscopy 
[FCS]). (B) Typical time line for implementa-
tion of an RNAi screen. Screening assays 
typically derive from a manual visual assay 
development, which aims at maximizing the 
discrimination between selected positive and 
negative controls. In the next step, the automa-
tion of sample preparation, data acquisition, 
storage, and analysis parameters has to be 
implemented and tested in a pilot screen. After 
the acquisition of the entire genome, quality 
control procedures reduce the number of vali-
dated hits.
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surface of the tissue culture dish or multiwell plate. This method 
is appropriate to image adherent cells at a defined z offset, 
and it is very robust, fast, and minimizes perturbation of the 
specimen by light exposure. Reflection-based autofocusing 
requires specific hardware that has recently become available 
from most major microscope companies.

Another difficulty in automating microscopy for screen-
ing applications is the supply of objective immersion media. 
Therefore, most screens use dry objectives. With short working 
distance, the numerical aperture available for dry objectives will 
suit the requirements for most image-based screening assays. 
However, systems for automated water supply on immersion 
objectives with higher numerical aperture have been developed 
by some microscope companies.

With the increased demand for automated microscopes, 
several companies developed dedicated screening microscopes. 
These were optimized for throughput and robustness, but they 
are often less flexible for specific assay requirements. For ex-
ample, they use proprietary software and image formats, which 
limit their integration into specialized image analysis pipelines. 
As a more flexible alternative, powerful open source software 
has been developed for microscope control, database integra-
tion, and image processing (Text box 1). 

Computational image analysis for 
quantitative phenotyping

Automated image processing is the key for reliable quantitative 
measurements in high-throughput microscopy. After image  
preprocessing by denoising and background correction, the 
starting point for any cell-based assay is the identification  
of objects or cells by segmentation algorithms (Fig. 3 A).  
Segmentation algorithms detect objects based on a priori 
knowledge of their properties (like brightness, size, homoge-
neity, or edge information). Which object detection algorithm 
performs best highly depends on the specific fluorescent mark-
ers and cellular morphologies of a particular assay. Image seg-
mentation is still one of the most challenging aspects when 
implementing an image analysis workflow for screening. To 
facilitate cell detection, fluorescent DNA or chromatin markers 
are often used because labeled cell nuclei have well-defined 
contours and they are well separated from neighboring cells 
(Megason and Fraser, 2007). Dilation of cell nuclei contours 
can serve to define cytoplasmic regions.

Because of the high experimental variability of most stain-
ing procedures, absolute fluorescence intensities for quantifi-
cation of marker levels usually do not provide reproducible 
measures within large-scale experiments. Therefore, intensity-
based assays mostly rely on fluorescence ratios related to a 
counterstained reference marker in individual cells. With this, 
imaging-based ratio metric measurements can be as sensitive  
as flow cytometry devices (Gordon et al., 2007).

To annotate distinct morphological phenotypes, pattern  
recognition methods have been developed, among which super-
vised machine learning classifiers are most common. These meth-
ods first require detailed quantitative description of shape and 
texture of each segmented cell. Several collections of algorithms 

synthesis of siRNAs, long dsRNAs can be enzymatically  
digested in vitro by Dicer or RNase III into heterogeneous 
pools of endo-RNase–prepared siRNAs (esiRNAs; Yang et al.,  
2002; Buchholz et al., 2006). A third method to induce RNAi 
uses the expression of short hairpin RNAs from plasmid vec-
tors, which are cleaved into siRNAs by the endogenous 
Dicer enzyme (Root et al., 2006; Snøve and Rossi, 2006;  
Wiznerowicz et al., 2006). In contrast to the transient knock-
down mediated by siRNA or esiRNA, the latter method enables 
stable RNAi in long-term gene-silencing studies. However, it  
requires transfection methods that can be less efficient and 
more toxic than transfection of siRNAs. Furthermore, the lev-
els of vector-expressed short hairpin RNA are often difficult 
to control, which can be critical for potential concentration-
dependent off-target effects (Jackson et al., 2006).

In some cell types like Drosophila melanogaster S2 
cells, RNAi can be induced by simply adding dsRNA directly 
to the culture medium. However, most other cell types require  
transfection methods to deliver RNAi reagents. siRNAs or 
esiRNAs can be efficiently transfected by chemical transfection 
reagents using liquid-handling robotics and multiwell plates. 
As an alternative method, cell transfection arrays have been 
developed that contain dried spots of siRNA oligonucleotides  
mixed with transfection and matrix reagents. A uniform layer 
of cells seeded onto transfection arrays is then transfected lo-
cally at each spot by solid-phase transfection (Ziauddin and 
Sabatini, 2001; Erfle et al., 2004, 2007; Erfle and Pepperkok, 
2007). Thereby, a large number of replica transfection plates 
can be generated in a single step. These can be distributed and 
stored for subsequent use in various screening applications 
without the need of further robotics (Neumann et al., 2006). 
Although transfection arrays are cheap and convenient to use, 
establishing the challenging production workflow and quality 
control procedures might be solved best in large central facili-
ties. The main limitation of transfection arrays is the risk of  
cross-contamination from neighboring spots. However, solid-
phase transfection can also be applied in multiwell plates, thereby 
avoiding cross-contamination between different siRNA oligo-
nucleotides (Erfle et al., 2008).

Microscope automation
Initial imaging-based screening was often implemented on 
standard motorized epifluorescence microscopes, to which 
the automation was added by academic researchers. This  
requires motorized control of stage positioning, fluorescence 
filters, and camera acquisition, which is now available as 
preassembled systems from all major microscope providers. 
One of the most challenging tasks in microscope automa-
tion is the focus control (Shen et al., 2006). Initial systems 
implemented image-based autofocus methods that first record 
entire z stacks of images to determine the focal plane with 
maximal information content. This method has the advantage 
to correctly position the focus even when cellular geometry 
changes, for example, in morphological phenotypes. How-
ever, image-based autofocus is slow and it exposes the speci-
men to excessive light-causing photodamage. An alternative 
autofocusing method measures the reflection of a laser at the  
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often based on a relatively small training dataset, which may 
be unrepresentative or lack rare phenotypic aberrations. Itera-
tive supervised machine learning can be performed to raise the 
chance of discovering rare unknown phenotypes. Thereby, auto-
mated preselection of aberrant morphologies enables annotation 
of a more comprehensive classifier (Jones et al., 2009). Alter-
natively, iterative clustering of morphology classes can build a 
model that includes rare and unexpected phenotypes (Yin et al.,  
2008). Finally, unsupervised machine learning methods are 
available for clustering cellular morphologies into pheno-
type classes without any user interaction. Although these meth-
ods bear big promise, their performance in real-life biological 
screening applications still needs to be demonstrated.

Quality control and validation of hits
Optimizing an assay for screening requires a quantitative param-
eter for sensitivity and robustness of signal detection. A widely 
used measure for assay performance is the Z score, which de-
fines the discriminative power of an assay between unperturbed 
negative controls and cells perturbed with a positive control that 
induces the respective phenotype (Zhang et al., 1999). Based on 
this quality score, the best experimental parameters can be deter-
mined, for example, the cell seeding density, transfection con-
ditions, or image analysis parameters. Calculating Z scores is 

to calculate such statistical features have  
been published (Haralick et al., 1973; 
Prokop and Reeves, 1992; Walker and 
Jackway, 1996), which can be combined 
to define cellular morphologies by numeri-
cal vectors. In the next step of supervised 
machine learning, a classification algorithm 
needs to be trained on user-defined examples  
for cellular morphology classes (Fig. 3 B).  
A widely used classification algorithm, 
support vector machine, automatically de-
termines a boundary (termed hyperplane) 
within the multidimensional feature space, 
which optimally discriminates the user-
 annotated cellular morphologies (Fig. 3 C). 
This classifier can be subsequently applied 
to annotate cell morphologies in large-scale 
image data (Fig. 3 D). In practice, super-
vised machine learning succeeded to ac-
curately classify a variety of phenotypes  
typically in the range of 70–90%, includ-
ing localization to subcellular structures, 
mitotic phenotypes, and virus infec-
tion (Boland and Murphy, 2001; Conrad  
et al., 2004; Neumann et al., 2006; Rämö  
et al., 2009). In fact, classifiers for subcellu-
lar objects have been shown to outperform  
human annotation for localization patterns 
of Golgi apparatus, endosomes, or lyso-
somes (Glory and Murphy, 2007). The 
orientation of the classification hyperplane 
and its distance to cellular objects in the fea-
ture space can also be directly used for de-
tailed phenotypic profiling (Loo et al., 2007). In any case, a good  
representation of phenotypical variability in the training data is 
essential for accurate annotation of the full screening data.

Supervised machine learning can, in principle, also be 
used to annotate cellular dynamics in live imaging data. This 
requires a workflow combining morphology classification with 
the tracking of cells over time. However, because the maximal 
classification accuracy is rarely higher than 95% per object, cel-
lular trajectories typically contain multiple annotation errors.  
Some efforts have been made to improve the classification  
accuracy in time series by suppressing biologically illegitimate 
transitions of morphological states. Although this has been 
shown to improve the annotation accuracy in an assay based 
on mitotic chromosome morphologies (Harder et al., 2009; 
Zhou et al., 2009), its application to other assays will require 
implementation of specific biological a priori models. To over-
come this limitation, automatically extracted class transition 
probabilities can serve to correct classification errors without 
user supervision, providing a generic tool for time-resolved 
phenotype annotation (will be released as open source software  
CellCognition in 2010; unpublished data).

The most severe limitation of current machine learning 
approaches to RNAi screening is the dependence on a super-
vised training step. The definition of morphology classes is 

Text box 1. Open source software projects for image-based screening

Manager

Manager (http://www.micro-manager.org) is software used to control automated image 
acquisition on motorized microscopes. Supported hardware devices include motorized 
microscope stands from various companies as well as a large number of illumination sources, 
shutters, filter wheels, scanning stages, and digital cameras. Manager provides a graphical 
user interface through integration into ImageJ software (National Institutes of Health). 
Manager can be easily extended to support new hardware through standardized application 
programming interfaces. Manager can, in principle, control epifluorescence and spinning-disc 
microscopes but does not support laser-scanning microscopes.

Open Microscopy Environment (OME)

OME (http://www.openmicroscopy.org/site) was designed to establish standards in 
multidimensional microscopy (Swedlow et al., 2003). A suite of software tools supports 
standardized annotation and storage of images, microscope settings, and analysis results 
(Goldberg et al., 2005). A recent extension established OME as a server platform linked to 
different web-based application tools, for example, for visualization and basic image analysis 
(Moore et al., 2008). This client-server application architecture (OME Remote Objects called 
OMERO) enables implementation of visualization control in webpages to browse data on 
remote OME servers. OME also provides a common image format for microscopy (OME-TIFF) 
and, through Bio-Formats (http://www.loci.wisc.edu/ome/formats.html), provides software 
libraries that can parse almost all current microscope image data structures.

CellProfiler

CellProfiler (http://www.cellprofiler.org) is software for data exploration and image analysis, 
designed for the needs of high-throughput imaging. It provides a graphical user interface to 
manage complex image analysis workflows and offers some functionality in feature extraction 
and machine learning (Sigal et al., 2006; Jones et al., 2008, 2009; Rämö et al., 2009). The 
software CellClassifier provides support vector machine classification to CellProfiler (Rämö  
et al., 2009).

CellHTS

The software CellHTS is part of a software project Bioconductor (http://www.bioconductor.org), 
which adds functionality to the statistical software R for the analysis of high-content screens. 
CellHTS can be used to compute the Z scores on the experiment-wide level of screens, offering 
various normalization graphical visualization options (Boutros et al., 2006). CellHTS also links 
to Gene Ontology and BioMart data warehouses to serve as a data mining tool.
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straightforward, but it has been found to be less robust in more 
complex screens, for example, when the siRNA transfection effi-
ciency is variable (Birmingham et al., 2009). Improved quality 
scores for RNAi screening assays can be calculated by taking into 
account pools of siRNA targeting one gene (König et al., 2007) 
or multiple experimental replicas of siRNA conditions combined 
with plate to plate variation (Zhang et al., 2008).

Two recent RNAi screens on cell cycle regulation in mam-
malian cells demonstrated surprisingly little overlap (10%) 
of the hit lists (Mukherji et al., 2006; Kittler et al., 2007). This 
may in part reflect cell line–specific differences or the use of 
different RNAi reagents but raises concerns about a generally 
high rate of false hits in RNAi screens (Echeverri et al., 2006). 
A study on screening reproducibility indicated a complex pat-
tern of how siRNA design, cell type, and the cellular context 
impact phenotypic readouts (DasGupta et al., 2007). More-
over, several cell population context–dependent parameters 

Figure 3. Supervised machine learning for 
classification of cellular morphologies. (A) Detec-
tion of cells based on fluorescent chromatin 
label (core histone 2B fused to GFP; Kanda 
et al., 1998), as indicated by red contours. 
A set of quantitative texture and shape fea-
tures is then extracted for each segmented 
object. (B) Manual annotation of morphol-
ogy classes. In this example, interphase cell 
nuclei are annotated by green asterisks, and 
metaphase chromosome plates are annotated 
by yellow asterisks. (C) The hyperplane that 
optimally separates the two different morphol-
ogy classes is automatically determined by the 
classification algorithm. The hyperplane can 
be defined by linear functions (as shown) or 
by radial base functions, depending on the 
classification algorithm. (D) The trained classi-
fier can be applied to new data for automated 
classification of trained morphology classes. 
The yellow and green contours label inter-
phase and metaphase morphology classes 
as shown in B. (E) Time-resolved assay for mi-
totic progression. Live HeLa cells expressing 
fluorescent core histone 2B (H2B-GFP) were 
imaged by automated time-lapse microscopy  
for 24 h using a 10× dry objective. Morphologi-
cal classes were annotated by machine learning 
and pattern classification. This panel is reprinted 
with permission from Nature Publishing Group 
(Neumann et al., 2006). Bars, 20 µm.

showed an impact on virus infection and endocytosis assays, 
which can serve to improve the phenotype annotation accuracy  
(Snijder et al., 2009).

A potential source of false positive hits in RNAi screens 
are off-target effects of the RNAi reagents. The main reason 
for potential off-target effects in mammalian RNAi screens 
is the relatively high tolerance of mismatches on the siRNA 
(Birmingham et al., 2006). Several validation strategies are 
available. RNAi phenotypes should be reproduced by at least 
two distinct siRNAs. A correlation of the phenotype penetrance 
caused by different siRNAs and the depletion level provides 
support for the specificity of an RNAi phenotype. A powerful 
validation strategy tests for RNAi phenotype complementation 
by overexpression of an RNAi-resistant version of the target 
gene (Echeverri et al., 2006). A resource for such RNAi pheno-
type rescue experiments is mouse transgenes cloned from bac-
terial artificial chromosomes for stable expression in cultured 
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data formats. Improved modular software and databases will be 
needed to transform automated microscopy into a tool for 
hypothesis-driven research projects with daily changing assay 
needs. The integration of machine learning methods into 
microscope-controlling software will be an important next step 
for increasing assay content in screening. Based on classification 
of an image object or phenotypic event, the microscope could 
be automatically reconfigured, for example, to alter spatial or  
temporal resolution. This will also enable the implemen-
tation of new imaging modalities into screening applications 
like fluorescence correlation spectroscopy or photobleaching/
photoactivation assays or provide event-driven feedback on ro-
botic drug addition. Once the hurdle of hardware and software 
integration is overcome, imaging-based assays will open new 
options for systems biology. In the long run, we may envision 
completely autonomous “robot-scientists” (King et al., 2009)  
executing cycles of experimentation and hypotheses genera-
tion on automated microscopes.
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