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Abstract
Due to its long genetic evolutionary history, Africans exhibit more genetic variation than any other population in the world. 
Their genetic diversity further lends itself to subdivisions of Africans into groups of individuals with a genetic similarity 
of varying degrees of granularity. It remains challenging to detect fine-scale structure in a computationally efficient and 
meaningful way. In this paper, we present a proof-of-concept of a novel fine-scale population structure detection tool with 
Western African samples. These samples consist of 1396 individuals from 25 ethnic groups (two groups are African American 
descendants). The strategy is based on a recently developed tool called IPCAPS. IPCAPS, or Iterative Pruning to CApture 
Population Structure, is a genetic divisive clustering strategy that enhances iterative pruning PCA, is robust to outliers and 
does not require a priori computation of haplotypes. Our strategy identified in total 12 groups and 6 groups were revealed 
as fine-scale structure detected in the samples from Cameroon, Gambia, Mali, Southwest USA, and Barbados. Our finding 
helped to explain evolutionary processes in the analyzed West African samples and raise awareness for fine-scale structure 
resolution when conducting genome-wide association and interaction studies.

Introduction

The study of population structure allows assigning individu-
als to distinct ethnic groups cohabiting a particular region 
(Liu et al. 2018), investigating migrations from the origin 
of admixed populations (Haber et al. 2016), and quantifying 

and characterising confounding due to shared genetic ances-
try in association studies (Wang et al. 2018). In humans, 
genetic variation is not randomly distributed across the 
world because of non-random mating between individuals, 
who tend to marry within their community, often driven 
by physical proximity (Schneider and Peischl 2011). This 
circumstance causes variation in the relative frequency of 
different genotypes between groups of individuals, which 
may be further adapted over time through phenomena such 
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as genetic drift or selection. Migration from a population 
group into a new region will lead to certain (from limited to 
complete) admixture between the ancestral groups resulting 
in a new admixed descendant population. Hence, migration 
will contribute to population substructure, with individuals 
displaying varying admixture levels of their ancestral groups 
(Criollo-Rayo et al. 2018).

African populations are the oldest populations in the evo-
lution of modern human species, given its single origin in 
the African continent between 200,000 years ago [as indi-
cated by mitochondrial DNA; (reviewed in Rito et al. 2013)] 
and 350,000 years ago (by nuclear DNA; Schlebusch et al. 
2017), dates which are corroborated by archaeological evi-
dence (Hublin et al. 2017; Richter et al. 2017). Europeans 
and Asians descended from a small group of Africans that 
migrated out-of-Africa around 60,000 years ago (see dis-
cussion around the theme of origin and date of the out-of-
Africa group in (Rito et al. 2019). Africa covers some 20% 
of earth’s total land surface, amounting to 30 million km2 
of diverse biomes from rainforest to woodland to savanna 
to desert to Mediterranean littoral environments. Africa 
also bears a higher amount of remaining hunter-gatherer 
communities than the rest of the world, from Khoisan in 
the southern desert, to Hadza in the Savannah, Pygmies in 
the tropical rainforests, and Fulani and Daza in the Sahel 
(Černý et al. 2011). African languages have been classified 
into four main linguistic families (reviewed in Campbell and 
Tishkoff 2010): Niger-Kordofanian spoken by agriculturalist 
populations across a broad geographic distribution in Africa; 
Afroasiatic spoken mainly by northern and eastern African 
pastoralists; Nilo-Saharan spoken predominantly by central 
and eastern African pastoralists; and the click-consonant 
Khoisan language spoken by eastern and southern African 
hunter-gatherers. These myriads of environments, climates, 
diets, lifestyles, and exposure to infectious diseases con-
tribute to strong selective pressures (Campbell and Tishkoff 
2008; Teo et al. 2010) upon the African populations, whose 
genome-wide characterization has enormous potential in 
revealing main aspects of human population history and 
genetic susceptibility to diseases.

In the reference study of African and African American 
genetic diversity surveyed with 1327 microsatellites, the 
broad continental population structure largely followed self-
described ethnic and linguistic groups (Tishkoff et al. 2009). 
Considerable geographical extensions display remarkable 
homogeneity for the parts of the African continent when 
applying frequency model-based clustering strategies. This 
homogeneity is verified in the Western African populations 
of the Sahel Belt (Triska et al. 2015; Patin et al. 2017) when 
using ADMIXTURE (Alexander et al. 2009). These popula-
tions present varying proportions of only two clusters, one 
being more frequent in Atlantic Western populations (e.g., 
90% in Mandenka), whereas the other is more frequent in 

Western/Central populations, especially in Esan and Yoruba 
of Nigeria (reaching 74–81% frequency). The main Atlantic 
Western component probably represents the more ancestral 
background of the region, while the main Western/Central 
component probably represents the Bantu migration initi-
ated 5000 years ago from the Nigeria/Cameroon region. The 
Bantu migration further massively disrupted the original 
African ancestry southerly of its point of origin and affected 
to some extent the more southern Sahelian populations. This 
pattern is displayed by the various commonly used model-
based clustering methods [e.g., STRU​CTU​RE (Pritchard 
et al. 2000), ADMIXTURE (Alexander et al. 2009), and 
AWclust (Gao and Starmer 2008)] and the visual summaries 
of the variation in low dimensions (e.g., Principal Compo-
nent Analysis (PCA) (Abegaz et al. 2018). STRU​CTU​RE 
and ADMIXTURE are used to determine how individuals 
are inherited from a certain number of population ancestries 
(K) using maximum likelihood estimation from SNPs (Alex-
ander et al. 2009), while PCA refers to a relatively small 
number of uncorrelated variables derived from an initial 
pool of variables while explaining as much of the total vari-
ance as possible. A higher resolution in population cluster-
ing is only obtained when fine-scale structure detection tools 
are applied, including haplotype-based clustering (e.g., fin-
eSTRU​CTU​RE jointly with CHROMOPAINTER (Lawson 
et al. 2012) and iterative pruning method for clustering [e.g., 
iNJclust (Limpiti et al. 2014), and SHIPS (Bouaziz et al. 
2012), and ipPCA (Intarapanich et al. 2009)]. fineSTRU​CTU​
RE and CHROMOPAINTER have been already applied to 
the African context (Busby et al. 2016; Patin et al. 2017) 
and solved Western African clustering to a fine-scale mag-
nitude, showing that most sub-Saharan populations share a 
certain proportion of ancestry with groups from outside of 
their current geographic region (sharing between different 
ethnolinguistic groups, for example, western Bantu speak-
ers having some input from western Pygmies) as a result of 
gene-flow within the last 4000 years. The ipPCA method 
has been compared to STRU​CTU​RE, BAPS (Corander et al. 
2008), and AWclust algorithms, and outperformed these 
methods in achieving higher accuracy in terms of a number 
of obtained clusters and individual allocations to clusters in 
highly structured populations with closely related subpopu-
lations (Intarapanich et al. 2009; Limpiti et al. 2011) such 
as in Thai population (Wangkumhang et al. 2013). However, 
IPCAPS was not yet applied to African populations.

We have recently implemented IPCAPS methodology, 
to overcome some of the shortcomings of ipPCA (Chai-
choompu et al. 2017, 2019), such as restriction of a binary 
splitting of data into nested data sets, outlier sensitivity, and 
non-straightforward accommodation mixed-input data types. 
In this work, we applied IPCAPS to genome-wide charac-
terized Western African samples (1396 individuals distrib-
uted over 25 ethnic groups, genotyped for 320,007 SNPs) 
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to establish a proof-of-concept of IPCAPS as a fine-scale 
population substructure detection tool. IPCAPS clustering 
results in Western African populations were compared with 
ADMIXTURE and fineSTRU​CTU​RE results. SNPs contrib-
uting to the clusters were also annotated in terms of possi-
ble functional impact, contributing information for genetic 
epidemiology.

Materials and methods

Samples

We combined African genotype data from three sources 
(the datasets published in The 1000 Genomes Project 
Consortium 2012; Triska et al. 2015; Busby et al. 2016). 
The combined data include ACB (African Caribbean in 
Barbados), ASW (African ancestry in Southwest USA), 
BGM (Gurmatche in Burkina Faso), BGR (Gurunsi in 
Burkina Faso), BM1 (Mossi I in Burkina Faso), BM2 
(Mossi II in Burkina Faso), CBT (Bantu in Cameroon), 
CSB (Semi-Bantu in Cameroon), ESN (Esan in Nigeria), 
GF1 (Fula I in Gambia), GF2 (Fula II in Gambia), GJL 

(Jola in Gambia), GMD (Mandinka II in Gambia), GMJ 
(Manjago in Gambia), GNA (Akans in Ghana), GNK 
(Kasem in Ghana), GNN (Nankam in Ghana), GSH (Sere-
hule in Gambia), GSR (Serere in Gambia), GWD (Gam-
bian in Western Division—Mandinka), GWL (Wollof in 
Gambia), MLB (Bambara in Mali), MLM (Malinke in 
Mali), MSL (Mende in Sierra Leone), and YRI (Yoruba 
in Ibadan, Nigeria). All these groups are sedentary popula-
tion, except the Fulani (GF1 and GF2) who are nomadic 
and display high endogamy, being usually quite distinct in 
ADMIXTURE analyses (see for instance results in Triska 
et al. 2015). Samples from America (ASW) and Barbados 
(ACB) are also mainly of Western African ancestry. The 
1000 Genomes data are from complete genome sequenc-
ing, while the other samples were screened on the Illumina 
Omni 2.5 M chip, although the freely available data set by 
Busby et al. (2016) is limited to 328,000 autosomal SNPs. 
For this reason, we began by checking SNPs present on 
Busby et al. (2016) versus the other two projects, using 
bcftools (Li 2011), and merging of the common SNPs to 
all data sets was performed using PLINK with default set-
tings. Thus, the final data set contains 1396 individuals 
distributed over 25 populations, as indicated in Fig. 1 and 

Fig. 1   Geographical location of the African data set analyzed in this 
work. Abbreviations identify the following populations: ACB African 
Caribbean in Barbados, ASW African ancestry in Southwest USA, 
BGM Gamache in Burkina Faso, BGR Gurunsi in Burkina Faso, BM1 
Mossi I in Burkina Faso, BM2 Mossi II in Burkina Faso, CBT Bantu 
in Cameroon, CSB Semi-Bantu in Cameroon, ESN Esan in Nigeria, 
GF1 Fula I in Gambia, GF2 Fula II in Gambia, GJL Jola in Gambia, 

GMD Mandinka II in Gambia, GMJ Manjago in Gambia, GNA Akans 
in Ghana, GNK Kasem in Ghana, GNN Nankam in Ghana, GSH Sere-
hule in Gambia, GSR Serere in Gambia, GWD Gambian in Western 
Division, Mandinka, GWL Wollof in Gambia, MLB Bambara in Mali, 
MLM Malinke in Mali, MSL Mende in Sierra Leone, YRI Yoruba in 
Ibadan, Nigeria
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in Supplementary Table S1 (Online Resource 1), geno-
typed for 320,007 SNPs after merging all data sets.

Quality control and data preparation

Data were subjected to a rigorous quality control protocol 
via PLINK routines (Purcell et al. 2007). Next, we describe 
the steps of the adopted protocol in more detail.

Step 1	� Select only founders or unrelated individuals, using 
the PLINK option “–filter-founders”. Non-founders 
are excluded before PCA-computations because 
they can bias the interpretation of components. In 
this context, founders are referred to parents, and 
non-founders are referred to offspring.

Step 2	� Select only autosomal chromosomes 1–22, via the 
PLINK option “–not-chr 0,x,y,xy,mt”. This option 
avoids detecting structures that are gender-biased.

Step 3	� Filter out SNPs in linkage disequilibrium (LD) 
blocks using the PLINK option “–indep-pairwise 
50 5 0.2”. We assume low or no correlation struc-
ture between SNPs as suggested via r2 < 0.2, with 
r2 the commonly used measure of LD (Zou et al. 
2010). LD pruning in this way helps to avoid that 
strong LD blocks drive the most important princi-
pal components or cause computational instability 
with classical approaches to compute PCs such as 
eigenvalue decomposition or EM algorithm (Raiko 
et al. 2008). In IPCAPS, PCs are computed by 
default via eigenvalue decomposition.

Step 4	� Remove SNPs which the Hardy–Weinberg equilib-
rium (HWE) assumption is rejected, through the 
PLINK option “–hwe 0.001”. This step is similar 
to standard operating procedures in Genome-Wide 
Association Studies.

Step 5	� Allow individuals with a call rate at least 95% 
by specifying “–mind 0.05” in PLINK. This step 
is similar to standard operating procedures in 
Genome-Wide Association Studies.

Step 6	� Filter out missing genotypes > 2%; PLINK option 
“–geno 0.02”. SNPs that have a high rate of miss-
ingness should also be removed. In the presence 
of extensive missing data, and in particular with a 
missingness process that is not “missing completely 
at random”, biased results may be obtained. Note 
that the default imputation strategy within IPCAPS 
is single imputation by the most frequent observa-
tion (per SNP).

Step 7	� Remove SNPs with a low minor allele frequency 
(MAF < 0.05) through the PLINK option “–maf 
0.05”. Too rare SNPs (MAF < 0.05) may be found 
at an individual level, but not commonly presented 
in a population level.

All interim results of the QC analysis of 25 African pop-
ulations are detailed in Supplementary Table S2 (Online 
Resource 1). After data QC-ing, 1396 individuals and 
138,111 SNPs remained.

Structure detection analysis strategy using IPCAPS

The IPCAPS methodology is explained in (Chaichoompu 
et al. 2017, 2019) and it uses PCA-based high-dimensional 
clustering to assign individuals to subpopulations (fine pop-
ulation stratification) without using assumptions of popula-
tion membership or ancestry. It is available as an R package 
(Chaichoompu et al. 2018a). IPCAPS aims first to identify 
the rough or large-scale structure and second to obtain fine-
scale substructure in nested data sets. The iterative analyses 
in PCA space come to an end via a combination of stopping 
criteria: a novel heuristic called EigenFit (Chaichoompu 
et al. 2017), mixture model-based clustering, and the average 
of population genetics fixation index (FST) calculated from 
SNPs using Hudson’s method (Bhatia et al. 2013). Outlying 
individuals are separated via the RubikClust algorithm (see 
the R package KRIS, Chaichoompu et al. 2018b). The latter 
uses the concept of rotation in 3-dimensions, determined by 
the first three principal components (PC1, PC2, and PC3), 
to search for clear separation in all dimensions.

The four steps adopted in our proposed structure detec-
tion strategy using IPCAPS are as follows:

Step 1	� Population clustering by IPCAPS. The PLINK 
binary format file (BED), obtained after the 
described QC protocol, was used in conjunc-
tion with IPCAPS, where the parameters were 
method = ‘mix’, missing = NA, covariate = NA, 
min.fst = 0.0008. The parameter threshold was var-
ied in the range of 0.03–0.18, and min.in.group was 
varied in the range 5–20. Note that the power of the 
IPCAPS analysis can be improved by fine-tuning 
the threshold value and the min.in.group value. 
Details about the minimum and maximum thresh-
old of IPCAPS can be found in (Chaichoompu et al. 
2017) and is referred to therein as EigenFit crite-
rion. The information about the country of origin 
and the geographical region was used only in the 
graphical output of IPCAPS.

Step 2	� Admixture profiling. This step aims to check for the 
agreement between IPCAPS clusters and ADMIX-
TURE profiles. As in step 1, PLINK output files, 
after having performed QC of data, were used 
directly as input to the ADMIXTURE software, 
version 1.3.0. ADMIXTURE was run with K start-
ing from 2 to 10, and the optimal number of ances-
tries (K) was obtained by tenfold cross-validation 
(–cv = 10). Exceptional clusters (i.e., clusters of 
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rather outlying individuals) were ignored to visu-
alize admixture profiling.

Step 3	� Assessing identified clustering using haplotype-
based analysis. As similar to Step 1, the data which 
have processed through the QC steps were passed 
as input to fineSTRU​CTU​RE. Genotypes were 
phased with SHAPEIT v2.r79044 (Delaneau et al. 
2012) using the 1000 Genomes phased data (The 
1000 Genomes Project Consortium et al. 2015) as 
a reference panel and the HapMap phase 2 genetic 
map (The International HapMap Consortium 
2007). Population structure of the phased data was 
evaluated using the fineSTRU​CTU​RE v2.07 pack-
age 18 (Lawson et al. 2012) with Chromopainter 
v2.0 18 (Lawson et al. 2012). From the results, a 
dendrogram was inferred to visualize the number of 
statistically defined clusters that describe the data 
and to compare with the identified clusters from 
Step 1. The information about the country of origin 
was used only to visualize the result of fineSTRU​
CTU​RE.

Step 4	� Discriminator identification. Pairwise FST distances 
were calculated for all possible pairs of clusters 
identified by IPCAPS (except the clusters of out-
liers) using the function top.discriminator. For 
each pair of clusters, the SNPs with high FST in 
the top percentile of 99.9% were selected for sub-
sequent discriminant analyses. The cluster labels 
assigned by IPCAPS were permuted for 10,000 
times to assess that a set of top-FST SNPs for clus-
ter pairs was not randomly selected. In each round, 
the individuals were randomly resampled without 
replacement to reassign cluster labels as identified 
in step 1. Later, a p value was estimated from the 
combined set of the top-FST SNPs from IPCAPS 
groups and from resampling groups using Jaccard/
Tanimoto similarity test (Chung et al. 2019) from 
the R package ‘jaccard’, where the parameters 
were method = ”bootstrap” and B = 1000. Among 
10,000 p values from all iterations of each cluster 
pair, a maximum p value was used to determine 
the uniqueness of top-FST SNP set. All lists of 
discriminant SNPs were checked for gene annota-
tion using the online Variant Effect Predictor tool 
(VEP) (McLaren et al. 2016) to assess the biologi-
cal interpretation. VEP was set to enquire the tran-
script databases from Ensembl and GENECODE 
transcripts with 5000 base pairs for upstream and 
downstream distances.

Step 5	� Functional annotation of discriminators. The list 
of genes obtained from VEP was checked for 
the functional annotations using the online tool 
called FUMA (Watanabe et al. 2017). Selections 

of discriminant genes were investigated for their 
enrichment of GWAS Catalog (Buniello et  al. 
2019) hit genes. Functional enrichment analysis 
was performed using FUMA across gene expres-
sion data sets from GTEx v7 with 30 general tis-
sue types by excluding the major histocompatibility 
complex (MHC) region. The mapping was done 
for at least two overlapping genes with gene sets. 
For enrichment testing, p values were adjusted for 
multiple tests using Benjamini–Hochberg’s FDR 
control (Benjamini and Hochberg 1995).

Identifying subgroups with similar ADMIXTURE 
profiles

IPCAPS groups with similar ADMIXTURE profiles were 
identified. Corresponding pairwise discriminator genes were 
functionally annotated, as in Step 5 above, to highlight func-
tionally relevant differences between the groups and thus to 
seek evidence for them to constitute two groups.

Results

Overview of samples

After passing through all quality control steps, the number 
of SNPs was reduced from 320,007 to 138,111; no indi-
vidual was removed (i.e., 1396 individuals contributed to the 
subsequent analyses). The intermediate results of all quality 
control steps are shown in Supplementary Table S2. After 
having submitted the QC-ed data to PCA, it was difficult to 
identify clear differences between the 25 input populations 
(Fig. 2). Only GF1 individuals (Figs. 2, 3, solid cyan circle) 
were well separated from the other populations, which are 
in line with the large genetic distance of GF1 from the other 
African populations (FST ≥ 0.14, Supplementary Table S3 in 
Online Resource 1). Although this ethnic group is an entirely 
distinct nomadic group, it is curious that they split off from a 
second Fulani group from the same country. We can hypoth-
esize that this last Fulani group GF2 may have had higher 
gene flow with the neighbors of sedentary groups, being thus 
genetically more similar. We furthermore observed that ACB 
(solid red circle) and ASW (solid green circle) were spread 
out, unlike the other populations (Figs. 2, 3). Notably, these 
two groups are African descendants living in the Ameri-
can continent (in Barbados and the southwest USA, respec-
tively), and, as such, are descendants from enslaved Africans 
that originated from diverse parts of Western Africa. It is 
known that there is still 10% European admixture in Afri-
can Americans (Patin et al. 2017), which may explain the 
differences observed in these two groups together with the 
Western African groups.
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Fig. 2   The first three princi-
pal components of the entire 
African data set before IPCAPS 
clustering. Highlighted points 
refer to ethnic groups
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Fine‑scale structure detection of Western Africans 
via IPCAPS

To avoid too high dispersion compared to subgroups 
imposed by reference labels, the IPCAPS’s result run 
on the QC-ed data with threshold = 0.18 and min.
in.group = 20 was selected to explain in this section. 
IPCAPS analysis revealed 12 groups instead of the initial 

25 self-identified population groups (Supplementary 
Table S4 in Online Resource 1). In addition, 22 individu-
als were separated into 9 groups with less than 5 indi-
viduals per group; these individuals were considered to 
be outliers and not considered for subsequent analyses. 
For comparisons purposes, the ADMIXTURE profiling 
plots for IPCAPS groups 1–12 are shown in Fig. 4a, for 
optimal K ancestors 3–5 (cross-validation error in Fig. 4c). 
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Fig. 4   a ADMIXTURE clustering of the African data set. The num-
bers of ancestry groups (K) are between 3 and 5. The numbers (1–12) 
under the ADMIXTURE plot represent the IPCAPS groups. The 
group members are listed underneath the plot; the numbers in paren-
theses represent the numbers of individuals from those ethnic groups. 

b Geographic map showing, for each group, the geographic origin for 
the majority (less than five individuals) of group members. c Cross-
validation (cv) error from ADMIXTURE based on tenfold cross-val-
idation
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In Fig. 4b, the geographic map shows the geographic ori-
gin for the majority (less than five individuals) of group 
members for each group.

IPCAPS group 1 (Figs. 3, 4a) is composed of one self-
identified population group, as expected the nomadic Fulani 
GF1 which was also individualized in ADMIXTURE, along 
all Ks. IPCAPS groups 2, 3, 4 and 5 individualize individu-
als that in ADMIXTURE K = 5 form quite a continuum in 
the alternative proportions between two components repre-
sented in yellow and in red. These individuals belong to pop-
ulations from the westernmost countries; the Gambia and 
Sierra Leone, and neighboring Mali. IPCAPS is almost able 
to isolate Mende from Sierra Leone (group 2) and Jola from 
Gambia (group 5), which somewhat show also an extreme 
position in the yellow–red spectrum in ADMIXTURE, while 
group 3 gets most Mali (Bambara and Malinke) and the 
other Fulani group individuals mixed with a few Gambian, 
in contrast with group 4 made of most of all other Gam-
bian individuals (Mandinka, Manjago, Serehule, Serere, and 
Wollof). IPCAPS groups 6, 7, 8 and 9 present a distinctive 
ADMIXTURE K = 5 particularity of higher amount of the 
ancestry represented by the violet color mixed with vari-
able proportions of the already mentioned yellow and red 
components. IPCAPS group 6 is composed of Burkina Faso 
(Gurmatche, Gurunsi, and Mossi) and neighboring Ghana 
(Akans, Kasem, and Nankam) population groups, which 
display a quite homogeneous pattern in ADMIXTURE. 
IPCAPS group 7 is made of the Nigerian groups (Esan and 
Yoruba) and some African Caribbean. IPCAPS groups 8 and 
9 are made of the two Cameroon populations, which are of 
Bantu origin (full Bantu in 8 and semi-Bantu in 9) who were 
not distinguishable in ADMIXTURE K = 5. IPCAPS groups 
10, 11, and 12 are mostly African Americans from USA and 

Barbados that in ADMIXTURE present variable proportions 
of the cyan color reflecting Caucasian admixture.

We further ascertained the potential of the haplotype-
based fineSTRU​CTU​RE method in solving population 
structure in the tested data set. When applied directly 
in the pruned data set (to be directly compared with our 
results), fineSTRU​CTU​RE identified 29 groups (at least 5 
individuals per group; some individuals were in long indi-
vidual branches, as shown in Fig. 5). Superimposing the 
12 IPCAPS groups onto the fineSTRU​CTU​RE dendrogram 
(Fig. 5) by manual matching, a satisfactory agreement was 
observed, except for group 4. Of the 1374 individuals that 
were allocated to the same IPCAPS group, only 43 of them 
(3%) would not be allocated into the same fineSTRU​CTU​
RE groups. A more traditional fineSTRU​CTU​RE analy-
sis (unpruned data set) revealed 38 groups at the tip level 
(with at least five individuals per group; not shown). This 
fineSTRU​CTU​RE, at its maximum, did not solve all ethnic 
group affiliations, especially within and between Gambian 
and Mali groups.

Annotation of discriminator diversity

The pairwise discriminators were selected from the cor-
responding 99.9th percentile of SNP-wise FST derived per 
pairwise IPCAPS group comparison. The average number 
of top-FST SNPs thus identified across pairs of groups is 
138.79. The minimum number of top-FST SNPs is 134 SNPs, 
and the maximum number of top-FST SNPs is 139. All SNPs 
were mapped to genes using VEP (details provided in Online 
Resource 2). For the genes mapped to these 66 top-FST SNP 
lists (number of combinations of 2 IPCAPS groups that can 
be selected from 12 groups), we used FUMA to perform 

Group 6: 1 loss

Group 12: 7 losses, 3 gains (outliers)
Group 10: 8 losses, 11 gains
Group 11: 2 losses, 20 gains
Group 8: 2 gains (outliers)
Group 9: 2 gains

Group 7: 13 losses, 2 gains (outliers)

Group 5: 1 loss to group 4

Group 4: 3 losses, 7 gains

Group 1

Group 3: 5 losses, 5 gains

Group 2: 3 loses to group 3

3.0

Fig. 5   Concordance analysis between IPCAPS and fineSTRU​CTU​
RE. The dendrogram represents the identified groups by fineSTRU​
CTU​RE. These groups were uniquely matched to the 12 groups iden-

tified by IPCAPS; differences between the matched groups are indi-
cated taking IPCAPS groups as reference
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gene enrichment analysis. In particular, we linked the query 
genes (2580 genes in total), corresponding to the pooled 
genes of 66 top-FST SNP lists, to the GWAS Catalog. This 
led to a total of 489 GWAS Catalog genes, significantly link-
ing to several phenotypes including response to fenofibrate, 
response to chemotherapy in breast cancer hypertensive 
cases, obesity-related traits, body mass index, post-bron-
chodilator FEV1/FVC ratio, amyotrophic lateral sclerosis, 
post-bronchodilator FEV1, night sleep phenotypes, height, 
asthma, etc. (Table 1). Table 2 displays the top two entries 
of Table 1, for which the hit genes from the GWAS Catalog 
were also among the 2580 genes, as described before.

The GWAS-obtained gene set for the response to fenofi-
brate consists of three genes, CD36, DOCK4, and NXPH1, 
from chromosome 7. Fenofibrate is medicine for lowering 
high cholesterol and triglyceride levels. All discriminative 
SNPs linked to these three genes are located in introns: 
rs10246082, rs7779873 and rs3211881 for CD36; rs2729536 
and rs6951506 for DOCK4; rs7812117, rs6978212, and 
rs6955389 for NXPH1. The GWAS set of genes associated 
with response to chemotherapy in breast cancer hyperten-
sive cases in cumulative dose consists of six genes. This 
chemotherapy refers to Bevacizumab, which is used to 
treat colorectal, lung, glioblastoma, kidney, cervical, and 

Table 1   The top 30 of GWAS traits according to adjusted p-values

The adjusted p values determine the significance level from gene-set enrichment testing of matched genes and the reported genes in GWAS 
Catalog. The p values were adjusted using the method of Benjamini–Hochberg (FDR)
*From the GWAS Catalog
**From IPCAPS, derived from 66 top-FST SNP lists, as described in the text

GWAS catalog trait Total Nr 
of genes*

Total Nr of 
matching 
genes**

Multiple testing 
adjusted, p value

Response to Fenofibrate 3 3 0
Response to chemotherapy in breast cancer hypertensive cases (cumulative dose) (Bevacizumab) 6 6 0
Obesity-related traits 756 168 6.40E−59
Body mass index 546 109 3.00E−33
Post-bronchodilator FEV1/FVC ratio 199 60 1.73E−28
Amyotrophic lateral sclerosis (sporadic) 164 46 2.09E−20
Post-bronchodilator FEV1 120 36 3.90E−17
Night sleep phenotypes 538 81 1.20E−16
Height 522 78 7.10E−16
Asthma 207 45 2.41E−15
Myopia 73 25 1.02E−13
Diisocyanate-induced asthma 189 39 1.40E−12
Post-bronchodilator FEV1/FVC ratio in COPD 51 20 1.65E−12
Alzheimer’s disease (cognitive decline) 48 19 4.91E−12
Menarche (age at onset) 216 41 5.42E−12
Blood pressure (smoking interaction) 29 15 5.59E−12
Type 2 diabetes 255 45 5.60E−12
Coronary artery disease 431 61 1.40E−11
Schizophrenia 604 75 3.03E−11
Photic sneeze reflex 65 21 3.03E−11
Response to amphetamines 33 15 6.02E−11
Plateletcrit 219 39 1.19E−10
Autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major 

depressive disorder, and schizophrenia (combined)
46 17 1.98E−10

Lung adenocarcinoma 113 26 6.70E−10
Systemic lupus erythematosus 222 38 6.81E−10
Platelet count 285 44 8.07E−10
Major depressive disorder 133 28 1.18E−09
Coronary artery calcified atherosclerotic plaque (130 HU threshold) in type 2 diabetes 35 14 2.15E−09
Body mass index (joint analysis main effects and smoking interaction) 81 21 2.90E−09
Intraocular pressure 82 21 3.65E−09



54	 Human Genetics (2020) 139:45–59

1 3

ovarian cancer. These six genes, MAML2, MSRA, PARVB, 
PFKFB3, SV2C, and TGFBR2, bear, respectively, the fol-
lowing intronic discriminative SNPs: rs514686, rs10501841, 
rs7104859, rs7951485, and rs555329; rs11250004, 
rs11775334, and rs11993663; rs5764495; rs2516614; 
rs12522470 and rs2081076; and rs9881945. Furthermore, 
the 2580 query genes were widely regulated in several tis-
sues, including brain, blood vessel, esophagus, adrenal 
gland, salivary gland, colon, adipose tissue, kidney, skin, 
stomach, breast, lung, liver, small intestine, pituitary, heart, 
pancreas, nerve, vagina, muscle, bladder, ovary, prostate, 
uterus, spleen, cervix uteri, thyroid, and testis (Fig. 6).

Annotation of discriminators in the IPCAPS groups 
with highly similar ADMIXTURE profiles

IPCAPS groups 2 and 3 have similar ADMIXTURE profiles 
(Fig. 4a), which is also the case for groups 8 and 9, and for 
groups 10 and 11. From permutation, the maximum p value 
of the discriminant SNPs between IPCAPS groups 2 and 3 
is 0.001. Enrichment analysis performed on the discrimina-
tor genes between group 2 (mostly from Sierra Leone) and 
group 3 (mostly from Mali and Gambia) shows that top sig-
nificant enrichments for GWAS hit genes (p value < 0.0001 
or − log10(0.0001) = 4) are obtained for four GWAS traits 
(Fig. 7a; Supplementary Fig. S5). These include chronotype 

(PSME4, ACYP2, PHACTR1, and MSRA), body mass index 
(PSME4, PAX2, NRXN1, CTNNA2, LRP1B, ADAM23, 
ADARB1, CPNE4, DGKG, and SV2C), response to chem-
otherapy in breast cancer hypertensive cases (MSRA and 
SV2C), and neurocognitive impairment in HIV-1 infection 
(FAM155A, SH3RF3 and TOX). Moreover, the top-FST genes 
for groups 2 and 3 are significantly upregulated in the blood 
vessel and brain, and significantly downregulated in the 
stomach. When considering both down- and upregulation, 
the genes are significantly regulated in the stomach, blood 
vessel, and muscle (Supplementary Figs. S6, S7, red, FUMA 
results).

Similarly, in the case of group 8 (CBT) and group 9 
(CSB), both from Cameroon, top enrichment is obtained 
by FUMA for seven GWAS traits (Fig. 7b; Supplementary 
Fig. S8) based on the selected top-FST SNPs (the maximum 
p value from permutation is 0.001). These include multiple 
mental disorders, i.e., autism spectrum disorder, attention 
deficit-hyperactivity disorder (ADHD), major depressive 
disorder, and schizophrenia (TCF7L2, NTRK3, GRIN2A and 
CSMD1), amyotrophic lateral sclerosis (NTRK3, CSMD1, 
CNTN5, PIEZO2, RNF165 and DOCK4), cerebrospinal 
fluid clusterin levels (CSMD1, FOXN3 and ABCA13), bipo-
lar disorder and eating disorder (RYR2 and NRG3), copper 
levels (GRIN2A, FOXN3, CCDC85A and FARS2), optic disc 
area (CTNNA3, VGLL4 and RARB), and loneliness (CNTN5, 

Table 2   The information of the first two gene sets which have the exact match for all reported genes in GWAS Catalog (p value = 0)

The cluster pairs are the pairwise comparison for all possibilities of detected groups by IPCAPS

GWAS catalog trait Gene Chr SNP Location on gene Cluster pair

Response to Fenofibrate CD36 7 rs10246082 Intron 2–7
rs7779873 Intron 2–7, 3–7, 4–7, 5–7, 7–9
rs3211881 Intron 8–10

DOCK4 7 rs2729536 Intron 1–8, 1–11, 1–12, 8–9
rs6951506 Intron 2–10, 8–10

NXPH1 7 rs7812117 Intron 3–4, 4–8, 8–10
rs6978212 Intron 3–5, 5–6, 5–7, 5–8
rs6955389 Intron 4–11

Response to chemotherapy in breast cancer hyper-
tensive cases (cumulative dose) (Bevacizumab)

MAML2 11 rs514686 Intron 1–2
rs10501841 Intron 2–7
rs7104859 Intron 3–5, 5–6, 5–7
rs7951485 Intron 6–7
rs555329 Intron 9–10

MSRA 8 rs11250004 Intron 1–2, 1–9
rs11775334 Intron 2–3, 2–4, 2–6
rs11993663 Intron 3–9

PARVB 22 rs5764495 Intron 9–12
PFKFB3 10 rs2516614 Intron 2–6
SV2C 5 rs12522470 Intron 2–3

rs2081076 Intron 11–12
TGFBR2 3 rs9881945 Intron 2–7
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MBOAT1 and UTRN). These top-FST genes discriminating 
groups 8 and 9 are significantly upregulated in the brain, 
blood vessel, and breast. A large set of genes is signifi-
cantly downregulated in the small intestine, stomach, sali-
vary gland, skin, spleen, esophagus, colon, testis, pituitary, 
thyroid, prostate, and adrenal gland. For both upregulation 
and downregulation, the genes are significantly regulated 
in the brain, colon, esophagus, stomach, blood vessel, sali-
vary gland, breast, thyroid, vagina, small intestine, nerve, 
adipose tissue and liver (Supplementary Fig. S9, red). The 
significantly expressed genes are shown in the heat map with 
different levels of gene expression ranging from high (dark 
red) to low (dark blue), as before (Supplementary Fig. S10).

Lastly, in the case of group 10 (the majorities are ACB) 
compared to group 11 (mixed between ACB and ASW), cor-
responding discriminating genes are enriched for GWAS hits 
(obtained from the discriminatory SNPs with the maximum 
p value is 0.001) linked to obesity-related traits (GPC5, 

GPC6, MYO16, RBFOX1, SPAG16, ELOVL6, SGCD, 
DRD1, COL23A1, and ASTN2) as shown in Fig. 7c and Sup-
plementary Fig. S11. In Supplementary Fig. S12 (red), the 
top-FST genes of groups 10 and 11 are significantly downreg-
ulated in the prostate, thyroid, salivary gland, pituitary, and 
esophagus, and significantly regulated in both sides for the 
brain, adipose tissue, and breast. Moreover, the significantly 
expressed genes are highlighted in a heatmap provided as 
Supplementary Fig. S13.

Discussion

The rich genetic structure of Africans (Zeiger et al. 2018) 
has received much attention. As indicated before, large-
scale migration events that occurred throughout history and 
a large mixture of ancestries caused a massive and subdi-
vided population structure in Africa (Tishkoff et al. 2009). 

Fig. 6   Tissue specificity related 
to the differentially expressed 
genes (DEG) derived from the 
top-FST SNPs (99.9th percen-
tile) across all cluster com-
parisons. A distinction is made 
between upregulated DEG (top), 
downregulated DEG (middle), 
and bidirectional DEG (bot-
tom). The p values represent the 
probability from the hypergeo-
metric test
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Africans have been studied from different angles, including 
evolutionary history (Lambert and Tishkoff 2009), prehis-
toric time (Skoglund et al. 2017), and migration (Schlebusch 
and Jakobsson 2018). Our study looks into deeper details to 
identify fine-scale population structure in Western African 
populations.

Initially, we developed IPCAPS as a methodology to 
detect fine-scale structure in patients, after having removed 
confounding population structure. A validation of IPCAPS 
on real-life data for disease subtyping is difficult since there 
is no clear explanation of how disease subtypes should be. 
However, a lot of information is available about genetic 
substructure in general populations, and this motivated the 
current work. In particular, IPCAPS was built on ipPCA 
(Intarapanich et al. 2009; Limpiti et al. 2011), which was 
able to detect fine-scale structure in the Thai population 
(Wangkumhang et al. 2013). We adopted five major steps 
for general population structure detection analysis using 
IPCAPS. These steps involve population clustering analysis 
with IPCAPS, followed by admixture profiling and subgroup 
discriminator identification to aid in the interpretation of 
IPCAPS findings. IPCAPS was compared to ipPCA, and 
it outperformed ipPCA in all considered simulation sce-
narios (Chaichoompu et al. 2017). IPCAPS has the poten-
tial for detecting fine population structure using SNPs in 

populations, without the need for inferring haplotypes or 
haplotype phasing.

Among the 12 groups that were revealed out of the 
Western African samples, IPCAPS was able to distin-
guish between most countries who were not identifiable 
in ADMIXTURE. IPCAPS was not able to distinguish 
between most self-identified ethnic groups within countries 
which may be explained by an extensive gene flow exist-
ing between groups, a fact further supported by the many 
examples of individuals from one group/country that would 
be molecularly affiliated in another group. According to 
gene-set enrichment analysis, the genetic differences among 
these revealed groups are associated with up to 489 gene 
sets from GWAS, related to obesity, BMI, response to drugs 
(cholesterol level and chemotherapy) and cancer. This obser-
vation testifies that the genetic diversity that discriminates 
between these groups is of functional impact. For instance, 
in CD36 gene, which responds to Fenofibrate drug used to 
decrease cholesterol level, two intronic SNPs (rs10246082 
and rs7779873) discriminate individuals of group 7 (mainly 
from Nigeria) from the groups 2, 3, 4, 5, and 9 (mainly from 
Cameroon, Gambia, Mali, and Sierra Leone).

Even closely related groups were discriminated by 
IPCAPS and through functionally important discriminatory 
SNPs. Groups 2 (Mende from Sierra Leone) and 3 (Bambara 

Fig. 7   The lists of genes that are associated with the top-FST SNPs 
(99.9th percentile) between groups 2 and 3, groups 8 and 9, and 
groups 10 and 11, is shown in a, b, and c, respectively, obtained 
from FUMA. The listed genes (orange) from genome-wide asso-
ciation studies obtained from the GWAS Catalog (Buniello et  al. 

2019). The proportions of overlapping genes in gene sets are shown 
in red, and the enrichment p values are shown in blue. The lists of 
GWAS experiments were filtered by enrichment p value ≥ 0.0001 
(− log10(0.0001) = 4)
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and Malinke from Mali and Fula II from the Gambia) are 
discriminated by SNPs associated with chronotype (behavior 
according to the biological clock), BMI, response to chemo-
therapy in breast cancer and neurocognitive impairment in 
HIV-1 (enrichment p value < 0.0001). In particular, intronic 
rs4113420 SNP in FAM155A gene, associated with neuro-
cognitive impairment in HIV-1, distinguishes group 2 from 
3, and group 2 from other eight groups (groups 4, 5, 6, 7, 8, 
9, 10 and 11). The two ethnic groups from Cameroon, Bantu 
(CBT) and Semi-Bantu (CSB), or groups 8 and 9, respec-
tively, were distinguishable by SNPs related to several traits, 
as several mental disorders, amyotrophic lateral sclerosis, 
copper levels, and optic disc area. NTRK3 gene is compel-
ling in the multiple mental disorders, and its rs16941321 
SNP is only discriminating between these two ethnic groups 
from Cameroon.

The fine-scale resolution on Western African ancestry 
structure further allowed discrimination between the Afri-
can migrants to North America. ACB from Barbados and 
ASB from Southwest USA have a similar genetic profile to 
Nigerian (ESN and YRI), except for the mixture with Euro-
pean ancestors, contributing to differences between groups 
7 and 11 (rs4886414 and rs7142344 SNPs have contrast 
frequencies in African and Europeans, respectively, 0.0877 
and 0.7336, and 0.9251 and 0.0974). Groups 10 and 11 have 
similar ADMIXTURE profiles, but with a slightly differ-
ent ratio of European ancestral part, with discriminatory 
SNPs linked to genes that enrich for obesity (enrichment 
p value < 0.0001), as DRD1 (SNP rs686) and COL23A1 
(rs17648108—which display the lowest allele frequency in 
Europeans, of 0.2684, contrasting to higher than 0.5 in other 
population groups).

Detecting population structure can be observed at dif-
ferent granularity levels. The structure detection tool fin-
eSTRU​CTU​RE (Lawson et al. 2012) to infer fine-scale 
genetic substructure in populations is a Bayesian cluster-
ing method that uses sufficient statistics as input, which are 
in turn output from CHROMOPAINTER (Lawson et al. 
2012). The latter finds haplotypes in sequence data and 
“paints” every individual as a combination of all other 
sequences. We verified that even these methods could 
not solve all ethnic group affiliations in agreement with 
self-identification. The number of inferred groups can be 
played around by reducing the IPCAPS threshold from 
0.18 (maximum allowable threshold value) to 0.03 (mini-
mum allowable threshold value), thus changing from 12 
but 19 groups, as shown in Supplementary Fig. S14. The 
optimal threshold will depend on the data application and 
context. Regardless, haplotype-based analyses, as required 
for fineSTRU​CTU​RE, are computationally intensive and 
time-consuming. IPCAPS avoids this and can easily be 
run on a personal computer, whereas finding refined and 
meaningful genetic substructure. For the African data set 

analyzed in this work, IPCAPS took less than 2 h to pro-
cess on a personal computer (running in a single thread 
on the 3.5-GHz CPU with 16 GB of RAM). However, the 
haplotype-based analysis (pruned data set) took about 30 h 
on a cluster computer with the 2.5-GHz CPUs and 250 GB 
of RAM (phasing haplotype took about 4 h running in 
32 threads using SHAPEIT, and total fineSTRU​CTU​RE 
clustering took about 26 h, taking advantage of running 
CHROMOPAINTER in 64 threads).

The finding of discriminant markers among the subpopu-
lations explained above is beneficial to raise a concern in 
study design for GWAS. Using country or boundary to label 
samples may be biased. In case of, for example, CBT and 
CSB (both groups are Cameroon), the GWAS experimental 
design for mental disorders should be well concerned since 
some discriminatory SNPs among these ethnic groups are 
associated to several mental disorders. The GWAS result is 
likely to be false positive when the numbers of cases and 
controls is not equally distributed (Bush and Moore 2012). 
On the one hand, unwanted signals or subpopulations should 
be removed before GWAS (Abegaz et al. 2018), on the other 
hand, subpopulations should be first detected (for instance, 
via IPCAPS and fineSTRU​CTU​RE) and GWAS can be then 
performed on subgroups.

Conclusion

In this work, we have reported fine-scale population struc-
ture in the Western African populations using IPCAPS as 
genetic clustering tool. IPCAPS (with threshold = 0.18) pro-
vides an intermediate sub-clustering resolution (12 IPCAPS 
groups) between ADMIXTURE (frequency-based, K = 5) 
and fineSTRU​CTU​RE (haplotype-based, 29 groups) profil-
ing. The number of IPCAPS groups is substantially smaller 
than the actual number of African ethnic groups/populations 
taken as input, implying that some IPCAPS groups consist 
of subsets of several African subpopulations. However, three 
meaningful fine-scale population structures were highlighted 
in the African populations living in Cameroon, Gambia, 
Mali, Southwest USA, and Barbados. As the detected hidden 
substructure in terms of discriminant genes could be poten-
tially linked to several (disease) traits via their enrichment 
for established GWAS hits, we furthermore believe that our 
ability to detect such fine-scale structure in populations can 
also contribute to the improvement of genome-wide associa-
tion studies for complex human traits.
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