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Abstract

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic,

debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, ortho-

static intolerance and gastrointestinal problems. Using ultra performance liquid chromatog-

raphy-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of

39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear

and quadratic terms of the protein levels as independent variables, revealed a significant

association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/

30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS)

status revealed a significant quadratic effect of immunoglobulin lambda constant region 7

on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa

variable region 3–11 were significantly associated with ME/CFS without sr-IBS. In addition,

we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774–

0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso,

Random Forests, and XGBoost. These algorithms also identified proteomic profiles that pre-

dicted the status of ME/CFS patients with sr-IBS (AUC = 0.806–0.846) and ME/CFS without

sr-IBS (AUC = 0.754–0.780). Our findings are consistent with a significant association of

ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome

as a source of biomarkers for disease.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0236148 July 21, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Milivojevic M, Che X, Bateman L, Cheng

A, Garcia BA, Hornig M, et al. (2020) Plasma

proteomic profiling suggests an association

between antigen driven clonal B cell expansion and

ME/CFS. PLoS ONE 15(7): e0236148. https://doi.

org/10.1371/journal.pone.0236148

Editor: Steven Jacobson, National Institutes of

Health, UNITED STATES

Received: November 27, 2019

Accepted: June 30, 2020

Published: July 21, 2020

Copyright: © 2020 Milivojevic et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The mass

spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the

PRIDE [1] partner repository with the dataset

identifier PXD016622.

Funding: WIL U54AI138370 National Institutes of

Allergy and Infectious Diseases niaid.nih.gov WIL

Gift - no award number available Solve ME/CFS

Initiative solvecfs.org The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

http://orcid.org/0000-0001-7924-075X
http://orcid.org/0000-0001-7572-3092
http://orcid.org/0000-0003-0495-922X
http://orcid.org/0000-0002-3378-8071
http://orcid.org/0000-0002-8768-9386
https://doi.org/10.1371/journal.pone.0236148
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236148&domain=pdf&date_stamp=2020-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236148&domain=pdf&date_stamp=2020-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236148&domain=pdf&date_stamp=2020-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236148&domain=pdf&date_stamp=2020-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236148&domain=pdf&date_stamp=2020-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0236148&domain=pdf&date_stamp=2020-07-21
https://doi.org/10.1371/journal.pone.0236148
https://doi.org/10.1371/journal.pone.0236148
http://creativecommons.org/licenses/by/4.0/
http://solvecfs.org


Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease of

unknown cause that affects up to 2.5 million people in the USA alone [1]. The disease is

defined by persistent fatigue lasting longer than six months, post-exertional malaise, unre-

freshing sleep, and either cognitive dysfunction or orthostatic intolerance [1]. These symptoms

are often accompanied by others that may include chronic pain, influenza-like symptoms, and

gastro-intestinal disturbances [2]. Whilst there is no known cause of ME/CFS, multiple studies

have reported immune, metabolic, and neurological disturbances. There are no approved diag-

nostic tests [3, 4].

Mass spectrometry analysis of plasma has identified disturbances in energy, amino acid,

and lipid metabolism [5–10]. Proteomic reports are limited to two studies of cerebrospinal

fluid [11, 12], one study of saliva [13], and one study of platelet mitochondria [14]. Baraniuk

et al. (2005) [11] found that innate immune and amyloidogenic proteins were detected more

frequently in the cerebrospinal fluid of patients compared to controls, and that the presence of

one or more of a subset of proteins (α-1-macroglobulin, amyloid precursor-like protein 1, ker-

atin 16, orosomucoid 2, and pigment epithelium-derived factor) predicted ME/CFS status

with 80% accuracy. Another study of cerebrospinal fluid by Schutzer et al (2011) [12] showed

differing proteomic profiles between ME/CFS and post-treatment Lyme disease patients that

included enrichment in the ME/CFS group of proteins involved in the complement cascade as

well as pathways related to CDK5 signaling and dopamine signaling. Ciergia et al (2013) [13]

studied the saliva of monozygotic twins discordant for ME/CFS and found 13 differentially

expressed proteins related to inflammation and metabolism. Another study of the platelet

mitochondrial proteome in the same pair of twins identified upregulation of aconitate hydra-

tase, ATP synthase subunit beta, and malate dehydrogenase that was replicated in saliva of a

larger cohort of 45 subjects with ME/CFS [14].

Here we report a ME/CFS-related plasma proteome analysis using untargeted ultra-perfor-

mance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). We identified dif-

fering profiles between ME/CFS patient, as well as ME/CFS subgroups, based on their self-

reported irritable bowel syndrome (sr-IBS) status, and controls. In addition, we identify a set

of proteins that may predict ME/CFS status.

Materials and methods

Study population

50 ME/CFS cases and 50 controls were collected in ME/CFS clinics in New York, NY; Salt

Lake City, UT; Sierra, NV; and Miami, FL [15]. All ME/CFS cases met the 1994 CDC Fukuda

[16] and/or Canadian consensus criteria for ME/CFS [17]. Controls were frequency-matched

to cases on age, sex, race/ethnicity, geographic/clinical site, and season of sampling [18].

All ME/CFS cases completed standardized screening and assessment instruments including

medical history and symptom rating scales as well as a physical examination. ME/CFS cases

were excluded if they met any exclusion criteria from the 1994 CDC Fukuda and/or Canadian

consensus criteria for ME/CFS such as having chronic infections, rheumatic and chronic

inflammatory diseases, neurological disorders, psychiatric conditions, or were taking any

immunomodulatory medication. Normal controls underwent the same screening process as

ME/CFS subjects and were excluded if they reported ME/CFS or other conditions deemed by

the recruiting physician to be inconsistent with a healthy control population. Potential normal

controls were also excluded if they had a history of substance abuse, psychiatric illness, antibi-

otics in the prior three months, immunomodulatory medications in the prior year, and
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clinically significant findings on physical exam or screening laboratory tests [18]. Self-reported

IBS was not part of the exclusion criteria of controls. Full selection criteria for both ME/CFS

cases and healthy controls can be found in S1 Appendix.

Every participant provided informed written consent in accordance with protocols of the

study. The study was approved by the Institutional Review Board at Columbia University

Irving Medical Center.

Plasma collection

Blood samples were collected into BD VacutainerTM Cell Preparation Tubes (CPT) with

sodium citrate anticoagulant between June and October 2014, and centrifuged to pellet red

blood cells. The plasma samples were shipped to Columbia University at 4˚C. After aliquoting,

samples were stored at -80˚C until they were thawed for proteomic analyses. All samples were

analyzed within four years of collection.

Clinical assessments

Clinical symptoms and baseline health status were assessed on the day of physical examination

and biological sample collection from both cases and control subjects using the following sur-

veys: the Short Form 36 Health Survey (SF-36), the Multidimensional Fatigue Inventory

(MFI), DePaul Symptom Questionnaire (DSQ) [19] and Pittsburgh Sleep Quality Index

(PSQI) [20]. The SF-36 includes the following subject-reported evaluations about current

health status: physical and social functioning, physical and emotional limitations, vitality, pain,

general health perceptions, and mental health change [21]. The MFI comprises a 20-item self-

reported questionnaire focused on general, physical and mental fatigue, activity, and motiva-

tion [22]. Cognitive function was tested based on the DSQ questionnaire data and was scored

using a standard cognitive disturbance definition as well as a modified definition based on a

subset of questionnaire variables. Sleeping disturbances linked to ME/CFS were tested and

scored based on DSQ and PSQI questionnaire items. Each instrument was transformed into a

0–100 scale to facilitate combination and comparison, wherein a score of 100 is equivalent to

maximum disability or severity and a score of zero is equivalent to no disability or

disturbance.

Self-reported IBS was determined based on answers from the medical history form. Subjects

were asked if they had received a previous IBS diagnosis or had a history of IBS. Those that

answered “YES” were considered positive. An IBS diagnosis was not made at the time of

recruitment. 24 of the 50 ME/CFS patients (48%) and one of the 50 control subjects (2%)

reported sr-IBS.

Proteomics analysis

Denaturation/reduction of the sample was performed in 8 M urea/10 mM dithiothreitol/50

mM NH4HCO3 (pH 8.0) for over 60 minutes at 52˚C. The solution was stored at room tem-

perature in 20 mM iodoacetamide at the dark for 60 minutes. The urea was diluted to a con-

centration of 1 M with 50 mM NH4HCO3 and then digested with trypsin (1:50 ratio) at 37˚C

with shaking for 16 hrs. After tryptic digestion, the peptide mixture was desalted with C18

micro spin column (C18, Harvard Apparatus, Holliston, MA). The column was washed with

200 μL of 100% acetonitrile and equilibrated with 200 μL of loading buffer (0.1% formic acid).

Peptides were loaded onto the column, washed with a loading buffer, and eluted with 200 μL

of 70% acetonitrile/ 0.1% formic acid. All steps for loading, washing, and elution were carried

out with benchtop centrifugation (300 x g for 2 minutes). The fraction was collected with a 1.5

mL tube and dried on a speed-vac.
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2 μg peptides were taken from each sample and mixed with appropriate iRT standard pep-

tides HRM Calibration kit, Biognosys, Schlieren, Switzerland). Desalted peptides were ana-

lyzed on a Q-Exactive HF (Thermo Scientific) attached to an Ultimate 300 nano UPLC system

(Thermo Scientific). The column (30 cm × 75 μm) was packed in-house with Reprosil 3 μm,

100 Å pore size C18 beads (Maisch GmbH HPLC). Peptides were eluted with a 50 min gradi-

ent from 2% to 32% ACN (50min) and to 90% ACN over 5 min in 0.1% formic acid. The

method consisted of a full MS1 scan at a resolution of 120 K from m/z 400 to m/z 1000, with

AGC set to 1E6 (maximum injection time of 60 ms), followed by 15 m/z windows acquired at

a resolution of 30K with AGC set to 1e6 (maximum injection time of ms); HCD: MS2 activa-

tion (collision energy: 27).

All the DIA data were also analyzed by Spectronaut Pulsar X (Biognosys AG, Switzerland,

version: 13.10.191212.43655) against the human plasma spectra library. Calibration was set to

nonlinear iRT calibration with precision iRT enabled. Identification was performed using a

0.01 q-value cutoff at both the precursor and protein level. The 0.01 q-value corresponds to a

false discovery rate of 1% or an estimated 1% of false identifications amongst the accepted

identifications. For quantification, the interference correction function was enabled, and the

top 3 peptide precursors were summed for protein quantification. We measured relative pro-

tein abundance comprehensively, and the effect of the variability potentially generated by the

sample preparation and the liquid chromatography–mass spectrometry (LC-MS) performance

was minimized using the Local Regression Normalization algorithm described by Callister

et al. (2006) [23]. Filtered values may be due to protein levels below the detection threshold of

the instrument, or to exclusion from the analysis because of a peptide or protein identification

confidence q-value higher than 0.01.

Samples from 50 ME/CFS cases and 50 controls were run in two batches of 20 samples (9

ME/CFS cases, 11 controls) and 80 samples (39 ME/CFS cases, 41 controls). The 20 samples in

the first batch were randomly selected. The cases and controls were frequency-matched on the

same matching variables as the total study population. 3444 unique peptides matched 257

annotated proteins in the 20 subject sample set. 5308 unique peptides that matched to 279

annotated proteins in the 80 subject sample set. 207 annotated proteins were found in both

sample sets. Differences in the number of proteins identified between the two groups may

reflect patient heterogeneity or batch effects, particularly amongst low abundance proteins.

Statistical analyses

For each protein analyte, non-detectable values were replaced with 50% of its smallest available

value. Protein levels were then log-transformed with base 10 and rescaled by the control stan-

dard deviation.

To test the ME/CFS association and to assess the predictive capacity of each individual pro-

tein analyte, we used logistic regression models adjusted for body mass index (BMI), sr-IBS,

antidepressant medication use, and all matching variables (age, sex, race/ethnicity, geo-

graphic/clinical site, and season of sampling). Prentice and Pyke (1979) [24] showed that the

odds ratio estimators and their asymptotic variance matrices can be obtained by applying the

logistic regression model to the case-control study as if the data had been obtained in a pro-

spective study. Two separate models were fitted: one with only the linear term (the trans-

formed values) of the protein levels, and one with both linear and quadratic terms (square of

the transformed values) of the protein levels as independent variables. Likelihood-ratio tests

were used to compare the goodness-of-fit between the two nested models. These were gate-

keeping hypothesis tests that would serve to allow further exploration of specific protein com-

pounds. We used the Hochberg step-up procedure [25] to correct for the multiple tests over
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the annotated proteins controlling the family-wise error rate (FWER) at the level of 0.05. If, for

any protein analyte, the model with quadratic term fit the data significantly better than the

model with only the linear term through the step-up procedure, adjusted odds ratios (aORs),

together with their 95% confidence intervals (95% CI), were calculated comparing ME/CFS

risk of various protein levels to that of the reference level at which the ME/CFS risk was at the

lowest.

In earlier work with this cohort, sr-IBS was identified as the strongest driving factor in the

separation of topological networks based on fecal microbiome and plasma metabolic pathways

through an unsupervised and data-driven algorithm (Ayasdi, Menlo Park, California) in

Nagy-Szakal et al [9, 26]. It was in this context that we tested, in a stratified analysis, the

hypothesis that ME/CFS patients with sr-IBS have altered proteomic profiles.

To examine the utility of the proteomics assay as a biomarker tool for ME/CFS, we applied

three machine learning algorithms: Lasso (least absolute shrinkage and selection operator)

[27], Random Forests [28] and XGboost [29]. We fitted the linear terms of the levels of all pro-

tein analytes, excluding the ones with undetectable/filtered values in more than 50% of the

subjects (29 proteins), as predictors in the three classifiers. We excluded these protein analytes

in this analysis since they do not have enough power to serve as potential biomarkers. We then

measured the importance for each predictor in the classifiers. Lasso regularizes the least

squares by adding a penalty term in which the L1 norm of the parameter vector is no greater

than a given value, and increasing the penalty drives more coefficients of unimportant predic-

tors to absolute zero. Therefore, measure of importance can be represented as the number of

iterations in which the predictor’s parameter estimate in the best fitting model is nonzero.

Random Forests measures the mean decrease in accuracy when values of the predictor are ran-

domly permuted. For unimportant predictors, the permutation should have little to no effect

on model accuracy, while permuting values of important predictors should significantly

decrease it. For XGBoost, a measure of ‘gain’ can be calculated to indicate the relative contri-

bution of the corresponding predictor to the model calculated by taking each predictor’s con-

tribution for each tree in the model. We then selected the protein analytes that were ranked in

the top 20 in all three importance measurements and fitted them in the classifiers again, except

that here we used the logistic regression instead of Lasso. Since only the linear terms of the pro-

tein levels were fitted as predictors, these classifiers did not identify biomarkers associated

with ME/CFS with quadratic effects. The predictive performance was evaluated in random

resampling cross-validation (CV) with 1000 iterations. In each iteration, the sample set was

randomly divided into an 80% training set and a 20% test set. We generated Receiver Operat-

ing Characteristic (ROC) curves by evaluating model sensitivity and specificity at different

probability thresholds, and then calculated the Area under the Receiver Operating Characteris-

tic curve (AUROC), a performance measure that ranges from 0.5 (fair coin toss) to 1 (perfect

prediction).

Data analyses were conducted using Matlab (R2013a, The Mathworks Inc., MA) and R (ver-

sion 3.5.1). All p-values were 2-tailed.

Results

Study population

The study included plasma samples from 50 ME/CFS cases and 50 healthy controls recruited

at four sites across the United States. The subset of 39 ME/CFS cases and 41 controls were

used in the data analysis to eliminate potential batch effects. The robustness of findings was

verified through sensitivity analysis in the total study population with the adjustment of the

batches. Characteristics of these two nested sample sets are demonstrated in Table 1.
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ME/CFS and ME/CFS subgroups are associated with an altered proteomic

profile

S1 Table shows the sample mean and the standard error of the mean (SEM) of levels of each

protein within ME/CFS cases, ME/CFS cases with sr-IBS, ME/CFS cases without sr-IBS and

controls. S2 Table shows associations between levels of individual protein analytes and ME/

CFS outcomes and includes aORs, 95% CIs and corresponding p-values from the logistic

regression model in which only the linear term of the protein levels was fitted as an indepen-

dent variable. The p-values of the likelihood ratio tests that compare the goodness-of-fit of the

model with both linear and quadratic terms of the protein levels to that of the model with only

the linear term are also presented in S2 Table.

Models with only the linear term (transformed values of the protein levels) failed to identify

any protein significantly associated with ME/CFS after the FWER correction with the step-up

procedure. For certain protein analytes, the residual plots of the linear logistic regression mod-

els followed a U-shape pattern (S1 Fig). Therefore, we applied the logistic regression models

Table 1. Characteristics of the study cohort.

Demographics ME/CFS (n = 50) Control (n = 50) ME/CFS (n = 39) Control (n = 41)

Sex Female 41 41 30 32

Male 9 9 9 9

Age Mean (SEM) 51.08 (11.19) 51.32 (11.46) 52.06 (10.87) 51.43 (11.89)

Race White 49 48 39 39

Asian 1 1 1 1

Other 0 1 0 1

Ethnicity Not Hispanic or Latino 46 45 37 37

Hispanic or Latino 4 5 2 4

Site Miami, FL 10 9 6 7

New York, NY 14 14 12 12

Salt Lake City, UT 14 15 11 12

Sierra, NV 12 12 10 10

Season Summer 27 26 22 22

Fall 23 24 17 19

sr-IBS Yes 24 1 18 1

No 26 49 21 40

BMI Overweight (>25) 28 22 24 18

Normal (< 25) 22 28 15 23

Disease Duration < 3 years 4 N/A 2 N/A

>3 years 46 N/A 37 N/A

SF-36 Mean (SD) Physical Functioning 40.5 (26.71) 96.1 (6.95) 40.13 (27.08) 95.85 (7.41)

Physical Limitations 8 (22.27) 97 (14.85) 9.62 (24.75) 98.78 (5.45)

Emotional Limitations 53.33 (47.62) 96 (15.99) 54.7 (48.66) 98.37 (7.27)

Energy/Fatigue 15.6 (17.46) 74.77 (15.58) 16.03 (18.25) 73.25 (14.43)

Emotional Well-being 63.44 (19.94) 81.6 (15.25) 65.44 (20.05) 81.27 (11.95)

Social Functioning 32.75 (25.24) 93.25 (13.88) 32.37 (26.39) 93.6 (13.15)

Pain 46 (27.17) 91.8 (10.06) 44.04 (28.75) 90.79 (10.3)

General Health 26.38 (15.33) 83.35 (13.88) 26.63 (16.96) 82.26 (14.07)

The demographics and characteristics of the whole study cohort (n = 100) as well as the subset used for the analysis (n = 80) are shown. ME/CFS: myalgic

encephalomyelitis/chronic fatigue syndrome, sr-IBS: self- reported irritable bowel syndrome, BMI: body mass index, SEM: standard error of mean, SF-36: Short form 36

health survey; score on 0–100 scale with 0 = poor and 100 = excellent.

https://doi.org/10.1371/journal.pone.0236148.t001
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that included both the linear and the quadratic terms of each protein analyte as independent

variables. For immunoglobulin heavy variable (IGHV) 3-23/30, the model with both linear

and quadratic terms (square of the transformed values of the protein levels) of the protein lev-

els fit the data significantly better than the model with only its linear term (χ2 = 17.57, df = 1,

p-value = 2.77E-5). We use the term IGHV3-23/30 because our assay did not distinguish

between IGHV3-23 and IGHV3-30. The multiple comparisons of the likelihood-ratio tests

over all annotated protein analytes were adjusted using the FWER correction. For IGHV3-23/

30, we rejected the null hypothesis of a linear logistic relation between ME/CFS and the analyte

in favor of a quadratic relation. Conducting this preliminary gate-keeping test of the quadratic

term ensured that the overall type I (false positive) error was controlled at the level of 0.05;

accordingly, further examination of this protein analyte using the model with the quadratic

term of its levels was justified under the closed-testing principle. The quadratic term can be

viewed as an interaction term, hence the aOR depends on the protein level used as a reference.

Fig 1A displays, for all ME/CFS subjects versus controls, the plot of aORs with 95% CI for the

reference level at 51,000 based on the fitted logistic model with quadratic term. Specifically

(Table 2), increasing the protein levels from 51,000 to 100,000 was associated with an increased

risk of ME/CFS with an aOR of 4.44 (95% CI: 1.29–15.29, p-value = 0.018), while decreasing

the protein level from 51,000 to 25,000 yielded an aOR of 5.65 (95% CI: 1.18–27.04, p-

value = 0.030). In a sensitivity analysis that also included the 20-sample test set, the model with

quadratic term continued to out-perform the model with only the linear term (χ2 = 14.58,

df = 1, p-value = 1.34E-4).

A quadratic effect was also found in female subjects, comprising 30 ME/CFS subjects and

32 controls in our 80-subject sample set (S3 Table). IGHV 3-23/30 was associated with ME/

CFS with a significant quadratic effect (χ2 = 16.27, df = 1, p-value = 5.50E-5) after controlling

the FWER at the level of 0.05. We did not have sufficient statistical power in male subjects (9

ME/CFS patients and 9 controls) for a similar analysis.

Previous work on the same cohort of patients showed that sr-IBS was one of the strongest

drivers of separation among ME/CFS cases in terms of both the fecal microbiome and the

plasma metabolome [9, 26]. For this reason, we split the ME/CFS group into two subgroups

based on their sr-IBS status, and conducted the same analysis using the binary outcome of sr-

IBS subgroups vs. controls (S4 Table). Subjects were considered to have sr-IBS if they had

reported a previous IBS diagnosis on the medical history form at the time of recruitment.

ME/CFS cases with sr-IBS versus controls. When we compared ME/CFS cases with sr-

IBS to controls, the immunoglobulin lambda constant (IGLC) 7 had a significant quadratic

effect (Fig 1B) on its association with the outcome (χ2 = 19.44, df = 1, p-value = 1.04E-5). A

protein level of 7,000 resulted in an aOR of 3.26 (95% CI: 1.22–8.72, p-value = 0.019) compared

to a reference level of 3,326 and decreasing the protein levels from the reference level to 1,500

yielded an aOR of 3.85 (95% CI: 1.12–13.30, p-value = 0.033).

ME/CFS cases without sr-IBS versus controls. When we compared ME/CFS patients

without sr-IBS to controls, we found disturbances with quadratic effects in immunoglobulin

kappa variable (IGKV) 3(D)-11 (χ2 = 14.87, df = 1, p-value = 1.15E-4) and immunoglobulin

heavy variable (IGHV) 3-23/30 (χ2 = 17.31, df = 1, p-value = 3.18E-5) (Fig 1C and 1D). We use

the term IGKV3(D)-11 because our assay did not distinguish between IGKV3-11 and IGKV3

(D)-11. Increasing the levels of IGKV3(D)-11 from the reference level of 544,370 to 1,100,000

yielded an aOR of 4.53 (95% CI: 1.14–18.00, p-value = 0.032), while decreasing from the refer-

ence level to 171,000 resulted in an aOR of 59.49 (95% CI: 1.06–3,332.10, p-value = 0.047). For

IGHV3-23/30, altering its levels from 51,000 to 100,000 and from 51,000 to 25,000 resulted in

aORs of 4.54 (95% CI: 1.28–16.09, p-value = 0.019) and 6.58 (95% CI: 1.24–34.82, p-

value = 0.027), respectively.
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Assessment of the proteomics assay as a potential diagnostic tool for ME/

CFS

After excluding the proteins with more than 50% undetectable/filtered values, we fitted the

remaining 250 protein analytes as predictors in three different classifiers: Lasso, Random For-

ests, and XGBoost. Protein analytes that were ranked in top 20 in importance measurements

in all three classifiers (Table 3) were fitted as predictors in the same classifiers again, except

Fig 1. Quadratic effect of immunoglobulin proteins with ME/CFS and ME/CFS subgroups. Two separate models

were fitted: one with only the linear term of the protein levels, and one with both linear and quadratic terms of the

protein levels as independent variables. In both models we adjusted for BMI, sr-IBS, antidepressant medication use,

age, sex, race/ethnicity, geographic/clinical site and season of sampling. Likelihood-ratio tests were used to compare

the goodness-of-fit between the two nested models. The Hochberg step-up procedure was applied to correct for the

multiple tests over the annotated proteins, controlling the family-wise error rate (FWER) at the level of 0.05. For the

protein analytes associated with ME/CFS with significant quadratic effect, adjusted odds ratios (aORs), together with

their 95% confidence intervals (95% CI), were calculated comparing ME/CFS risk of various protein levels to that of

the reference level at which the ME/CFS risk was at the lowest. (A) All ME/CFS cases versus controls, (B) ME/CFS

cases with sr-IBS versus controls, (C & D) ME/CFS cases without sr-IBS versus controls. ME/CFS: myalgic

encephalomyelitis/chronic fatigue syndrome, a.u.: arbitrary units, sr-IBS: self-reported irritable bowel syndrome,

IGHV: immunoglobulin heavy variable, IGLC: immunoglobulin lambda constant, IGKV: immunoglobulin kappa

variable.

https://doi.org/10.1371/journal.pone.0236148.g001
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that here we used the logistic regression model instead of Lasso. Fig 2A, Fig 2B and Fig 2C

show the ROC curves and the AUROC values from these three classifiers with the trimmed set

of protein analytes as predictors differentiating all ME/CFS, ME/CFS with sr-IBS, and ME/

CFS without sr-IBS, respectively, from the controls. All of them performed significantly better

than a fair coin toss (S5 Table). Notably, XGBoost with six protein analytes (Table 3) distin-

guished ME/CFS with sr-IBS from the controls with a high degree of accuracy with a cross-val-

idated AUROC value of 0.846 (95% CI: 0.703–0.927).

Discussion

We pursued proteomic analyses of plasma from subjects with ME/CFS with the objectives of

obtaining insight into the pathogenesis of ME/CFS and finding biomarkers for the disease.

Using models with only linear terms, we did not identify significant differences between cases

and controls following FWER correction. However, using a model that included both linear

and quadratic terms we found a significant association between ME/CFS and IGHV3-23/30.

The association with quadratic effect revealed both a positive and negative correlation relation-

ship between levels of IGHV3-23/30 and ME/CFS. Whilst 12 patients had extremely high levels

(>100,000) of IGHV3-23/30, only 3 patients had extremely low levels (<25,000) of this pro-

tein. IGHV3-23 is one of the most commonly used heavy variable regions in the human immu-

noglobulin (Ig) repertoire [30]. Its usage has been linked with non-Hodgkin lymphomas

(NHL) such as chronic lymphoid leukemia (CLL) [31–34], mantle cell lymphoma (MCL) [35],

splenic marginal zone lymphoma (MZL) [36, 37], Waldenström’s macroglobulinemia [38],

and follicular lymphoma (FL) [39, 40]. Disease progression in these B-cell malignancies is

driven by chronic stimulation from either microbial or auto-antigens. Interruption of B-cell

signaling through use of kinase inhibitors has been shown to have therapeutic benefit in some

patients with MZL, CLL, FL, and MCL [41, 42]. Increased IGHV3-23 usage is also reported in

anti-myelin associated glycoprotein neuropathy and in monoclonal gammopathy of undeter-

mined significance [43], a disorder that may progress to malignant lymphoproliferative disease

[44]. We speculate that, at least in a subset of ME/CFS subjects, an increased level of IGHV3-

23 may be due to antigen driven clonal expansion, and that these patients might benefit from

identification of the antigen driving B-cell receptor signaling or kinase inhibitors that interrupt

signaling. In this context, we also note that ME/CFS has been linked with an increased risk of

developing MZL and other NHL [45].

Table 2. Quadratic relationship of immunoglobulin proteins with ME/CFS and ME/CFS subgroups.

Group Protein Reference Level Comparison aOR 95% CI Protein p-value

All ME/CFS IGHV3-23/30 51,000 decreased to 25,000 5.646 1.179 27.035 0.0303

increased to 100,000 4.439 1.289 15.286 0.0182

ME/CFS with sr-IBS IGLC7 3,326 decreased to 1,500 3.851 1.115 13.303 0.033

increased to 7,000 3.257 1.216 8.722 0.019

ME/CFS without sr-IBS IGKV3(D)-11 544,370 decreased to 171,000 59.492 1.062 3332.100 0.047

increased to 1,100,000 4.527 1.138 18.001 0.032

IGHV3-23/30 51,000 decreased to 25,000 6.582 1.244 34.816 0.027

increased to 100,000 4.545 1.284 16.086 0.019

Reference levels based on relative intensity are shown for each protein as well as the aOR, 95% CI and p-value when increasing and decreasing from this point for all

ME/CFS patients, ME/CFS patients with sr-IBS and ME/CFS patients without sr-IBS, when compared to the control group. ME/CFS: myalgic encephalomyelitis/chronic

fatigue syndrome, sr-IBS: self-reported irritable bowel syndrome, BMI: body mass index, IGHV: immunoglobulin heavy variable; IGLC: immunoglobulin lambda

constant; IGKV: immunoglobulin kappa variable, aOR: adjusted odds ratio, CI: confidence interval.

https://doi.org/10.1371/journal.pone.0236148.t002
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Due to the high prevalence of sr-IBS in ME/CFS patients and to the fact that previous stud-

ies showed it was one of the strongest drivers in the separation of fecal metagenomics and

plasma metabolomics within the patient group [9, 26], we further stratified the ME/CFS group

based on sr-IBS status. Similar to all ME/CFS cases, IGHV3-23 was associated with ME/CFS

without sr-IBS with a quadratic effect. In addition, IGKV3(D)-11 was also significantly associ-

ated with ME/CFS without sr-IBS. This protein showed the same pattern in ME/CFS subjects

as a whole, but did not reach significance. IGKV3-11, like IGHV3-23, is one of the most com-

monly used light chain variable regions. Anti-hemagglutinin antibodies following influenza

Table 3. Potential plasma protein biomarkers for ME/CFS.

Gene Name Uniprot ID Direction Lasso Random Forest XGBoost

Percentage1 Rank4 Mean Decrease in accuracy2 Rank4 Gain3 Rank4

All ME/CFS

CAMP P49913 Increased 22.80% 1 0.1284 4 0.0652 2

LRG1 P02750 Decreased 9.90% 9 0.1302 3 0.0327 4

IGF1 P05019 Decreased 3.90% 19 0.1320 2 0.0318 6

GSN P06396 Decreased 3.70% 20 0.0743 9 0.0281 8

IGFALS P35858 Decreased 11.60% 7 0.0988 7 0.0292 7

IGLV1-47 P01700 Decreased 14.10% 2 0.0639 14 0.0319 5

FCRL3 Q96P31 Decreased 4.70% 17 0.0545 20 0.0127 17

CRTAC1 Q9NQ79 Decreased 13.30% 3 0.2653 1 0.1225 1

ME/CFS with sr-IBS

CAMP P49913 Increased 30.10% 1 0.1772 2 0.0852 2

SERPINA3 P01011 Decreased 4.20% 16 0.0731 7 0.0249 6

IGF1 P05019 Decreased 11.00% 6 0.1768 3 0.1132 1

ITIH2 P19823 Decreased 13.60% 4 0.1870 1 0.0529 4

IGHV1-18 A0A0C4DH31 Decreased 19.30% 3 0.0535 17 0.0157 14

CRTAC1 Q9NQ79 Decreased 4.80% 13 0.0922 4 0.0577 3

ME/CFS without sr-IBS

PON3 Q15166 Increased 7.20% 3 0.0601 19 0.0571 2

KNG1 P01042 Increased 3.70% 13 0.0674 17 0.0122 20

LRG1 P02750 Decreased 5.50% 6 0.0960 8 0.0400 4

IGLC7 A0M8Q6 Decreased 8.40% 2 0.0664 18 0.0196 14

CRTAC1 Q9NQ79 Decreased 3.90% 12 0.1031 6 0.0740 1

Proteins with more than 50% undetectable/filtere values were excluded. All 250 protein analytes were fitted as predictors in 3 different classifiers: Lasso, Random

Forests, and XGBoost. Table shows the proteins that were ranked in the top 20 of importance measurements for all ME/CFS patients, ME/CFS patients with sr-IBS and

ME/CFS patients without sr-IBS. Direction is measured relative to controls. ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome, sr-IBS: self-reported

irritable bowel syndrome, CAMP: cathelicidin antimicrobial protein, LRG1: Leucin-rich glycoprotein 1, IGF1: insulin-like growth factor 1, IGFALS: Insulin-like growth

factor-binding protein complex acid labile subunit, IGLV1-47: immunoglobulin lambda variable region 1–47, FCRL3: Fc receptor-like protein 3, SERPINA3: Alpha-

1-antichymotrypsin, ITIH2: Inter-alpha-trypsin inhibitor heavy chain H2, IGHV1-18: immunoglobulin heavy variable region 1–18, PON3: Serum paraoxonase/

lactonase 3, KNG1: Kininogen 1, IGLC7: immunoglobulin lambda constant region 7.
1Percentage: Lasso regularizes the least squares by adding a penalty term in which the L1 norm of the parameter vector is no greater than a given value, and increasing

the penalty drives more coefficients of unimportant predictors to absolute zero. Therefore, measure of importance can be represented as the percentage of iterations (out

of 1,000 random resampling cross-validation iterations) in which the predictor’s parameter estimate in the best fitting model is nonzero.
2Mean Decrease in Accuracy: Random Forests measures the mean decrease in accuracy when values of the predictor are randomly permuted. For unimportant

predictors, the permutation should have little to no effect on model accuracy, while permuting values of important predictors should significantly decrease it.
3Gain: XGBoost measures the importance of predictors in ‘Gain’ to indicate the relative contribution of the corresponding predictor to the model calculated by taking

each predictor’s contribution for each tree in the model.
4Rank: We selected the protein analytes that were ranked in the top 20 in all three importance measurements.

https://doi.org/10.1371/journal.pone.0236148.t003
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infection predominantly represent this light chain variable region [46]. IGKV3-11 is repeatedly

paired with IGHV3-30 in protective antibodies to CMV [47, 48] as well as the 23F polysaccha-

ride of Streptococcus pneumoniae [49–51]. However, since mass spectrometry does not provide

us with information in terms of heavy/light chain pairings, it is unclear whether this is relevant

in our cohort. ME/CFS patients with sr-IBS, on the other hand, presented with a different pro-

teomics profile. Only IGLC7 was significantly associated with disease in ME/CFS patients with

sr-IBS. Unlike the variable region which is involved in antigen recognition, the constant region

is thought to have more of a regulatory role, although it may have an impact on the variable

region’s structure and function [52]. The link between sr-IBS and this specific lambda constant

region is currently unclear. However, our results show that, as was found with metabolites and

the microbiome [9, 26], sr-IBS also influences the proteomic profile. B cell dysregulation has

previously been reported in ME/CFS [53]. Bradley et al. (2013) [54] found greater numbers of

naïve and transitional B cells in patients whilst Brenu et al. (2014) [55] found increased num-

bers of memory B cells. Guenther et al (2015) [56] found a decrease in IgG3 and 4, but an

increase in IgG2 and IgM. We do not see any overall changes to Ig isotypes. Although ME/CFS

patients with sr-IBS had decreased IgG1 (aOR = 0.361, p-value = 0.037) and increased IGHA2

(aOR = 2.852, p-value = 0.046) levels, these findings were not significant after adjustment for

multiple testing.

We also employed a data-driven approach to identify plasma protein signatures to assess

their utility as biomarkers of ME/CFS. Using the top 20 ranked proteins identified by Lasso,

Random Forests, and XGBoost, we found a panel of eight plasma proteins that yielded high

AUC values of up to 0.838. These proteins were cathelicidin antimicrobial peptide (CAMP), Ig

lambda variable region 1–47 (IGLV1-47), Fc receptor-like protein 3 (FCRL3), leucin-rich gly-

coprotein 1 (LRG1), gelsolin (GSN), cartilage acidic protein 1 (CRTAC1), insulin-like growth

factor 1 (IGF1), and IGF-binding protein acid labile subunit (IGFALS). IGHV3-23/30 was not

identified as a top-ranked biomarker because it is associated with ME/CFS only with a

Fig 2. Diagnostic performance (AUROC) of ME/CFS and ME/CFS subgroup plasma proteomes. Three machine learning algorithms were used to

examine the utility of the proteomics assay as a biomarker tool for ME/CFS: Lasso (least absolute shrinkage and selection operator), Random Forests,

and XGboost. We fitted all protein analytes, excluding the ones with more than 50% undetectable/filtered values, as predictors in the three classifiers

and measured the importance for each predictor in the classifiers. The protein analytes that were ranked in the top 20 in all three importance

measurements were fitted in the classifiers again (Trimmed set), except that here we used the logistic regression model instead of Lasso. The predictive

performance was evaluated in random resampling cross-validation (CV) with 1,000 iterations from which we calculated the Area under the Receiver

Operating Characteristic curve (AUROC) values and generated Receiver Operating Characteristic (ROC) curves for (A) all ME/CFS cases, (B) ME/CFS

cases with sr-IBS and (C) ME/CFS cases without sr-IBS. ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome, sr-IBS: self-reported irritable

bowel syndrome.

https://doi.org/10.1371/journal.pone.0236148.g002
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quadratic effect. While Random Forests and XGBoost are both tree models and can potentially

reveal non-linear relationships between predictors and the outcome, Lasso is parametric and

cannot identify quadratic relationships if only the linear terms of protein analytes were used as

predictors. Since we selected the panel of protein analytes that were highly ranked in all three

classifiers, the proteins that were significantly associated with ME/CFS quadratically would be

filtered out by this strategy. We are not aware of other serum or plasma proteomic studies that

led to proposed biomarker sets. However, Baraniuk et al (2005) [11] used a logistic model to

predict ME/CFS status based on the cerebrospinal fluid proteome that predicted ME/CFS sta-

tus with 80% accuracy based on alpha-1-macroglobulin, amyloid precursor-like protein 1, ker-

atin 16, orosomucoid 2, and pigment epithelium-derived factor.

CAMP is an antimicrobial peptide that has both pro- and anti-inflammatory effects and

direct bactericidal activity, as well as anti-viral and anti-fungal properties [57]. Serum levels

are increased during both bacterial and viral infections [58, 59], and in autoimmune diseases

such as psoriasis, systemic lupus erythematosus, and rheumatoid arthritis [60]. The increase

observed in our cohort is consistent with inflammation caused either by infection or autoim-

munity. FCRL3 is a transmembrane protein preferentially expressed on B lymphocytes. It has

been shown to inhibit B cell receptor mediated signaling [61] and abrogate plasma cell differ-

entiation and antibody production [62]. IGLV1-47 and FCRL3 are both associated with B cells

and are decreased in the ME/CFS patients supporting the idea that there may be dysregulation

of the B cell response. LRG1 is a pleiotropic secreted pro-inflammatory glycoprotein whose

overexpression has been linked to a number of autoimmune diseases such as rheumatoid

arthritis and Crohn disease [63], as well as neurodegenerative diseases such as Parkinson dis-

ease [64]. It is expressed during differentiation of granulocytes [65] and is present in neutro-

phil granules [66]. Abnormalities reported in neutrophil function in ME/CFS patients include

increased apoptosis, characterized by increased annexin V binding and increased expression

of the death receptor tumor necrosis factor 1 [67], and decreased capacity to produce reactive

oxygen species following Escherichia coli phagocytosis [68]. Lower LRG1 levels observed in

this cohort may reflect neutrophil dysfunction. GSN is a multifunctional protein that has actin

binding activities. It is thought to have anti-inflammatory effects and to protect against oxida-

tive stress by scavenging actin released from damaged cells and tissues [69]. Lower serum levels

are observed in inflammatory states including acute injury [70], sepsis [71], and rheumatoid

arthritis [72]. Decreased plasma levels in ME/CFS patients may reflect a pro-inflammatory

environment. IGF1 is an important growth factor that has many roles in growth development

and homeostasis. IGF1 decreases in response to pro-inflammatory cytokines, such as tumor

necrosis factor-α, interleukin (IL) 1β, and IL-6; low circulating levels of IGF1 are associated

with infection, trauma, and aging [73, 74]. IGFALS binds IGF1 in serum thereby increasing its

half-life. Levels of both IGFALS and IGF1 are decreased in the plasma of our ME/CFS patients.

IGF1 deficiency has previously been linked to ME/CFS [75] although data has been conflicting

[76, 77]. Levels of CRTAC1 were also decreased. It is an extracellular matrix protein secreted

by chondrocytes [78]. Our data-driven approach identified the protein analytes that were most

powerful in predicting ME/CFS status in our cohort. Whilst pathway enrichment analysis on

so few proteins failed to identify a significant pathway that encompasses the selected analytes,

many of the proteins have a role in immune and inflammatory responses, which have shown

to be dysregulated in ME/CFS.

Using Lasso, Random Forests, and XGBoost, we also identified a panel of proteins that pre-

dicted both ME/CFS with and without sr-IBS with high accuracy. The predictors for the ME/

CFS without sr-IBS included LRG1 and CRTAC1 as well as IGLC7, KNG1, and PON3. Levels

of KNG1 were increased in ME/CFS without sr-IBS patients with an aOR of 4.116 (p-

value = 0.031). KING1 is an acute phase protein and part of the kallikrein-kinin system, also
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known as the contact system [79]. Its cleavage product, bradykinin, is an inflammatory media-

tor leading to vasodilation, increase of vascular permeabilization, smooth muscle contraction,

fever, and release of nitric oxide [80]. Increased KNG1 levels may be a sign of increased

inflammation. Elevated levels of proteins involved with acute phase signaling have been found

in fibromyalgia [81] and increased KNG1 was found associated with pain in women with

chronic widespread pain [82]. However, in our study, we did not find a significant association

between KNG1 levels and fibromyalgia when we compared ME/CFS patients with fibromyal-

gia (n = 20) and ME/CFS without fibromyalgia (n = 19) using the Wilcoxon rank-sum test (z-

score = 0.126, p-value = 0.899). PON3, like PON1, is thought to be associated with high-den-

sity lipoproteins (HDL) and to protect low-density lipoproteins (LDL) from oxidation [83, 84].

Infection and inflammation leads to increased LDL oxidation [85] and higher LDL oxidation

has previously been shown to be associated with ME/CFS [76, 86, 87] Increased levels of

PON3 may be a mechanism to compensate for increased oxidative stress caused by increased

inflammatory mediators in the blood.

Predictors in ME/CFS patients with sr-IBS that were also identified in the whole ME/CFS

cohort included IGF1, CRTAC1, and CAMP along with SERPINA3, ITIH2, and IGHV1-18.

The presence of immunoglobulin proteins among the predictors is consistent with the involve-

ment of B cells in ME/CFS pathogenesis. SERPINA3 and ITIH2 are protease inhibitors

involved in inflammation. Their levels were slightly decreased in our ME/CFS with sr-IBS

cohort. Increased serum and cerebrospinal fluid levels of the acute phase protein SERPINA3

are associated with Alzheimer disease [88]; however, it is also thought to limit inflammation

by controlling superoxide generation and inhibiting proteases, such as elastase and chymase,

with cathepsin G thought to be its primary target [89]. Levels of CAMP were particularly ele-

vated in sr-IBS patients with an aOR = 4.335 (p-value = 0.011). Levels of CAMP are increased

in the mucosa of inflammatory bowel disease (IBD) patients [90, 91]. We are not aware of sim-

ilar studies in sr-IBS. Polymeric immunoglobulin receptor (PIGR) was detected more often in

ME/CFS subjects compared to controls (56.4% versus 26.8% respectively, chi squared p-

value = 0.007). However, we do not consider PIGR as a biomarker for ME/CFS because it was

not detected >50% of subjects. PIGR transports IgA to the lumen at mucosal surfaces. Its

expression in the gut is regulated by exposure to bacterial and viral products from both the

microbiota and pathogens [92]. We speculate that microbial dysbiosis [26, 93] leads to

increased inflammation and increased gut permeability, resulting in higher plasma levels of

CAMP and PIGR.

Whilst our exploratory study has identified a plasma protein biosignature using machine-

learning algorithms that can predict ME/CFS status adequately, the clinical utility of these

results remains to be shown. Validation of the panel of proteins in larger cohorts is needed to

determine whether it would make a reliable biomarker. In addition, the specificity of the bio-

signature would need to be assessed to see if it could successfully distinguish ME/CFS cases, as

well as ME/CFS cases with or without sr-IBS, from those with other fatiguing illnesses such as

fibromyalgia and Gulf War Illness. Disease-specific specific biomarkers could provide an

objective measure to aid in diagnosis of this heterogeneous disease. Previous proteomic studies

in cerebrospinal fluid and saliva have identified protein signatures with predictive accuracies

comparable to ours [11, 14], however, none have led to the development clinical biomarkers.

In fact, no molecular biomarkers have been validated for ME/CFS diagnosis or prognosis [4],

highlighting the challenges associated with this complex disease. Our work, whilst exploratory

in nature, shows that the plasma proteome is a viable and untapped source of potential bio-

markers in ME/CFS, and can provide insight into disease pathophysiology. In addition, we

support previous results that ME/CFS patients with sr-IBS may constitute a subgroup with a
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distinct molecular profile [9, 26] and that considering subtypes of ME/CFS can lead to greater

predictive accuracy in biomarker studies.

Our study is limited by small sample size, and the robustness of our findings needs to be

verified in larger cohorts. Additionally, IBS status determination and stratification could be

improved by an independent diagnosis at the time of participant recruitment. Nonetheless,

our results comport with other work in ME/CFS that has found evidence in ME/CFS of

immune dysregulation, B cell dysfunction, chronic inflammation, oxidative stress, and

autoimmunity.
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up procedure was applied to correct for the multiple tests over the annotated proteins control-

ling the family-wise error rate (FWER) at the level of 0.05.

(PDF)

S5 Table. Assessment of predictive power of the classifiers Lasso/Logistic regression, Ran-

dom Forests, and XGBoost for all ME/CFS patients, ME/CFS patients with sr-IBS, and

ME/CFS patients without sr-IBS, when compared to the control group. ME/CFS: myalgic

encephalomyelitis/chronic fatigue syndrome, sr-IBS: self-reported irritable bowel syndrome,

AUC: area under the curve, CI: confidence interval.

(PDF)
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