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Abstract

To date it remains unclear how probiotics affect the immune system. Bacterial envelope components may play an essential
role, as these are the first to establish bacterial-host cell interactions. Teichoic acids (TAs), and especially lipoteichoic acids,
are the most pro-inflammatory components of the gram-positive bacterial envelope. This effect is dependent on D-alanyl
substitution of the TA backbone and interactions with TLR2 on host cells. Although the pro-inflammatory properties of TAs
have been established in vitro, it remains unclear how TAs affect immunomodulation in vivo. In this study, we investigated
the role of TA D-alanylation on L. plantarum–induced intestinal and systemic immunomodulation in vivo. For this, we
compared the effect of L. plantarum WCFS1 and its TA D-Alanylation negative derivative (dltX-D) on the distribution of
dendritic cell and T cell populations and responses in healthy mice. We demonstrated that the majority of the L. plantarum-
induced in vivo immunomodulatory effects were dependent on D-alanylation (D-Ala), as some L. plantarum WCFS1-induced
immune changes were not observed in the dltX-D-treated group and some were only observed after treatment with dltX-D.
Strikingly, not only pro-inflammatory immune responses were abolished in the absence of D-Ala substitution, but also anti-
inflammatory responses, such as the L. plantarum-induced generation of regulatory T cells in the spleen. With this study we
provide insight in host-microbe interactions, by demonstrating the involvement of D-alanylation of TAs on the bacterial
membrane in intestinal and systemic immunomodulation in healthy mice.
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Introduction

The precise mechanisms by which different probiotics impact

the mammalian immune system have yet to be discovered. It is

likely that extracellular bacterial factors play a pivotal role, as

these molecules establish the first interactions between the

bacteria and host cells [1–3]. For the lactic acid bacterium

(LAB) Lactobaccilus plantarum WCFS1, a single colony isolate of

the strain NCIM8826 [4], it has been demonstrated that its

immunomodulatory properties in vitro depend on the presence of

specific cell-envelope molecules [5,6]. Even subtle differences in

the composition of these molecules can induce large differences

in the host cell immune response [6–8]. The exact role of these

molecules and the type of host response they generate in vivo

remains to be identified.

Teichoic acids are part of the gram-positive bacterial envelope

and recognized as immunomodulating effector molecules [9–13].

The majority of LAB produce two types of teichoic acids (TAs);

wall teichoic acid (WTA) and lipoteichoic acid (LTA). WTA is

covalently anchored to the MurNAC residue of peptidoglycan via

a phosphodiester bond. LTA is attached in the cytoplasmic

membrane through a glycolipid anchor [14,15]. While the

biosynthesis of LTA is conserved among LAB, some LAB, such

as L. rhamnosus, L. casei, L. fermentum, and L. reuteri, are unable to

produce WTA [15].

Especially LTA has been recognized as one of the most

immunomodulating cell wall components in gram-positive bacte-

ria [9–13]. Although the potency differs between bacterial strains

[10], it has been demonstrated that LTA purified from L. plantarum

NCIMB8826 can induce a potent pro-inflammatory response in

immune cells in vitro [11,12]. This response was dependent on D-

alanyl substitution of the LTA backbone, its glycolipid anchor

[16,17], and interaction with the pattern recognition receptor

Toll-like receptor-2 (TLR-2) on host immune cells [11]. Indeed,

absence of TA D-alanylation (D-Ala) shifted the capacity of L.

plantarum NCIMB8826 and purified LTA to modulate immune

responses in vitro towards a more anti-inflammatory cytokine

profile [11]. Although both LTA and WTA lack D-Ala in this

study, the effects can be attributed to LTA, as WTA lacks the

immunogenic glycolipid anchor [17]. Moreover, purified L.
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plantarum WTA is unable to activate TLR-2 and to provoke a

cytokine response in immune cells in vitro [8]. In vivo, it has been

demonstrated that absence of TA D-Ala improves the protective

effect of L. plantarum NCIMB8826 in a mouse colitis model, as

compared to the wild-type strain [11]. Similar results have been

obtained with an L. rhamnosus GG mutant that is deficient in D-Ala

substitution of LTA [18] and an L. acidophilus NCFM mutant that

is unable to synthesize LTA [19–21]. The latter mutant was able

to normalize pathogenic innate and adaptive immune responses,

resulting in regression of established colonic polyps in a mouse

model [22].

These results support the general hypothesis that LTAs

predominantly generate pro-inflammatory immune responses

[9–13] and that the absence of functional LTAs in the bacterial

membrane improve the bacterial anti-inflammatory capacity

[11,18–22]. Although several specific LTA-induced pro-inflam-

matory immune effects have been demonstrated in vivo [21], it

remains unclear how LTAs influence immune cell populations

in vivo. In the present study, we aimed to investigate the effects

of L. plantarum LTA on the distribution of adaptive immune cell

populations in healthy animals in vivo. For this, we compared

the effects the probiotic strain L. plantarum WCFS1 [23] and its

D-Ala negative derivative (dltX-D) [8] on the distribution of

intestinal and systemic T cell and dendritic cell (DC)

populations in healthy mice. The bacteria were administrated

orally for 5 days, which is the period to develop an adaptive

immune response [24,25]. Moreover, since L. plantarum poorly

colonizes the gastrointestinal tract [26], daily inoculation

ensured the presence of the bacteria in the gastrointestinal

tracts of the mice during the complete course of the experiment.

We demonstrate that the distribution of not only pro-, but also

anti-inflammatory T cell and DC populations is dependent on

the functionality of the dltX-D-encoded system that D-alanylates

TAs in the L. plantarum WCFS1 cell envelope.

Materials and Methods

Bacterial Growth Conditions
Wild-type L. plantarum WCFS1 (referred to as WT) [4] and

DdltX-D, a WCFS1 derivative that was confirmed to be defective

in D-alanylation of TA (NZ3539Cm; referred to as dltX-D) [8],

were cultured at 37uC in Man, Rogosa, and Sharpe (MRS) broth.

An overnight culture was diluted 1:1000 and cultured overnight,

so that the bacteria were in the stationary phase. The optical

density at 600 nm was measured and the number of colony

forming units (CFU) was calculated based on the confirmed

correlation that an OD600-value of 1 corresponds to 1–

26109 CFU/mL for each strain used.

In vitro Culture and Stimulation of Murine HEK293 mTLR
Reporter Cells

56105 cells/cm2 human embryonic kidney (HEK)293 cells

harbouring murine TLR2/1 or TLR2/6 combined with pNIFTY,

a NKkB luciferase reporter construct (Invivogen, Toulouse,

France), were plated in 96-wells plates and cultured overnight at

37uC 5% CO2. Subsequently the cells were incubated in triplicate

with WT-L. plantarum or L. plantarum dltX-D at a concentration of

15 colony forming units (CFU)/HEK293 cell (N = 6). Culture

medium alone was used as a negative control and TLR2 signaling

was always confirmed using the TLR2 ligand Pam3CSK4 (5 mg/

mL) (data not shown). NKkB activation was measured using the

Bright-glo luciferase assay(promega, Benelux BV, Leiden, The

Netherlands).

In vitro Culture and Stimulation of Murine Dendritic Cells
Bone marrow cells were isolated and cultured as described by

Lutz et al [27], with minor modifications. Briefly, femora and

tibiae from female 6 weeks old Balb/c mice (Charles River

Breeding Laboratories, Protagem MI), were removed and stripped

of muscles and tendons. After soaking the bones in 70% ethanol

and rinsing in PBS, bones were carefully crushed with a mortar to

release the bone marrow cells. Cells were filtered using Steriflip

filtration and washed with RPMI medium. Bone marrow cells (2–

46107) were seeded into Petri dishes in 10 ml RPMI 1640

Glutamax (Sigma–Aldrich, St. Louis, MO, USA) containing 10%

(v/v) heat-inactivated fetal calf serum supplemented with penicillin

(100 U/ml), streptomycin (100 mg/ml), 50 mm b-mercaptoethanol

and 20 ng/ml murine GM-CSF (R&D systems). The cells were

incubated for 8 days at 37uC in 5% CO2 humidified atmosphere.

On day 3, 10 ml was removed and replaced with complete

medium. On day 5, 5 ml fresh medium was added. On day 7,

immature dendritic cells were collected and seeded in a 24 wells

plate at 56105 cells/well. On day 8, the cells were either left

unstimulated or stimulated with L. plantarum WCFS1 or L.

plantarum dltX-D (1:10 cell to bacteria ratio) (N = 4), or LPS

(1 mg/mL). After 24 hours the concentration of IL10 and TNFa
was determined in the culture supernatants using cytometric bead

array (BD Biosciences).

In vivo Probiotic Treatment and Distribution of Immune
Cell Populations

Wild-type male Balb/c mice were purchased from Harlan

(Harlan, Horst, The Netherlands). The animals were fed

standard chow and water ad libitum. All animal experiments

were performed after receiving approval of the institutional

Animal Care Committee of the Groningen University. The size

of the experimental groups (N = 6) was based on mandatory

power calculations. All animals received animal care in

compliance with the Dutch law on Experimental Animal Care.

The mice received either sterile MRS broth or 1–26108

CFU bacteria (WT or dltX-D) in 200 mL MRS broth via

intragastric gavage, daily for five consecutive days. This

bacterial load was chosen based on the protective effects of a

D-Ala negative derivative strain of L. plantarum (dltB) in a T cell

dependent colitis model [11]. On day six, the mice were

sacrificed by cervical dislocation, after which the intestine,

spleen, and mesenteric lymph nodes were removed for further

analysis.

Isolation of Lamina Propria and Peyer’s Patch Leukocytes
After removal, the intestine was rinsed with ice cold Phosphate

Buffered Saline (PBS). Peyer’s Patches (PPs) were removed from

the tissue and single cell suspensions of the PPs were made by

mechanical disruption of the tissue between two glass slides in

1 mL of ice cold RPMI containing 10% (v/v) heat inactivated fetal

calf serum (FCS). Subsequently, a cell strainer was used to remove

remaining clumps.

The small and large intestine were cut in small pieces and rinsed

three times in ice cold PBS. Epithelial cells were removed by

incubation of the tissue in PBS containing 10% (v/v) FCS, 1 mM

Sodium Pyruvate, 10mM Ethylenediaminetetraacetic (EDTA) and

20 mM 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid

(HEPES) (pH 7.4) for 30 minutes at 37uC, shaking. The lamina

propria was removed by incubation of the tissue in RPMI 1640

medium, containing 10% (v/v) FCS, 1.5 mg/mL Collagenase D

(Sigma Aldrich), and 10 mg/mL DNAse I (Sigma Aldrich), for 60

minutes at 37uC, shaking. The reaction was terminated by adding

Effector and Regulatory DCs and T-Cells in Mice
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EDTA to a final concentration of 10 mM. The cell suspensions

were washed in ice cold PBS and a cell strainer was used to

remove remaining clumps.

To enrich lymphocytes and to remove dead cells, the PP and

lamina propria cell mixtures were loaded on a percoll gradient of

55%, 45%, 35%, and 20% (GE Healthcare, Eindhoven, the

Netherlands) and centrifuged for 30 minutes at 8006g, at room

temperature (RT). The interface was washed in ice cold PBS,

counted and used for staining. After density gradient centrifuga-

tion, more than 90% of the cells were vital, which was confirmed

by propidium iodide staining.

Spleen and MLN Cell Isolation and Stimulation
Spleen and MLN single cell suspensions were made by

mechanical disruption of the tissue between two glass slides in

1 mL of ice cold RPMI containing 10% (v/v) FCS. Subsequently a

cell strainer was used to remove remaining clumps. The cells were

washed, counted, and used for staining.

Part of the cells of the spleen and MLN were ex vivo

restimulated, the rest was left unstimulated. 76106 cells from

the spleen and MLN were stimulated in RPMI 10% FCS

containing 40 nM Phorbol 12-myristate 13-acetate (PMA)

(Sigma Aldrich) and 2 nM calcium ionophore (Ca2+) (Sigma

Aldrich). Monensin (3 mM) (Sigma Aldrich) was added to allow

cytokine accumulation in the cellular cytoplasm. Cells were

stimulated for four hours at 37uC, after which they were washed

in ice cold PBS containing 2% (v/v) FCS (FACS buffer), and

used for staining.

To enrich dendritic cells and to remove dead cells, the spleen

and MLN cell mixtures were loaded on ‘1-step Monocyte’

(Accurate Chemical and Scientific Corporation, Westbury, NY)

with a density of 1.06860.001 g/ml, and centrifuged for 30

minutes at 3006g at 4uC. The interface was washed twice in ice-

cold FACS buffer and used for staining. After density gradient

centrifugation, more than 90% of the cells were vital, which was

confirmed by propidium iodide staining.

Cell Staining
T cell stainings were performed on non-stimulated splenic,

MLN, PP, and lamina propria cell suspensions. DC stainings were

performed on non-stimulated, DC-enriched splenic, MLN, PP,

and lamina propria cell suspensions. Stainings for intracellular

cytokines were performed on PMA/Ca2+ stimulated splenic and

MLN cell suspensions. The T cell cocktail contained monoclonal

antibodies directed against CD3, CD4, CD8, CD25, CD69,

FoxP3, or appropriate isotype controls (Table 1). The DC cocktail

contained monoclonal antibodies directed against CD11c, MHC

II, CD19, CD80, CD103, or appropriate isotype controls (Table 1).

The effector T cell cocktail contained monoclonal antibodies

directed against CD3, CD4, CD8, IFNc, IL5, IL10, IL17, or

appropriate isotype controls (Table 1).

In short, 16106 cells were incubated in FACS buffer containing

10% (v/v) normal mouse serum for 30 minutes to prevent non-

specific antibody staining. Subsequently, the cells were incubated

with a cocktail of primary antibodies for 30 minutes. The cells

were fixed in FACS Lysing solution (BD Biosciences) for 30

minutes, in the dark. The tubes for intracellular cytokine staining

were subsequently washed twice in 16 permeabilisation buffer

(eBioscience) and incubated with the intracellular antibodies

cocktails containing 2% (v/v) normal rat serum in permeabilisa-

tion buffer for 30 minutes in the dark. The whole procedure was

performed on ice.

Flow Cytometry
During flow cytometry, at least 56105 cells were analyzed.

Flow Cytometry was performed using the LSR II Flow

Cytometer system (BD Pharmingen), using FACS Diva software.

Analysis was performed using FlowJo 7.6.2 software. Lympho-

cytes were gated based on the expression of CD3 and CD4 or

CD8. The expression of CD25, CD69, FoxP3, and cytokines

was determined based on samples stained with the isotype

controls. Dendritic cells were gated in the forward side scatter

plot, based on size and granularity. CD19+ B-cells were

excluded from analysis [28]. DCs were defined as MHC II+

CD11c+ cells. The expression of CD103 and CD80 within this

DC population was determined based on samples stained with

the isotype controls.

Statistics
All data are expressed as the mean 6 standard error of the

mean (SEM). Normal distribution of the data-sets was

confirmed by the Kolmogorov-Smirnov test. The Mann

Whitney U test was performed to determine changes in

TLR2 and mDC cytokine responses in vitro. The two-sided

Students t-test was used to determine changes in immune cell

populations after probiotic treatment in vivo. P-values ,0.05 (*)

were considered statistically significant. A statistical trend was

defined as 0.05,P-value ,0.1, which is only described in the

text and not depicted in the graphs.

Table 1. Antibodies.

Specificity Clone Name Fluorochrome Dilution Supplier

CD3 17A2 Pacific Blue 200x BioLegend

CD4 RM4–5 PerCP 200x BioLegend

CD8 53–6.7 Alexa700 50x BioLegend

CD25 3C7 APC 100x BioLegend

CD69 H1.2F3 PE 200x BioLegend

FoxP3 FJK-16S FITC 100x eBioscience

IFNc XMG1.2 APC 100x BioLegend

IL5 TRFK5 PE 25x BioLegend

IL10 JES5-16E3 PE 25x BioLegend

IL17a TC11-18H10.1 APC 25x BioLegend

Rat IgG2b N/A APC 100x BioLegend

Hamster IgG N/A PE 200x BioLegend

Rat IgG2a N/A FITC 100x eBioscience

Rat IgG1 N/A APC 25x or 100x BioLegend

Rat IgG1 N/A PE 25x BioLegend

Rat IgG2b N/A PE 25x BioLegend

CD11c N418 APC 25x BD Biosciences

MHC II 2G9 Biotin+streptavidin
PerCP

150x BD Biosciences

CD19 6D5 PE-Cy7 100x BioLegend

CD80 16-10A1 PE 50x BioLegend

CD86 PO3 Alexa700 50x BioLegend

CD103 2E7 Pacific Blue 25x BioLegend

Hamster IgG N/A PE 50x BioLegend

Rat IgG2b N/A Alexa700 50x BioLegend

Hamster IgG N/A Pacific Blue 25x BioLegend

doi:10.1371/journal.pone.0063099.t001
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Results

Absence of D-Ala Substitution Reduces Murine TLR2
Signaling and Enhances the Anti-inflammatory Immune
Modulatory Capacity of L. plantarum in vitro

To gain insight in the role of TAs in probiotic-induced

immunomodulation in mice in vivo, we first confirmed the altered

immunomodulatory property of our mutant strain dltX-D as

compared to the wild-type strain (WT) in a murine-based in vitro

assay. For this, the potential to induce murine TLR2 signaling as

well as dendritic cell (DC) cytokine responses were evaluated

in vitro. Medium and wild-type L. plantarum WCFS1 (WT) were

used as controls.

As expected, dltX-D demonstrated significantly decreased

TLR2/1 and TLR2/6 activation as compared to WT

(Figure 1A), although dltX-D retained some residual TLR2

signaling capacity, as demonstrated by increased TLR2 signaling

as compared to medium stimulated reporter cells (Figure 1A).

Further, in murine DCs absence of D-Ala substitution did not

affect the L. plantarum-induced pro-inflammatory TNFa response

(Figure 1B), whereas a trend towards an increased IL10 response

and IL10/TNFa ratio (P = 0.06) was observed after co-incubation

with dltX-D as compared to WT (Figure 1B). These results

demonstrate that absence of L. plantarum TA D-Ala affects its pro-

and anti-inflammatory immunomodulatory capacity in murine

host cells in vitro.

L. plantarum-induced Changes in Intestinal DC
Frequencies are not Observed in the Absence of TA D-Ala
Substitution

How L. plantarum TA D-Ala affects the immune system in vivo

was investigated in mice. Healthy mice (N = 6) received dltX-D,

WT, or culture medium alone for five consecutive days. First, we

measured the changes in the distribution of different DC

populations. The intestine was divided in three locations: the

Peyer’s Patches, the Small Intestinal Lamina Propria (SILP), and

the Large Intestinal Lamina Propria (LILP). On average we

retrieved 746.00067875 cells from the LILP, which was too low to

allow for reliable quantification of changes in the DC compart-

ment. DCs were defined as CD11c+MHC II+ cells (Figure 2A).

DCs are depicted as the frequency of CD103+ or CD80+ cells

within the DC population (Figure 2A).

In the intestine, L. plantarum TA D-Ala only modestly affected

the DC compartment. DltX-D-treated mice demonstrated de-

creased DC frequencies in the PP as compared to WT-treated

animals and medium treated controls (Figure 2B). This effect was

not observed in the SILP (Figure 2B). In the PP, CD103+ DC

frequencies were not affected by either WT or dltX-D treatment

(Figure 2C), whereas in the SILP a trend towards increased

CD103+ DC frequencies was observed after dltX-D treatment as

compared to medium and WT-treated mice (P = 0.05) (Figure 2C).

Both in the PP and SILP, DC activation was not affected by the

bacterial treatments (Figure 2D).

Figure 1. Toll like receptor signaling and mDC cytokine responses in vitro. In vitro activation of HEK cells containing a murine TLR2/1 or
TLR2/6 reporter construct in response WT (grey bars), dltX-D (black bars), or culture medium alone (white bars) (N = 6) (A). Following incubation of
murine DCs with medium (white bars), WT (grey bars), or dltX-D (black bars) the release of TNFa or IL10 was determined (N = 4) (B). In addition, the
IL10/TNFa ratio was calculated. Results are depicted as the mean 6 standard error of the mean (SEM). Statistical significance was calculated using the
Mann Whitney U test. *represents P-values ,0.05, **represents P-values ,0.01, ***represents P-values ,0,001.
doi:10.1371/journal.pone.0063099.g001
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Bacterial Wall Composition Modifies Intestinal (CD25+)
CD4 and (FoxP3+ CD4+) T Cell Frequencies

Second, we determined changes in the intestinal T cell

compartment. For this, we measured the frequency of early-

activated (CD69+) CD4 or CD8 T cells, activated (CD25+) CD4

effector T cells, and (FoxP3+ CD4+) T cells (Figure 3A).

In the PP, early-activated CD4 T cell frequencies were

increased after both bacterial treatments, as compared to the

medium treated controls (Figure 3B). In the WT-treated group,

this effect was borderline significant (WT vs. medium P = 0.06)

(Figure 3B). In the LILP, early-activated CD4 T cell frequencies

were increased after WT-, but not dltX-D treatment (Figure 3B),

whereas in the SILP, early-activated CD4 T cell frequencies were

not affected by the bacterial treatments (Figure 3B). In the PP and

SILP, the CD8 T cell compartment showed a trend towards

increased early-activated CD8 T cells after WT-treatment only

(WT vs. medium P = 0.08 and P = 0.06 resp.) (Figure 3C). In the

LILP, the frequency of early-activated CD8 T cells was

significantly increased after WT- but not after dltX-D treatment

(dltX-D vs. medium P = 0.33), as compared to the medium treated

controls (Figure 3C).

In addition to the effects on early T cell activation, L. plantarum

TA D-Ala substitution also had effects on other T cell frequencies

in the intestine. In the PP, WT-treatment did not affect the

distribution of (CD25+) CD4 T cells (Figure 3D), or FoxP3+ CD4+

T cells (Figure 3E), whereas dltX-D-treated mice demonstrated a

trend towards increased (CD25+) CD4 T cell frequencies as

compared to the controls (P = 0.09 vs controls, P = 0.06 vs WT)

(Figure 3D). Although the changes in the distribution of PP

(CD25+) CD4 T cells were not statistically significant, the balance

between FoxP3+ CD4+ and (CD25+) CD4 T cells was significantly

decreased after dltX-D-treatment as compared to WT-treatment

(Figure 3F). In the SILP and LILP, effector T cell frequencies were

not influenced by the bacterial treatments (Figure 3D), but a trend

(P = 0.06) and significant increase in the frequency of FoxP3+ T

cells was observed after WT-, but not dltX-D-, treatment in the

SILP and LILP respectively (Figure 3E). Thus, WT-treatment

increased the balance between FoxP3+ and (CD25+) CD4 T cells

in both the SILP and LILP (WT vs. medium P = 0.07) as

compared to medium treated control animals (Figure 3F). This

effect was attenuated in the absence of L. plantarum TA D-Ala

substitution (Figure 3F).

D-alanylated TAs Contribute to the L. plantarum-induced
Increase in Splenic Regulatory DC and T Cell Frequencies

Further, we questioned whether D-Ala substitution of L.

plantarum TAs also influences immunomodulation in secondary

lymphoid organs. For this, we chose the gut-draining lymph nodes

(Mesenteric lymph nodes; MLN) and a systemic lymphoid

compartment; the spleen. In these compartments we measured

the distribution of pro- and anti-inflammatory DC and T cell

populations.

D-Ala substitution of TA influenced the translocation of

regulatory DCs into systemic immune compartments, as WT-

treatment increased the frequency of CD103+ DCs in the spleen as

compared to medium treated controls (Figure 4A), and dltX-D-

treatment did not (Figure 4A). Although less pronounced, a similar

effect was observed in the MLN (P = 0.09) (Figure 4B). Similarly,

also the trend towards WT-induced MLN DC activation (P = 0.08)

was not observed after dltX-D treatment (Figure 4C). Splenic DC

activation was not enhanced by any of the bacterial treatments

(Figure 4D).

In the T cell compartment, the early activation of CD4 T cells

in the spleen and MLN (Figure 5A), or CD8 T cells in the MLN

(Figure 5B) was not affected by the bacterial treatments. In the

spleen, the frequency of early-activated CD8 T cells was

significantly decreased after treatment with both WT as well as

dltX-D (Figure 5B). Further, D-Ala substitution was necessary for

L. plantarum to increase regulatory T cell frequencies in the spleen,

as the increase was observed after treatment with WT, but not

after treatment with dltX-D (Figure 5C). Moreover, after dltX-D-

treatment, the frequency of splenic effector T cells was increased as

compared to the medium treated controls (Figure 5D). In the

MLN, absence of D-Ala substitution did not affect regulatory T

cell frequencies (dltX-D vs. medium P = 0.24) (Figure 5C), whereas

a trend towards decreased regulatory T cell frequencies was

observed after WT-treatment (P = 0.06) (Figure 5C). Both dltX-D

(P = 0.09) and WT-treated mice demonstrated decreased mesen-

teric effector T cell frequencies (Figure 5D).

D-alanylation of TAs has a Minor Contribution to L.
plantarum-induced Modulation of Systemic Polarized T
Cell Subsets

In addition to measuring the distribution of DC and T cell

subsets, splenic and mesenteric polarized T cell subsets were

analyzed. After ex vivo PMA/Ca2+ stimulation, cellular cytokine

responses were determined. IFN-c was measured as a marker for

Th1 cells [29], IL5 was measured as a marker for Th2 cells [29],

IL10 was measured as a marker for regulatory T cells [30], and

IL17 was measured as a marker for Th17 cells [30,31]. The

frequency of cytokine producing CD4+ T cells was determined

based on appropriate isotype controls (Figure 6A).

Although some exceptions were observed, most L. plantarum-

induced effects on splenic and mesenteric polarized T cell subsets

were observed in both the WT- and dltX-D-treated groups. This

was demonstrated in the MLN, where dltX-D treatment decreased

the frequency of Th2 cells in the same fashion as WT treatment

(Figure 6B). The frequency of Th1, Th17, or IL10-producing T

cells was not affected by the treatments (Figure 6B). In the spleen,

the frequency of Th1 was decreased after dltX-D treatment, which

was not observed after WT treatment (Figure 6C). The frequency

of IL10-producing T helper cells was significantly increased after

WT, but not dltX-D treatment (dltX-D vs. medium P = 0.37)

(Figure 6C).

Similar cytokine responses can also be observed within CD8+ T

cells [32]. The frequency of cytokine producing CD8+ T cells was

determined based on appropriate isotype controls (Figure 7A). In

the mesenteric but not the splenic CD8 T cell compartment, dltX-

Figure 2. Dendritic cell frequencies and activation in the peyer’s patches and small intestinal lamina propria. Dendritic cells were
gated based on size, granularity, and the expression of CD11c and MHC II. CD19+ B cells were excluded from analysis. Within the dendritic cell
population the frequency of CD103+ or CD80+ was determined (black lines). The gates were set based on staining with an isotype control (grey lines).
Representative FACS plots from the small intestinal lamina propria (SILP) and spleen are depicted (A). Tissue specific staining patterns are
demonstrated for both CD103 and CD80, as shown by the FACS plots of SILP and splenic DCs (A). Dendritic cell frequencies in the Peyers Patches and
SILP (N = 6) (B) following oral treatment with medium (white bars), WT (grey bars), or dltX-D (black bars). CD103+ DC frequencies in the PP and SILP
(C). CD80+ DC frequencies in the PP and SILP (D). Results are depicted as the mean 6 standard error of the mean (SEM). Statistical significance was
calculated using the Students t- test. *represents P-values ,0.05.
doi:10.1371/journal.pone.0063099.g002
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Figure 3. Early activated CD4+ and CD8+ T cells, effector T cells, and FoxP3+ T cells in the Peyer’s patches, small intestinal and large
intestinal lamina propria. Within the CD4 or CD8 population the frequency of early-activated cells was determined based on the expression of
CD69 (black lines). The gates were set based on staining with an isotype control (grey lines). Effector T cells were gated based on the expression of
CD25 (black line) as compared to the isotype control (grey line) within the CD4 T cell population. FoxP3+ cells were excluded. FoxP3 were within the

Effector and Regulatory DCs and T-Cells in Mice
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D treatment increased the frequency of IFNc-producing cells in

the same fashion as WT-treatment (Figure 7B and 7C respective-

ly). Both dltX-D and WT treatment decreased the frequency of

IL5-producing CD8 T cells in the MLN (Figure 7B) and increased

the frequency of IL17-producing CD8 T cells in the spleen

(Figure 7C). WT-treatment increased the frequency of splenic

IL10-producing CD8 T cells, which was not observed after

treatment with dltX-D (P = 0.21) (Figure 7C).

Discussion

Probiotic bacteria are being explored as means to improve

health and prevent disease. Both intestinal [33–39], as well as

peripheral health benefits [40–47] have been ascribed to probiotic

treatment. One of the proposed mechanisms of action is the

modulation of intestinal as well as systemic immunity [24,48–56].

Although the immunomodulatory properties of different probiotic

strains have been demonstrated both in vitro as well as in vivo

[24,48–55], the exact mechanisms of action remain obscure,

especially in the healthy population. It is still subject of debate

where in the intestine probiotic bacteria are sensed and whether

direct interactions between the bacteria and the immune system

are necessary for immunomodulation in vivo.

In the present study we investigated the requirement of TA D-

Ala substitution for L. plantarum WCFS1-induced modulation of

the intestinal and systemic immune system. We first demonstrated

that L. plantarum TAs signal through murine TLR2 and that the

absence of TA D-Ala substitution induces an anti-inflammatory

cytokine response in murine DCs in a similar fashion as observed

in human immune cells in vitro [8,11]. Further, we demonstrated

that 5-day small dose inoculation with L. plantarum WCFS1

modulates both intestinal and systemic adaptive immunity. The

majority of the L. plantarum-induced in vivo immunomodulatory

effects are dependent on D-Ala substitution, as 15 out of 24 L.

plantarum WCFS1-induced immune changes were not observed in

the dltX-D-treated group and 6 out of a total of 30 changes were

CD3+CD4+ T cell population (black line). The gate was set based on staining with an isotype control (grey line). Representative FACS plots from the
small intestinal lamina propria (SILP) are depicted (A). Early activated CD4+ T cell frequencies in the PP, SILP, and LILP (N = 6) following oral treatment
with medium (white bars), WT (grey bars), or dltX-D (black bars) (B). Early activated CD8+ T cell frequencies in the PP, SILP, and LILP (C). Effector T cells
in the PP, SILP, and LILP (D). FoxP3+ T cell frequencies in the PP, SILP, and LILP (E). Ratio between FoxP3+ CD4+ T cells and effector T cells in the PP,
SILP, and LILP (F). Results are depicted as the mean 6 standard error of the mean (SEM). Statistical significance was calculated using the Students t-
test. *represents P-values ,0.05.
doi:10.1371/journal.pone.0063099.g003

Figure 4. Dendritic cell frequencies and activation in the spleen and mesenteric lymph nodes. Dendritic cells were gated based on the
expression of CD11c and MHC II. Within the dendritic cell population the frequency of CD103+ or CD80+ was determined. CD103+ dendritic cell
frequencies in the spleen (N = 6) (A) and MLN (B) following oral treatment with medium (white bars), WT (grey bars), or dltX-D (black bars). CD80+ DC
frequencies in the MLN (N = 6) (C) and spleen (D). Results are depicted as the mean 6 standard error of the mean (SEM). Statistical significance was
calculated using the Students t- test. *represents P-values ,0.05.
doi:10.1371/journal.pone.0063099.g004
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Figure 5. Early activated CD4+ and CD8+ T cells, effector T cells, and regulatory T cells in the spleen and mesenteric lymph nodes.
Within the CD4 or CD8 population the frequency of early activated cells was determined based on the expression of CD69 Effector T cells were gated
based on the expression of CD25 within the CD4 T cell population. FoxP3+ cells were excluded. Regulatory T cells were gated based on the expression
of FoxP3 within the CD3+CD4+ T cell population Early activated CD4+ T cell frequencies in the spleen and MLN (N = 6) following oral treatment with
medium (white bars), WT (grey bars), or dltX-D (black bars) (A). Early activated CD8+ T cell frequencies in the spleen and MLN (N = 6) (B). Regulatory T
cell frequencies in the spleen and MLN (C). Effector T cells in the spleen and MLN (D). Results are depicted as the mean 6 standard error of the mean
(SEM). Statistical significance was calculated using the Students t- test. *represents P-values ,0.05.
doi:10.1371/journal.pone.0063099.g005
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only observed after treatment with dltX-D. Strikingly, not only pro-

inflammatory immune responses were reduced in the absence D-

Ala substitution, but also anti-inflammatory responses, such as the

generation of regulatory T cells. This effect was unexpected, as

until now only pro-inflammatory effects were attributed to D-Ala

substitution of the teichoic acid backbone [9–13]. However, not all

L. plantarum-induced immunomodulatory effects were influenced

by D-Ala substitution of TAs, as 7 out of 22 immune changes were

observed after treatment with both the wild-type strain and the

dltX-D mutant. Both D-Ala dependent and independent immune

changes were observed in the intestinal as well as the systemic

immune compartment. These results suggest that, in addition to

the pro-inflammatory role of L. plantarum TA D-Ala in vitro

[11,12,57], this compound is also necessary for the modulation

of anti-inflammatory immune responses in vivo.

Probiotics are generally marketed as means to prevent disease in

healthy individuals. However, studies investigating their mecha-

nism of action have focused mainly on specific (intestinal) disease

Figure 6. Polarized CD4+ T cell frequencies in the spleen and mesenteric lymph nodes. Polarized CD4+ T cells were gated based on the
expression of IFNc, IL5, IL10, or IL17 within the CD3+CD4+ T cell population (top plots). The gate was set based on staining with an isotype control
(bottom plots). Representative FACS plots are depicted (A). Polarized CD4+ T cell frequencies in the MLN (N = 6) (B) and spleen (C) following oral
treatment with medium (white bars), WT (grey bars), or dltX-D (black bars). Polarized CD4+ T cell frequencies are depicted as the frequency of IFNc+

cells within CD4+ T cells, IL5+ cells within CD4+ T cells, IL10+ cells within CD4+ T cells, and IL17+ cells within CD4+ T cells. Results are depicted as the
mean 6 standard error of the mean (SEM). Statistical significance was calculated using the Students t- test. *represents P-values ,0.05.
doi:10.1371/journal.pone.0063099.g006
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models [11,58]. In those models, the intestinal immune barrier is

often compromised, altering the contact between the immune cells

and the probiotic bacteria [59]. Further, immune homeostasis is

often severely compromised to induce disease [58,60]. Therefore,

studies in the disease state hardly reflect and predict the

immunomodulatory effects of the bacteria in the healthy intestine,

e.g. during immune homeostasis. Knowledge on how different

bacterial strains affect the local and systemic immune system in the

absence of disease will gain mechanistic insights in bacterial-host

interactions and will help clarify the magnitude of their effects in

non-diseased individuals. For these reasons, we chose to study the

immunomodulatory effects of L. plantarum WCFS1 and its TA D-

Ala negative derivative in healthy, non-diseased mice.

Figure 7. Polarized CD8+ T cell frequencies in the spleen and mesenteric lymph nodes. Polarized CD8+ T cells were gated based on the
expression of IFNc, IL5, IL10, or IL17 within the CD3+CD8+ T cell population (top plots). The gate was set based on staining with an isotype control
(bottom plots). Representative FACS plots are depicted (A). Polarized CD8+ T cell frequencies in the MLN (N = 6) (B) and spleen (C) following oral
treatment with medium (white bars), WT (grey bars), or dltX-D (black bars). Polarized CD8+ T cell frequencies are depicted as the frequency of IFNc+

cells within CD8+ T cells, IL5+ cells within CD8+ T cells, IL10+ cells within CD8+ T cells, and IL17+ cells within CD8+ T cells. Results are depicted as the
mean 6 standard error of the mean (SEM). Statistical significance was calculated using the Students t- test. *represents P-values ,0.05.
doi:10.1371/journal.pone.0063099.g007
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In the healthy intestine, probiotic bacteria may establish their

immunomodulating effects either by direct interactions between

host cells and bacterial cell envelope molecules or indirectly by the

secretion of metabolites that interact with host cell receptors [3].

Direct interactions between specific molecules on the probiotic cell

surface and immune cells has been studied extensively in vitro,

however, whether these interactions are also established when the

intestinal barrier is intact and contribute to the in vivo probiotic-

induced immune-modulatory effects remains obscure. In this

study, we demonstrate that L. plantarum D-alanylated TAs in the

bacterial wall account for several of the L plantarum-induced

intestinal and systemic immunomodulatory effects. Although we

cannot exclude that small quantities of soluble TA released from

lysed L. plantarum [61,62] establish the observed immunomodula-

tory effects, our data suggest that also when the intestinal barrier is

intact, direct interactions between host cells and L. plantarum are

established and responsible for local and systemic immunomod-

ulation.

To date, the leading dogma is that LTAs initiate pro-

inflammatory responses, both in vitro and in vivo [11,18–22]. We,

however, show in healthy animals that also anti-inflammatory

responses are influenced by L. plantarum LTAs. This suggests that

in vivo, in healthy mice, the balance between generating pro- and

anti-inflammatory responses is differently regulated by LTA than

in the disease models. This can be explained by the fact that in the

disease models the immune system is already engaged and primed

towards a pro-inflammatory response. This might be related to an

altered TLR2 signaling [8]. Although TLR2-induced pathways

were long viewed as mere pro-inflammatory [63], recent

publications demonstrate the induction of anti-inflammatory

responses as well [64–68]. This was elegantly demonstrated by

Manicassamy et al [65], who showed that zymosan-induced TLR2

signaling promotes IL10 secretion and the differentiation of

regulatory T cell in vitro, followed by suppression of experimental

autoimmune encephalomyelitis in vivo [65]. This anti-inflammato-

ry effect of TLR signaling has been confirmed using several other

TLR(2) agonists and in several other experimental inflammation

models [64–68]. The TLR2 dependent balance between pro- and

anti-inflammatory responses may be dependent on the composi-

tion of the TLR2 agonist, the amount of TLR2 agonist present as

well as the cell type expressing TLR2. The activation of antigen-

presenting cells by TLRs is also decisive in many essential

processes that lead to the development T cell activation,

enhancement of antigen presentation, increased expression of

accessory molecules [for example, cluster of differentiation 80

(CD80)], and suppression of regulatory T cells activity [21]. The

current view is that TLR signaling in generating in vivo immune

responses is far more complex than the pro-inflammatory role that

was always assumed. This may also explain the differential

immunomodulatory properties of LTA in healthy animals as

compared to diseased models [21].

One might argue that the absence of effects on the regulatory T

cell compartment after treatment with dltX-D are the result of a

low bacterial load, due to increased bacterial instability [8,69],

rather than altered immunomodulation. However, several argu-

ments support altered immunomodulation rather than this

immunological ignorance. First, we showed that although some

immunomodulatory effects were abolished after deletion of the dlt

operon, other immunomodulatory effects were still observed in the

same magnitude as observed after WT-treatment. Second, even

dltX-D-treatment specific immunomodulatory effects were ob-

served, both in the intestine as well as in systemic immune

compartments. These effects are not expected when the bacterial

load drops below the intestinal immunological detection limit. Our

results therefore suggest that also our D-Ala negative derivative is

able to reach the intestine in adequate numbers and once in there

modulates the local and systemic immune system.

Strikingly, we found a different immunomodulatory effect using

dltX-D than Grangette et al in a study using an L. plantarum dltB

mutant. Grangette et al found enhanced protection from TNBS-

induced colitis using a dltB mutant [11], and suggested that the

absence of L. plantarum LTA D-alanylation improves its anti-

inflammatory capacity in vivo. We found that the absence of

teichoic acid D-alanylation not only abolished the generation of

pro-inflammatory responses, but also the generation of anti-

inflammatory responses. How could two bacterial strains, similarly

defective in TA D-Ala substitution, perform so similar in vitro

[8,11] and yet so different in vivo? At this point it is difficult to

compare the in vivo performance of the two strains as Grangette

et al measured only a limited numbers of immune parameters in

the intestine of diseased mice, whereas we measured the effect on a

broad range of immune cells in healthy mice. In the diseased

intestine the bacterial-host interactions may be completely

different from the interactions in the healthy intestine, as the

mucosal barrier has been disrupted to induce disease [70,71]. This

disruption may alter the contact between the bacteria and the

intestinal immune cells [72], which may therefore not reflect the

bacterial-host interactions that are established in healthy animals

or humans [73]. Also the immune response in disease models is

often harsh and skewed to s specific T helper response [58,60],

which may therefore not reflect the responses that would be

established in healthy animals. Therefore, based on the applied

models, the outcome of the two studies is difficult to compare.

Further, also differences in the mutant strains exist; Grangette et al

generated a mutant in which dltB was deleted [11], whereas in our

study a mutant was employed in which the complete dltX-D

operon was deleted [8]. Although both mutants are similar with

respect to D-Ala substitution of TA, deletion of the dltB operon

resulted in 3-fold longer LTA in the L. plantarum envelope [69],

which was not observed after deletion of dltX-D [8]. This altered

LTA structure may affect bacterial-host interactions and immune

outcome in vivo. Hence, although in both strains the dlt operon was

mutated to abolish D-alanylation, the outcome in cell envelope

composition appears to differ, which may differently affect

immune responses in vivo.

Besides the effects of teichoic acid D-Ala substitution on in vivo

immunomodulation, 9 out of 24 L. plantarum WCFS1 induced

immune changes were not affected by the absence of TA D-Ala

substitution. This demonstrates that besides teichoic acids, L.

plantarum WCFS1 may have other secreted or membrane-bound

effector molecules that contribute to its immunomodulatory

properties [6,74,75]. The effect of WTA on immunomodulation

in vitro has been ascribed to shielding effects, rather than direct

interactions with immune cell receptors [3,8]. In our study, the

observed dltX-D specific immunomodulatory effects may also be

the consequence of altered WTA shielding of immunogenic

molecules on the L, plantarum WCFS1 cell envelope. For example,

immunogenic molecules that are normally shielded from interact-

ing with host immune cell receptors, may be available for

interactions with the host in the absence of WTA D-Ala

substitution. Our results demonstrate that although specific in vivo

immunomodulatory properties can be attributed to specific

bacterial effector molecules, probiotic-induced immunomodula-

tion in vivo is a complex and redundant interplay of different host-

microbe interactions. However, studies into the role of specific

envelope components in probiotic-induced immunomodulation

and studies into their interplay will eventually open up possibilities
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to design probiotic strains with tailored immunomodulatory

properties.

In summary, the current study provides insight in host-microbe

interactions, by demonstrating the involvement of D-alanylation of

bacterial cell envelope components in both intestinal as well as

systemic immunomodulation in vivo. Even when the intestinal

barrier is intact, interaction between immune cells and bacterial

envelope components appears indispensable for probiotic-induced

immunomodulation in vivo [76]. With the acquired knowledge,

probiotic-induced health effects could be further exploited by

specific modulation of the bacterial envelope composition, for

instance by modifications in industrial fermentation media.
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