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Abstract. Modern cancer immunotherapy techniques are 
aimed at enhancing the responses of the patients' immune 
systems to fight against the cancer. The main promising strate‑
gies include active vaccination of tumor antigens, passive 
vaccination with antibodies specific to cancer antigens, adop‑
tive transfer of cancer‑specific T cells and manipulation of the 
patient's immune response by inhibiting immune checkpoints. 
The application of immunogenic cell death (ICD) inducers 
has been proven to enhance the immunity of patients under‑
going various types of immunotherapy. The dying, stressed or 
injured cells release or present molecules on the cell surface, 
which function as either adjuvants or danger signals for detec‑
tion by the innate immune system. These molecules are now 
termed ‘damage‑associated molecular patterns’. The term 
‘ICD’ indicates a type of cell death that triggers an immune 
response against dead‑cell antigens, particularly those derived 
from cancer cells, and it was initially proposed with regards 
to the effects of anticancer chemotherapy with conventional 

cytotoxic drugs. The aim of the present study was to review 
and discuss the role and mechanisms of ICD as a promising 
combined immunotherapy for gastrointestinal tumors.
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1. Introduction

Modern cancer immunotherapy has been proposed to involve 
four primary promising strategies: i) Active vaccination of 
tumor antigens, ii) passive vaccination with antibodies specific 
to cancer antigens, iii) adoptive transfer of cancer‑specific T 
cells, and iv) manipulation of the patient's immune response 
by inhibiting immune checkpoints. Additional emerging 
strategies include other antigen‑non‑specific interventions, 
including the applications of oncolytic or immune‑enhancing 
viruses, innate immunity stimulators and immunogenic cell 
death (ICD) inducers (1). The focus of the present review was 
to describe the treatments that employ ICD to enhance the 
immunity of patients with gastrointestinal (GI) cancers.

The daily death of billions of ordinary cells from the human 
body goes essentially unrecognized by the immune system. 
This is crucial since the conservation of the entire bodies 
homeostasis includes the continuous turnover of various cell 
compartments. As such, the initiation of an immune response 
against dead‑cell antigens would have detrimental outcomes. 
Conversely, the death of a few cells infected by a microor‑
ganism can trigger a potent antigen‑specific immune reaction, 
which is associated with the clearance of the invading pathogen 
from the body and also enables the establishment of long‑term 
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immunological memory (2). The first proposal of the ‘danger 
theory’ in 1994 by Matzinger (3) was that the immune system 
can distinguish between dangerous and innocuous endog‑
enous signaling. In her famous essay, Matzinger suggested 
that ‘unprogrammed cell death’ could give rise to the unusual 
release of internal molecules from the cytoplasm, nucleus 
or membrane to activate dendritic cells (DCs). The dying, 
stressed or injured cells release or present molecules on the 
cell surface, which can function as either adjuvants or danger 
signals for detection by the innate immune system. These 
molecules are now termed ‘damage‑associated molecular 
patterns’ (DAMPs) (4). The term ‘ICD’ was introduced to 
indicate a type of cell death that triggers an immune response 
against dead‑cell antigens, particularly those derived from 
cancer cells, including DAMPs. This model was initially 
proposed with regard to anticancer chemotherapy, in view 
of clinical proof demonstrating that tumor‑specific immune 
responses reflect the efficacy of anticancer treatments using 
conventional cytotoxic drugs (5).

Currently, various routinely employed anticancer agents 
include doxorubicin, epirubicin, idarubicin, mitoxantrone, 
bleomycin, bortezomib, cyclophosphamide (CY) and oxali‑
platin. The list also includes certain anticancer agents that are 
currently under preclinical or clinical development, such as 
some microtubular inhibitors of the epothilone family. Certain 
drugs, including digoxin, digitoxin and zoledronic acid, act to 
convert otherwise non‑immunogenic events of cell death into 
bona fide ICD inducers, and may thus be used as adjuvants in 
combinatorial immunotherapy regimens (6). The known clini‑
cally applied or experimental anticancer agents that induce ICD 
act via one or several of the following mechanisms: Inducing 
apoptosis, causing a severe focused stress of the endoplasmic 
reticulum, overcoming loss‑of‑function mutations that hide 
danger signals during tumorigenesis and downregulating the 
cancer‑based induction of pro‑inflammatory transcription 
factors (4). In addition, one important consideration is the 
complex interactions with DAMPs and their receptors, known 
as the pattern recognition receptors. Attempts have been made 
to identify and detect multiple DAMPs in order to facilitate the 
development of next‑generation anticancer regimens, which, 
in addition to killing cancer cells, can simultaneously convert 
them into a cancer‑specific therapeutic vaccine (7).

2. GI cancers

GI cancers are amongst the malignancies most frequently 
diagnosed in European patients. These include gastric cancer 
(GC), colorectal cancer (CRC), as well as cancers affecting the 
liver, particularly hepatocellular carcinoma (HCC), the biliary 
tract, such as cholangiocarcinoma (CCA), and the pancreas 
(pancreatic cancer; PC). The frequency with which these 
conditions are diagnosed presents a significant challenge for 
public health systems in Europe and worldwide (8).

Different cancers of the GI tract. Most commonly reported 
in patients in Asia, GC is notable for its particularly poor 
survival rates. The condition is associated with certain 
bacterial infections, such as Helicobacter pylori (H. pylori) 
infection, and the effects of other pathogens, including 
Epstein‑Barr virus (9). 

The annual number of new CRC diagnoses falls in the 
range of 1‑2 million cases, placing CRC third in terms of the 
most frequently occurring cancers, and fourth amongst the 
most common causes of cancer‑related mortality. The main 
CRC risk factors include age and history of chronic disease, 
as well as various aspects of patient lifestyles. There are three 
different pathogenic mechanisms that can lead to the onset of 
CRC: Microsatellite instability, chromosomal instability and a 
CpG island methylator phenotype (10,11).

The most common type of liver cancer is HCC, which orig‑
inates from hepatocytes and accounts for ~4 in 5 liver cancer 
diagnoses, with an increased prevalence in China and Eastern 
Africa (12). The onset of HCC is often a consequence of the 
interaction between genetic characteristics and environmental 
factors. In particular, patients diagnosed with liver cirrhosis, 
or infection with the hepatitis B virus (HBV) or the hepatitis C 
virus (HCV), are more likely to develop HCC, while other risk 
factors include alcohol abuse, the ingestion of aflatoxin B1 or 
non‑alcoholic steatohepatitis (13,14).

CCA is the second most frequently occurring primary 
hepatic cancer after HCC. CCA has been most commonly 
reported across Asia, although in recent years it has become 
increasingly more widespread in North America and 
Europe (15,16). CCA originates in the biliary tract and is 
subdivided by location into three different subtypes, namely 
perihilar, intrahepatic and distal CCA. Several risk factors, 
both common and rare, have been associated with CCA, 
including hepatobiliary parasites, Caroli disease, HBV and 
HCV infection, and exposure to toxins (17‑19).

PC is the 14th most prevalent type of cancer and the seventh 
largest cause of annual cancer‑associated deaths globally. PC 
risk factors include obesity, alcohol consumption and smoking, 
as well as H. pylori infection (20).

Latest approaches to GI cancer treatment. Several potential 
treatments are currently being developed for GI cancers. 
A number of these are targeted approaches that make use of 
biological properties to achieve their objectives, and can be 
employed alone or as components of combination or adjuvant 
treatments. The most widely applied treatments at present 
include surgery, as a means of resecting solid tumors; radia‑
tion therapy, as a means of managing localized solid tumors; 
chemotherapy, which involves the use of cytotoxic agents 
to eliminate cancerous cells; and hormonal therapy, which 
serves as a systematic approach with the aim of targeting all 
cancerous cells found in the body (21‑23).

3. Immunotherapy in GI cancers

Patients diagnosed with GI cancers are typically subjected to a 
combination of treatments, including surgery, chemotherapy 
and/or radiation therapy; however, the survival rates remain poor, 
particularly when the cancer has reached an advanced stage, or 
in the case of metastatic disease (24,25). For this reason, it is 
imperative to develop more effective, novel techniques to address 
the problem, and immunotherapy appears to hold promise for this 
purpose. To date, a number of cytokines, including IFN‑γ or IL‑2, 
have been used to limit the activity of certain types of cancer, 
such as renal cell carcinoma and melanoma, and a moderate 
level of inhibitory activity has been reported (26). However, 
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the development of cancer vaccines has been less successful, 
with none generating statistically significant responses in test 
patients (23). 

The progress in immunotherapy shows great potential in 
the context of GI cancers, whereas further therapies involving 
the administration of immunostimulatory monoclonal 
antibodies to treat GI malignancies are currently in their devel‑
opmental phase. Immune checkpoint blockade is the primary 
type of immunotherapy currently used in GI cancer treatment. 
It can be anticipated that the vaccination approach will be 
streamlined with the lessons learned from initial successes, 
and the most suitable tumor‑associated antigens will be 
identified for targeting. Adoptive cell therapies are now at an 
advanced stage of development and appear to hold significant 
promise for GI cancers. An improved understanding of the 
prevalent suppressive factors in patients with GI cancers may 
enable the development of superior strategies to limit immune 
suppression and promote endogenous immunity in patients. It 
is likely that deeper knowledge of the tumor microenviron‑
ment and the field of immunology will lead to the successful 
development of more efficacious treatments in the near future.

4. Vaccine therapy in GI cancers

Various cancer vaccines have been developed to date by 
using different technologies, including recombinant micro‑
organisms, recombinant antigen cocktails, oncolytic viruses, 
DNA and gene therapy‑based treatments, and anti‑idiotypic 
antibodies. In addition, personalized vaccines have also been 
devised, including those based on adoptive cell transfer, or 
autologous cells and antigens. These may be more complex, 
and require specialized manufacturing approaches and 
expertise (27). However, although several trials have been 
conducted, approval has only been granted for one vaccine, 
which acts against metastatic castration‑resistant prostate 
cancer. This vaccine is Dendreon's Provenge® (Sipuleucel‑T), 
which was approved by the Food and Drug Administration in 
2010 (28,29). Furthermore, two additional cancer vaccines, 
Vitespen® (30) and Melacine® (31), were approved in Russia and 
Canada, but not in the United States. These cancer vaccines rely 
upon the activation and strengthening of antitumor responses 
that target cancer. The dendritic cell‑based cancer vaccine 
presents antigens and serves a critical role in formulating the 
immune response. They can also activate B cells, natural killer 
(NK) cells, as well as naïve and memory T cells, through the 
presentation of tumor antigens associated with major histo‑
compatibility complex (MHC) molecules. When patients with 
cancer have higher numbers of DCs penetrating the tumors, 
this is a sign of reduced lymph node metastases and improved 
chances of survival (32). A number of approaches have been 
employed to create vaccines by loading DCs with tumor anti‑
gens. These include the use of synthetic peptides pulsed on 
DCs (33), DCs engineered with plasmid DNA (34), RNA (35) 
or viruses (36), tumor cell lysates combined with immature 
DCs (37) and, finally, DCs combined with whole tumor cells 
through polyethylene glycol or electroporation (38). The tech‑
nique that uses DCs pulsed with MHC‑restricted peptides, 
which are obtained from antigens known to be associated with 
tumors, is the most common type of vaccine approach (39‑41). 
However, it can be challenging to use DCs for clinical 

purposes, as these cells have a relatively short life span (42). 
To date, vaccines have shown little effectiveness in preventing 
GI cancers. The vaccines developed thus far have targeted 
melanoma‑associated antigen (MAGE)‑A3 (43), HER2 p369 
peptide (44), gastrin‑17 diphtheria toxoid (45), URLC10 or 
VEGFR1 epitopes (46) and heat shock protein (HSP) gp96 (47) 
in patients with GI cancers. Furthermore, chemotherapy has 
been tested alongside adjuvant Bacillus Calmette‑Guérin (48). 
In cases of PC, a number of specific antigens serve as targets, 
including carcinoembryonic antigen (CEA), EGFR, Wilms' 
tumor 1 and VEGF, whereas GVAX® is a whole‑cell vaccine 
that has been tested in trials in the metastatic, neoadjuvant and 
adjuvant settings. Positive outcomes have been reported in the 
metastatic setting when combined with ipilimumab, with a 
reported survival rate of 27% after 1 year (49).

In the case of HCC, vaccines have shown no efficacy 
thus far. However, immune responses have been reported in 
phase I trials involving peptide vaccines (50), DC vaccines 
and tumor‑associated antigens targeting oncolytic viruses, 
such as AFP (51), GPC‑3 (52) and human telomerase reverse 
transcriptase (53). DC‑based vaccines have been included in 
trials on CCA, whereas a phase II study was conducted in 
the adjuvant setting in order to target mucin 1 (MUC1) in the 
biliary tract and in PC via DC vaccination, and the tolerability 
was reported to be good, although it was not possible to draw 
definitive conclusions regarding the immune response (54). 
Further phase II clinical trials involving CRC‑specific 
peptide vaccines were performed with patients diagnosed 
with HLA‑A*2402‑positive stage III CRC, with the findings 
suggesting that an immune response would be generated by 
the vaccine, leading to higher survival rates (55). For patients 
with PC, 13‑mer mutant ras peptide vaccines were not only 
shown to be safe, but to also generate the appropriate immune 
response (56). Additionally, the p53 synthetic long peptide 
vaccine has been shown to be safe for patients with metastatic 
CRC in whom specific T‑cell responses were induced (57). 
However, several issues must be addressed if a novel cancer 
vaccine is to be approved, including commercial, clinical, 
manufacturing, operational and regulatory concerns. Risk 
evaluation must also be conducted to make full use of the 
expertise available. Moreover, a number of clinical studies 
revealed that some patients may not benefit from the cancer 
vaccine treatment (primary resistance), and some responders 
may relapse after a period of response (acquired resistance). 
For example, PC is associated with the presence of a highly 
immunosuppressive microenvironment, which is character‑
ized by a dense desmoplastic stroma that impedes blood flow 
to the area, inhibits drug delivery and suppresses antitumor 
immune response (58). In CRC and GC, it has been shown 
that only patients with the subset of mismatch‑repair‑deficient 
or microsatellite instability‑high tumors are likely to respond 
to immunotherapy (59,60). Once these issues have been 
addressed, ICD may prove to be the answer for vaccine devel‑
opment.

5. Cancer vaccination is the target of ICD

DC maturation is a crucial step for immune activation. Once 
in the lymph nodes, DCs activate T cells via three canonical 
signals: Binding of T‑cell receptors, co‑stimulatory receptor 
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engagement, and the provision of cytokines and chemokines 
to facilitate T‑cell polarization and differentiation. The ICD 
complementarily activates DCs. High mobility group box 1 
(HMGB1) and HSP activate pro‑inflammatory DCs through 
the Toll‑like receptor (TLR)2/4‑MyD88‑NF‑κB signaling 
pathway (61). Moreover, dying cancer cells also express 
calreticulin (CRT) on their plasma membrane, which signals 
to facilitate engulfment by DCs. The exposed CRT on the 
cell membrane can bind to CD91, the low‑density lipopro‑
tein‑receptor‑related protein 1, which promotes the engulfment 
of cellular compartments and debris by a mechanism that 
depends on the Rac family small GTPase 1 (61). Hence, the 
original concept for using the combination treatment of ICD 
stimulation and DC‑based anticancer vaccines originated 
from significant evidence that cancer treatments, such as 
chemotherapy, radiation, phototherapy, phytotherapy and 
immunotherapy, could elicit danger signals from dying cancer 
cells. Notably, chemoradiotherapy is known to elevate serum 
HMGB1 in patients with esophageal squamous cell carci‑
noma, and the levels of HMGB1 were found to be positively 
correlated with patient survival (62). Moreover, oxaliplatin 
and mitoxantrone induced cancer cell death accompanied by 
an exposure of CRT and a release of HMGB1, HSP70 and 
ATP, thereby strongly inducing in vitro immune responses 
of DCs (63,64). Interestingly, it has been demonstrated that 
pretreatment with the oxaliplatin nanoparticle followed by 
a rechallenge by tumor inoculation in PC‑bearing mice can 
enhance therapeutic efficacy by increasing the numbers of 
tumor‑infiltrating activated cytotoxic T cells (64). In addition 
to the use of chemotherapy, botanical cancer therapy has also 
been introduced. Treatment with Hemidesmus indicus was 
shown to induce CRC cell apoptosis characterized by surface 
expression of CRT, increased HSP70 expression, and a release 
of ATP and HMGB1. This immunogenic agent is prom‑
ising when combined with a DC‑based anticancer vaccine 
(Table I) (65). Recently, our group demonstrated that a potent 
bioactive compound, honokiol, can induce CCA cell apoptosis, 
which is associated with the release of HMGB1 and HSP90. 
Incubation of DCs with CCA cells that were pretreated with 
honokiol induced DC maturation, and thus enhanced the 
priming of cytotoxic T cells to kill cancer cells (37). Therefore, 
the priming of DCs with immunogenic agents may maximize 
antitumor responses though DC stimulation.

Radiation as a cancer treatment also induces ICD, which 
may pave the way for anticancer vaccines in such patients. 
For example, in large orthotopic HCC, synergistic antitumor 
effects may be obtained when radiation is combined with the 
administration of IL‑12. This has been shown to be associated 
with the activation of tumor‑infiltrating DCs, CD8+ T cells 
and NK cells, as well as the suppression of tumor‑infiltrating 
myeloid‑derived suppressor cells (MDSCs) (66). Similar 
to radiation, phototherapy has been suggested to be a new 
platform for enhancing the immunogenicity of cancer. 
Photodynamic and photothermal therapies proficiently 
promote immunotherapy via the induction of ICD. In addi‑
tion, phototherapy combined with oxygenation boosters can 
promote CRC cell apoptosis and induce ICD, thus facilitating 
DC maturation and inhibiting tumor growth and recurrence 
in animal models (67). Plasma‑treated PBS, which is physical 
cold atmospheric plasma consisting of reactive oxygen and 

nitrogen species, has demonstrated cytotoxic activity against 
PC cells with immunogenic features. This increases the poten‑
tial of phagocytosing DCs and DC maturation, which may 
hold promise for combinations with DC cancer vaccines (68).

Several clinical studies have corroborated the concept 
that ICD‑inducing pretreatment may act as an immunomodu‑
lator (Table I). There are ~50 trials currently investigating 
the benefit of ICD in vaccines against cancer, mostly PC 
and CRC. A phase I/II trial study, in which 22 patients with 
HCC have been enrolled, is investigating treatment interven‑
tions comprising pre‑infusion of CY and vaccination using a 
multi‑peptide‑based HCC vaccine (IMA970A) plus CV8102 
adjuvant (RNAdjuvant®). This trial is investigating whether 
IMA970A and CV8102 are safe and whether they can trigger 
an immune response against the tumor under pre‑conditioning 
by induction of ICD (NCT03203005). Moreover, mFOLFOX6, 
which is a formulation of 5‑fluorouracil (5‑FU), leucovorin 
and oxaliplatin, has been used in combination with nivolumab 
and vaccination with a CV301 peptide vaccine in patients 
with advanced CRC (NCT03547999). Another clinical trial 
including patients with PC used CY followed by vaccination 
with a GVAX peptide cancer vaccine. However, pretreatment 
with CY did not improve overall survival or disease‑free 
survival when compared with the uncombined intervention 
(NCT00727441). Collectively, the majority of preclinical and 
clinical data have demonstrated that combining the immuno‑
genic potential of ICD with cancer vaccination is a promising 
approach that could achieve future translational success.

6. Checkpoint inhibitor therapies in GI cancers

The field of immuno‑oncology has witnessed significant 
advances with regard to immune checkpoint inhibitors (ICIs). 
Immune checkpoints are the mechanisms through which T‑cell 
immune responses are regulated (69). Tumor cells are consid‑
ered to be able to avoid host immune clearance when T‑cell 
immune responses are downregulated. If immune checkpoints 
can be targeted, the endogenous response of the immune 
system to tumors may be used as a means of addressing the 
risk of disease. A number of antibodies have been shown to 
be effective against immune checkpoints, and more are under 
examination (69). These antibodies most commonly serve to 
target cytotoxic T lymphocyte‑associated protein 4 (CTLA‑4), 
programmed death‑1 (PD‑1) and programmed death‑ligand 1 
(PD‑L1). CTLA‑4 acts as a receptor capable of inhibiting 
the activation of T cells (70). Accordingly, when CTLA‑4 is 
blocked, the T cells will proliferate and become activated. PD‑1 
is expressed on T cells and other immune cells, and PD‑L1 
serves as one of its ligands. PD‑1 and PD‑L1 binding creates an 
inhibitory signal affecting T cells; by contrast, if the binding is 
inhibited, the T cells will become activated, leading to a height‑
ened response from cold tumor (non‑inflammatory T‑cell) to hot 
tumor (inflammatory T‑cell) immune response (71‑73). Another 
targeted checkpoint receptor protein is the lymphocyte activa‑
tion gene‑3, which may control the activity of T cells through 
its binding with MHC class II‑molecules (74). However, earlier 
studies examining such checkpoint inhibitors in CRC were not 
very successful, phase II trials involving the CTLA‑4 inhibitor, 
tremelimumab, in patients diagnosed with metastatic CRC have 
shown no significant levels of efficacy (75,76). 
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As a consequence of tumor heterogeneity, along with the 
complexity of immunosuppression, treatment of GC, as has 
been the case with CRC, has shown little success in the area 
of immunotherapy, for reasons possibly related to mechanisms 
that are incompletely understood. Previous findings have 
revealed that a certain level of checkpoint inhibition can be 
achieved, often in correlation with enhanced classification 
and characterization of GC and an improved understanding 
of its histopathology (48). PC presents the greatest challenge 
amongst all types of GI cancer in the context of immuno‑
therapy, most likely as a result of inadequate immunogenicity, 
along with a low mutational burden and a unique vascular and 
stromal microenvironment. These conditions make it very 
difficult for the immune cells and molecules to penetrate into 
the tumors, particularly compared with the conditions in other 
types of cancer (77). If the microenvironment exhibits immu‑
nosuppressive qualities, checkpoint inhibition may represent a 
suitable goal for HCC immunotherapy, although success has 
been limited to date in the case of single‑agent checkpoint 
blockade (78).

7. Induction of ICD sensitizes blockade inhibitor therapies

In this decade, antibodies directed against immune check‑
points have been intensely investigated in patients with 
cancer following the discovery by the Nobel prize winners 
James P. Allison and Tasuku Honjo, who demonstrated that 
cancer therapy can be enhanced by the inhibition of negative 
immune regulation (79). CTLA‑4 and PD‑1 are the recep‑
tors that are commonly found on the surface of activated T 
cells. The interaction of CTLA‑4 and PD‑1 with their ligands 
inhibits activated T cells and converts them into exhausted T 
cells, which abrogates the antitumor response. The targeting 
of CTLA‑4 and PD‑1 molecules has demonstrated durable 
response rates, increased survival time of responders and a 
manageable safety profile. Recently, checkpoint inhibition 
plus chemotherapy has been considered for use in the first‑line 
setting for the treatment of CRC (11). The potential clinical 
responses may be associated with the induction therapy with 
ICD inducers and cancer immunotherapy.

It has been reported that calmodulin‑binding peptide 
(CBP)501, a CBP that can induce ICD when combined with 
cisplatin treatment, can induce cell membrane exposure of 
CRT and the release of HMGB1. Treatment of CRC‑bearing 
mice with CBP501 and cisplatin, and subsequently with 
anti PD‑1 or PD‑L1 antibodies, significantly enhanced the 
antitumor activity of immune blockade via upregulating the 
percentage of tumor‑infiltrating CD8+ T cells (80). Similarly, 
in CRC‑bearing mouse models, the combination treatment of 
PARP and PI3K inhibitors induced radio‑sensitization and the 
induction of ICD. Thus, subsequent anti‑CTLA‑4 treatment 
strongly inhibited tumor growth and increased the numbers 
of tumor‑infiltrating lymphocytes (TILs) (81). The induction 
treatment of not only CRC, but also HCC, has been investi‑
gated using immunogenic chemotherapy, through oxaliplatin 
promoting the exposure of CRT and the release of HMGB1. 
In HCC, oxaliplatin combined with anti PD‑1 antibodies 
achieved marked tumor suppression, activation of CD8+ 
T cells and stimulation of DCs (82). Moreover, radiation and 
phototherapy are additional examples of immunogenic cancer 
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therapies that sensitize the immune checkpoint blockade. 
CD44‑targeted near‑infrared photoimmunotherapy combined 
with anti CTLA‑4 and PD‑1 antibodies was shown to inhibit 
tumor growth and prolong the survival of CRC‑bearing mice 
via a mechanism associated with the induction of ATP and the 
release of HMGB1 (83).

The ICD inducer‑enhancing immune blockade has 
been proven in several clinical reports (Table I), but has not 
been well established in GI cancers. Current phase II trials 
have been investigating the ICD‑inducing effect of 5‑FU, 
leucovorin and oxaliplatin (FOLFOX) and FOLFOX plus 
irinotecan (FOLFOXIRI) to enhance the efficacy of ICIs. 
Patients with unresectable metastatic CRC have been treated 
with either FOLFOX/FOLFOXIRI or anti‑PD‑L1/CTLA‑4 
antibodies. After each treatment cycle, the safety, disease 
progression, death and intolerable toxicity will be continuously 
recorded (84,85). Furthermore, the use of 5‑FU and cisplatin is 
encouraged owing to their safety and strong enhancement of 
the antitumor response in advanced GC when combined with 
pembrolizumab (86).

The insight into the mechanism of ICD‑sensitized immune 
blockade inhibitors is under investigation. Two possible effects 
have been proposed, depending on the type of ICD inducer. The 
first effect is the direct consequence of the chemotherapeutic 
agents proficiently upregulating PD‑L1 expression. Those that 
exert this effect include 5‑FU, gemcitabine, cisplatin, oxali‑
platin, doxorubicin and paclitaxel (87). This is an important 
method for increasing the sensitivity to blockade inhibitors. 
Treatment with FOLFOX can activate the secretion of IFN‑γ 
from PD‑1+ CD8+ T cells, which is associated with the over‑
expression of PD‑L1 on tumor cells. Hence, the combination 
treatment of FOLFOX with anti PD‑1/PD‑L1 antibodies has 
achieved complete cure in CRC‑bearing mice, while mono‑
therapy was unsuccessful (88). Similarly, the anthracycline 
drug, epirubicin, could upregulate PD‑L1 expression in HCC, 
which causes sensitization to immune blockade therapy (89). 
The other effect would be due to the indirect function of ICD 
inducer agents via modulating the tumor microenvironment. 
This may be associated with the depletion of regulatory T cells 
and MDSCs that potentiates stronger antitumor responses (66). 
Taken together, these results from preclinical and clinical 
studies have indicated that the concept of priming treatment 
with ICD inducer agents prior to checkpoint blockade treat‑
ment could elicit a stronger antitumor response.

8. Adoptive therapies in GI cancer

A potential approach to cancer treatment is harnessing the 
properties of T cells and NK cells to attack tumor cells. NK 
cells and TILs are of both predictive and prognostic value 
in GI cancers (90). These properties can be applied through 
the various modalities of adoptive cell therapies, typically 
involving the isolation of immune cells obtained from patients 
diagnosed with cancer, whereupon they can be genetically 
modified in order to strengthen their capacity to identify and 
kill cancerous cells. By expanding these isolated cells ex vivo, 
they can then be re‑introduced to the patient, in a form of 
treatment which can theoretically be effective for all patients 
with cancer who do not demonstrate adequate cancer immu‑
nity without assistance, and would therefore be incapable of 

responding to ICIs. Adoptive cell therapy as a cancer treat‑
ment can involve various strategies, which have either been 
previously examined in clinical settings, or are undergoing 
trials to assess their suitability against GI cancers (91). One 
particular approach of adoptive cell therapy makes use of 
the immunotherapeutic properties of cytokine‑induced 
killer cells (CIK), which can be obtained through the treat‑
ment of peripheral blood lymphocytes using IFN‑γ. This 
is a type of monoclonal antibody that counteracts the CD3 
molecule, along with IL‑2. CIK cells are predominantly 
expansions of CD3+/CD8+/CD56‑ cells to become terminally 
differentiated CD56‑positive NK cells. These are uniquely 
able to identify the tumor cells regardless of the presence 
or absence of antibodies and MHC molecules and, accord‑
ingly, have the ability to identify any tumor cells lacking 
MHC molecules on their surface (92). In addition to T‑cell 
adoptive transfer, NK cell‑based immunotherapy has shown 
promising antitumor effects in a number of studies (93‑95). 
Adoptive transfer is being used to increase the infiltration of 
NK cells in the tumor site by using NK cells from different 
origins, such as autologous cells, allogeneic peripheral blood 
mononuclear cells, umbilical cord blood, human embryonic 
stem cells and induced pluripotent stem cells (90). However, 
although preclinical data indicate high efficacy of NK cell 
adoptive transfer in in vitro and in vivo studies, there is 
little information on the clinical efficiency of this method. 
A phase I clinical trial demonstrated that HSP70‑induced 
activation of autologous NK cells was achieved in patients 
without any treatment‑related negative side effects, but no 
significant clinical response was observed due to the high 
tumor burden and limited sample size (96). Moreover, adop‑
tive macrophage transfer has recently become a hot research 
field (97,98). Due to their innate immune function and more 
prominent penetrating ability, macrophages may kill tumor 
cells when T‑cell therapy fails (99). However, sufficient 
clinical evidence is urgently needed to support pre‑clinical 
data, particularly in the field of GI cancer treatment.

In order to make adoptive cell therapy more readily appli‑
cable and more effective in destroying tumor cells, relatively 
more recent approaches have sought to introduce antitumor 
antigen receptors to regular T cells, which may have promising 
therapeutic applications. It is possible to eliminate the require‑
ment for MHC interaction and co‑stimulatory molecules 
when T cells are engineered to include chimeric antigen 
receptors (CAR), in which the B‑cell receptor‑derived and 
T‑cell receptor domains are combined (100,101). To date, the 
antitumor qualities from the adoptive transfer of CAR‑T cells 
has been evident in the case of advanced hematological malig‑
nancies, but in the case of solid tumors the results have been 
less promising (102,103). It may be possible to explain this 
as a consequence of the expression of heterogeneous tumor 
antigens, the immunosuppressive network activity within the 
microenvironment of the tumor, the T‑cell trafficking into 
solid tumors, which is less than optimal, and the absence 
of the necessary co‑stimulatory signals to achieve CAR‑T 
cell persistence following infusion (100,101). The affinity of 
HER2‑directed CAR‑T cells for cancer cells of the GI tract is 
high, even for cells exhibiting low levels of HER2 expression. 
Moreover, CAR‑T‑HER2 cells may offer the potential to inhibit 
disease recurrence of metastasis. Specific CAR‑T‑HER2 cells 
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have been developed, which are consistently active within 
the cardiovascular system, and which can accumulate within 
and inhibit tumors (104). In the context of PC, CAR‑T‑cell 
therapy has been the subject of a number of studies. The 
tumor‑specific antigens of PC can be targeted by CAR‑T‑cell 
therapy. In particular, antigens that are overexpressed, such 
as CEA (NCT02349724), mesothelin (NCT02159716), HER2 
(NCT02713984) and MUC1 (NCT02587689), are promising 
targets. In HCC, there have been no complete CAR‑T‑cell 
tests, but there is some evidence that the antigens CEA, MUC1 
and glypican‑3 could be effectively targeted (105,106). For 
GC, only a few studies have examined CAR‑T‑cell therapy 
to date (107,108), but the results are cautiously optimistic 
when developing CAR‑T cells to target 3H11 (109), despite 
an inability to overcome the biological obstacles presented by 
solid tumors. A further study based on the overexpression of the 
folate 1 receptor (FOLR1) in GC compared with healthy tissue 
showed that FOLR1 CAR‑T cells display antitumor properties 

by recognizing FOLR1‑positive GC cells (110). In the case of 
hepatobiliary cancer, small‑scale trials have reported positive 
outcomes of immunotherapy, and recent work has assessed the 
potential of CAR‑T cells when treating cancers of the biliary 
tract (111). The suggested targets include EGFR, mesothelin 
and HER2, due to their propensity to be overexpressed in the 
aforementioned malignancies (112‑114).

Although adoptive transfer therapy is promising and 
intensely under review, the major obstacle of this approach 
in GI cancer treatment is the heterogeneity of solid tumor, 
particularly in colon and GC. The heterogenicity is caused by 
genomic instability, which contributes to clonal evolution and 
immune evasion resulting in immune‑resistance and tumor 
recurrence. Interestingly, combination treatment of cellular 
adoptive transfer and chemotherapy can improve clinical 
outcomes and may prevent recurrence in patients with advance 
GC that may be attributed to the synergistic effect of ICD (115). 
Moreover, multiclonal elimination of tumor cells could be 

Figure 1. ICD enhances the antitumor immune response. Anticancer therapies, such as chemotherapeutic agents, radiation and phytotherapy, elicit the exposure 
of CRT on cell membranes and the extracellular release of ATP, HMGB1 and HSP. Interestingly, some types of ICD inducers increase PD‑L1 expression, which 
increases the sensitivity to blockade inhibitor treatment. ICD potentiates DCs though upregulation of costimulatory signals, thereby strengthening adaptive 
immune system activation. Activation of αβ T cells results in differentiation to cytotoxic T cells, whereas activation of γδ T cells is facilitated by either mature 
antigen‑presenting cells or as a direct effect of ICD. These modulate antitumor activity by cytotoxic granules and proinflammatory cytokine production. 
Moreover, the ICD inducer plays a role in the inhibition of immune suppressor cells. Therefore, ICD may be considered as priming therapy that may be suit‑
ably combined with cancer immunotherapy. ICD, immunogenic cell death; HMGB1, high mobility group box 1; CRT, calreticulin; MDSC, myeloid‑derived 
suppressor cell; DC, dendritic cell; Treg, regulatory T cell; CTL, cytotoxic T lymphocyte; TLR, Toll‑like receptor; PD‑L1, programmed death ligand 1; HSP, 
heat shock protein.
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improved by using multi‑peptide vaccine or broad‑array tumor 
antigen (116,117). Overall, these would be the solution for 
immune exhaustion in clinical settings of adoptive therapies.

9. Implications of ICD and adoptive cell transfer

The implications of adoptive transfer of cytotoxic T cells or 
CAR‑T cells with ICD has not been extensively studied in the 
context of GI cancer treatment. However, it has been shown that 
the antitumor immune response of cytotoxic T cells may lead 
to immunogenic tumor cell death, improving their own tumor 
cell‑killing capacity (118). Interestingly, treatment with mito‑
chondria‑targeted small molecules, including ATP, CRT and 
HMGB1, can induce upregulation of ICD in both in vitro and 
in vivo models. This is surprising, as priming by an ICD inducer 
effectively suppressed tumor growth and lung metastasis by 
enhancing the adoptive T‑cell therapy against colon cancer 
in a mouse model (119). Moreover, it has been demonstrated 
that the mitochondrial DAMPs could play a role as immuno‑
modulators through activation of γδ‑T cells. Mitochondrial 
DAMPs induced expression of TLR2 and TLR4, which may 
positively regulate the antitumor response (120,121). TLR/type 
I IFN/CXCL10 has been proposed as the signaling pathway 
implicated in the recruitment of CXCR3+ T cells and the acti‑
vation of γδ‑T cells (122). Hence, not only the direct impact 
from activated antigen‑presenting cells, but also T‑cell‑based 
anticancer therapy may be targeted when considering ICD 
(Table I). However, although the implications of T‑cell therapy 
and ICD appear to be very promising, sufficient evidence is 
currently lacking.

10. Conclusions

ICD plays a key role in enhancing the efficacy of immuno‑
therapy. DC‑based anticancer vaccines directly activate 
and strengthen the co‑stimulatory signal through DAMPs 
to further stimulate the immune response. The treatment 
outcomes from both the immune checkpoint blockade and 
adoptive transfer cell therapy may be enhanced by using ICD 
inducer agents. The mechanisms involving ICD‑enhanced 
immunotherapy in GI cancer treatment are demonstrated in 
Fig. 1. These findings confirm the effectiveness of induction 
therapies combined with immunotherapy. Intervention may be 
implemented at only one or a few cycles at effectively low doses 
to avoid adverse effects and to obtain optimal ICD induction. 
Neoadjuvant chemotherapy can induce either cancer cell apop‑
tosis or necrosis, which effectively promotes ICD induction, 
particularly HMGB1 release. In addition to the HSP family, 
CRT and S100 protein expression is elicited by chemotherapy 
and may be the primary DAMP molecules strengthening the 
efficacy of immunotherapy. However, the use of ICD inducers 
in immunotherapy for GI cancers has been limited due to a 
lack of research evidence, accounting for only 5‑10% of all 
clinical trials. Further investigation should yield more positive 
outcomes regarding the induction of ICD in immunotherapy 
for GI cancer.
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