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Abstract 
Modern animal scientists, industry, and managers have never faced a more complex world. Precision livestock technologies have altered man-
agement in confined operations to meet production, environmental, and consumer goals. Applications of precision technologies have been 
limited in extensive systems such as rangelands due to lack of infrastructure, electrical power, communication, and durability. However, advance-
ments in technology have helped to overcome many of these challenges. Investment in precision technologies is growing within the livestock 
sector, requiring the need to assess opportunities and challenges associated with implementation to enhance livestock production systems. In 
this review, precision livestock farming and digital livestock farming are explained in the context of a logical and iterative five-step process to suc-
cessfully integrate precision livestock measurement and management tools, emphasizing the need for precision system models (PSMs). This 
five-step process acts as a guide to realize anticipated benefits from precision technologies and avoid unintended consequences. Consequently, 
the synthesis of precision livestock and modeling examples and key case studies help highlight past challenges and current opportunities within 
confined and extensive systems. Successfully developing PSM requires appropriate model(s) selection that aligns with desired management 
goals and precision technology capabilities. Therefore, it is imperative to consider the entire system to ensure that precision technology integra-
tion achieves desired goals while remaining economically and managerially sustainable. Achieving long-term success using precision technology 
requires the next generation of animal scientists to obtain additional skills to keep up with the rapid pace of technology innovation. Building work-
force capacity and synergistic relationships between research, industry, and managers will be critical. As the process of precision technology 
adoption continues in more challenging and harsh, extensive systems, it is likely that confined operations will benefit from required advances in 
precision technology and PSMs, ultimately strengthening the benefits from precision technology to achieve short- and long-term goals.

Lay Summary 
Interest and investment in precision technologies are growing within the livestock sector. Though these technologies offer many promises of 
increased efficiency and reduced inputs, there is a need to assess the opportunities and challenges associated with precision technology imple-
mentation in livestock production systems. In this review, precision livestock measurement and management tools are explained in the context 
of a logical and iterative five-step process that highlights the need for systems computer modeling to realize anticipated benefits from these 
technologies and avoid unintended consequences. This review includes key case studies to highlight past challenges and current opportunities 
within operations that house animals in a central area or building with sufficient infrastructure (confined livestock production systems) and other 
operation settings that utilize large grasslands that contain far less infrastructure (extensive livestock production systems). The key to precision 
livestock management success is training the next generation of animal scientists in computer modeling, precision technologies, computer 
programming, and data science while still being grounded in traditional animal science principles.
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Abbreviations: DLF, digital livestock farming; GHG, greenhouse gas; MM, mathematical modeling; PLF, precision livestock farming; PSM, precision system 
models
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Introduction
Global animal production settings
Climatic uncertainty, sustainable development goals, produc-
tion efficiency demands, and the growing influence of con-
sumer perception have presented significant opportunities and 
challenges for global animal livestock production in confined 
and extensive systems. These four factors provide motivation 
for change, while drastically increasing the complexity of ani-
mal production systems; producers simply cannot focus solely 
on traditional animal husbandry. The Intergovernmental 
Panel on Climate Change states that the “impacts of climate 
change on livestock productivity, particularly of mixed and 
extensive systems...are critical considering the very large areas 
concerned...” (IPCC, 2019). Livestock production is directly 
affected by climate change through increasing temperatures 
and precipitation variation, both of which influence water 
availability. This variation also influences animal production 
(weight gains and feed metabolism), reproduction (fertility), 
animal health (Rojas-Downing et al., 2017), and crop and 
forage production, and escalates heat stress (Baumgard and 
Rhodes, 2013; Roth, 2015; Neethirajan et al., 2018).

Increased greenhouse gas (GHG; e.g., CO2, N2O, and CH4) 
emissions are directly linked to inefficiencies in plant and 
animal production (Grossi et al., 2019). Efforts to slow and 
reverse climate change have led to the industry-specific GHG 
assessment including agriculture, putting livestock production 
under extreme scrutiny given it is the largest agriculture GHG 
contributor (FAO, 2021). Total GHG emissions from global 
livestock were 7.1 Gigatonnes (Gt) of CO2-equivalent/yr, rep-
resenting 14.5% of all anthropogenic GHG emissions; cattle 
are the main livestock contributor (4.6 Gt CO2-equivalent/yr, 
65% of sector emissions) with beef and dairy cattle generat-
ing similar GHG emissions (Gerber et al., 2013). In contrast, 
pigs, buffalo, poultry, and small ruminants have lower GHG 
emissions (each represents about 7% to 10% of the sector’s 
emissions; Gerber et al., 2013).

Despite GHG emissions from the livestock sector, the 
demand for meat and milk in 2050 is projected to increase 
by 73% and 58%, respectively, from their 2010 levels (FAO, 
2011). As of 2018, there were 1.9 billion livestock units world-
wide, specifically 965 million cattle, 242 million pigs, 237 mil-
lion chickens, and 226 million sheep and goats (FAO, 2020). 
Since 1990, livestock units of cattle, buffalos, sheep, goats, 
and swine have increased by 16%, while chicken numbers 
have increased more than twofold (FAO, 2020). Regarding 
global meat distribution, Asia has been the largest producer 
since 1990, followed by Europe, North America, and South 
America, which collectively produces half the tons of meat 
compared with Asia. Given GHG concerns and increasing 
demand for meat and milk, 21st-century livestock production 
must address environmental concerns while simultaneously 
increasing production efficiency.

Livestock producers must also consider how to appeal to 
“conscious consumers” (50% of total consumers; Fromm, 
2019) who value sustainably produced agricultural commod-
ities while maintaining quality and taste characteristics. The 
demand for sustainably produced commodities presents an 
opportunity for the livestock industry to build consumer trust 
by demonstrating how livestock production may be a solu-
tion—not a driver—of climate change. Thus, enhancing active 
consumer outreach efforts to communicate environmentally 
sustainable production is imperative, especially when media 

presents information like “producing beef uses 20 times the 
land and emits 20 times the emissions” compared with pro-
ducing beans (Aubrey, 2019), and “many environmental sys-
tems and processes are pushed beyond safe boundaries” by 
food production (Willet et al., 2019).

The livestock industry has already started to overcome 
some of these challenges. From 1977 to 2007, beef produc-
tion modernization has resulted in reductions in total animals 
(30%), feedstuffs (19%), water (12%), land (33%), manure 
(18%), CH4 (18%), N2O (12%), and C (16%) while yield-
ing a safer, more affordable product (Capper, 2011). Other 
research has helped appropriately contextualize the evalua-
tion of sustainable production for major livestock types (dairy, 
swine, poultry, sheep/goat, and beef), highlighting the role 
ruminants have in utilizing marginal grasslands and restoring 
degraded cropland soils through livestock integration (Place 
and Mitloehner, 2012; Tedeschi et al., 2017a, 2017b; Kumar 
et al., 2019; Rotz et al., 2019; Menendez and Tedeschi, 2020). 
These complex and multifaceted problems—climate and the 
environment, production efficiencies, and consumer percep-
tion—require a systems approach to meet global animal pro-
duction goals and to avoid negative unintended consequences; 
we cannot afford to trade one problem for another.

Precision technologies and livestock production 
systems
Rapid advancements in precision technologies (software and 
hardware) have offered solutions to these complex livestock 
production challenges, mainly confined animal feeding oper-
ations. An important question is not if precision technology 
can facilitate solutions for these complex challenges, but 
rather how the tool of “precision technology” can be success-
fully implemented to achieve short- and long-term success 
for animal production. Confined animal feeding operations 
are production settings in which animals (e.g., swine and cat-
tle) are in a centralized area. In these centralized areas ani-
mals are fed, watered, receive medical or growth treatments, 
reproductive procedures (e.g., artificial insemination), and are 
monitored for a specific amount of time or production phase 
(e.g., feedlot for beef cattle finishing). The centralization of 
confined operations means that resource inflow and out-
flow are centered around the animal production process. For 
example, whether grown on-site, in a surrounding area, or 
purchased and imported, feed is delivered to animals in con-
fined operations. Similarly, waste products such as manure or 
wastewater are exported and treated or recycled. This makes 
confined animal operations high-throughput systems capable 
of supporting large animal populations and densities, which 
require intensive management to ensure maximum productiv-
ity and profitability. Because of this, confined operations gen-
erally provide living quarters and benefits for managers and 
employees; communication (cellular, Wi-Fi, satellite) support; 
adequate food, water, medicine, and shelter for animals; and 
accessibility to animals close to roads or other infrastructure. 
These features led to the early adoption of precision technol-
ogies in confined production settings, accelerating the gener-
ation of scientific knowledge and management experience in 
such systems that have only begun to be translated into exten-
sive animal systems. In contrast to confined systems, extensive 
systems are animal production systems in which livestock do 
not depend on a centralized area for maintenance and growth, 
and often lack many of the infrastructure or resources avail-
able to confined operations. Extensive livestock productions 
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systems often occur on rangelands, which occupy 54% (79.5 
million km2) of the earth’s surface and are distributed globally 
(Rangelands Atlas, 2021), though many rangelands species 
composition has been altered from native to non-native or a 
combination of both. An estimated 91% of the world’s sur-
face devoted to livestock production is composed of extensive 
rangeland systems (di Virgilio et al., 2018) with production 
concentrated in arid regions such as those found in Australia, 
the Middle East, Africa, South America, and North America 
(Robinson et al., 2011). Within the United States, forage-based 
livestock production is substantial with approximately 311 
million ha of rangeland, 53 million ha of pastureland, and 
16 million ha of hayland (USDA-NRCS, 2003; USDA-USFS, 
2018) compared with 160 million ha of row-crop agricul-
ture (USDA, 2019). However, not all of these forage pro-
duction areas are extensive, ranging in size that typically 
expands as precipitation and, consequently, livestock capac-
ity decreases. These extensive landscapes provide 70% of the 
feed demand for approximately 31.7 million beef cows, 3.8 
million breeding sheep, and 2.2 million breeding goats in the 
United States (Sanderson et al., 2012; USDA, 2018a, 2018b) 
and offer a variety of ecosystem goods and services such as 
recreation, wildlife habitat, biodiversity, hydrologic function 
for ground water recharge, carbon sequestration, and open 
space for aesthetic value. Forage-based livestock production, 
including those on rangelands such as the beef cow/calf and 
sheep grazing systems, has not adopted precision agriculture 
technologies at the rates of other livestock sectors. Protein 
production on pastureland and rangelands is not condu-
cive to intensive data collection because forage is harvested 
by grazing animals and not by machines on which sensors 
are easily mounted. In this production setting, animals must 
expend energy to gather nutrients in forage, water, mineral, 
and supplements often provided by management that are not 
necessarily centrally located across vast management units 
(e.g., >500 ha). Extensive systems typically have centralized 
animal handling facilities, but these are used infrequently 
for specific management needs (e.g., seasonal deworming or 
artificial insemination) due to associated costs and labor to 
locate and transport livestock, not for long-term holding. As 
such, precision technology adoption within extensive systems 
has increased challenges compared with confined systems, 
but, recently, advancements have made the deployment of 
these technologies more feasible for livestock research and 
production. At the center of these precision technologies are 
physical infrastructure (e.g., sensors) and cyber infrastructure 
(software, models, Internet of Things), capable of collecting 
high-resolution data that previously were too costly to mea-
sure. With increased capabilities from precision technologies 
for extensive systems, driving greater use, there exists a much 
larger need to ascertain which technologies to implement 
and how sustainable they are likely to be given the tremen-
dous complexity inherent in extensive livestock production 
systems, which is only compounded with the integration of 
precision technology.

To handle this growing complexity, a “systems approach” 
is warranted (Turner et al., 2016; Tedeschi, 2019; Stephens, 
2021). This approach accounts for the feedback mechanisms 
and time delays between interacting variables within a system, 
thereby improving the understanding of system drivers and 
identifying high-leverage solutions—where a small change 
in management has a significant impact (Sterman, 2000). To 
ensure that precision technologies are successfully integrated 

into livestock production, we must ask how models have been 
used and what type of models or combination of models are 
needed to benefit precision livestock production. 

Mathematical modeling (MM) is an essential component 
for precision livestock production. Jacobs et al. (2022, com-
panion paper) describe the sustainable application of MM, 
which includes a comprehensive review of mechanistic, data-
driven, real-time, empirical, statistical, artificial intelligence, 
deep learning, and machine learning models, highlighting 
their uses, advantages, disadvantages, and hybridization to 
handle biological processes and/or big data. Additionally, 
the authors emphasize the required modeling and program-
ming skills for successful animal scientists both now and in 
the future. Modeling approaches are becoming increasingly 
integrated, so it is necessary to contextualize various types 
of models within precision livestock production systems to 
achieve model harmony. Model harmony suggests that MMs 
are developed, tested, and implemented in a way that not 
only maximizes the utility of precision technology to over-
come challenges and meet goals but also contributes to and 
enhances the process of scientific critique, dialogue, and model 
refinement needed to accelerate the development of precision 
system models (PSMs) to inform precision technology adop-
tion. In this current review paper, we focus on how models, 
particularly PSMs, fit into precision livestock systems, both 
confined and extensive, differentiating effective model types 
and their usefulness in the context of each system.

The practical requirements of making precision technolo-
gies sustainable for management are threefold. Firstly, preci-
sion technologies must achieve enhanced animal production. 
Secondly, its precision technologies implementation must 
lead to enhanced long-term economic viability (i.e., financial 
returns must be realized before the end of a product’s use-
ful life). Lastly, precision technologies must create synergies 
from which producers can more easily connect “conscious 
consumers” to the production process and the environment 
(soil, water, plants, and wildlife). Therefore, the objectives of 
this paper are to 1) contextualize the role of models required 
for precision livestock farming (PLF) and digital livestock 
farming (DLF), 2) give specific examples of precision tech-
nology and PSM applications in confined and extensive live-
stock production systems, and 3) describe the future steps 
required to avoid paths that lead to failures to invest in long-
term capacity for implementation of precision technologies (a 
behavior known as the “capability trap”) but instead lead to 
a synergy between research and development and livestock 
production industries.

Precision Livestock Farming
As indicated above, the growth in the global population has 
led to increasing demand for animal products. Despite a loss 
in the total number of farms, the number of animals produced 
has increased. Many of these animals are produced indoors to 
decrease land use for livestock production and have greater 
control over environmental conditions. However, confined 
and crowded configurations make it difficult for farmers to 
closely monitor animal health and welfare (Helwatkar et al., 
2014; Rowe et al., 2019), though levels and combinations of 
confinement practices may vary within and across operations. 
As climate change intensifies, the risk of disease, heat stress, 
and other health issues among livestock animals will increase 
(Bernabucci, 2019). This, in turn, will create a greater urgency 
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to identify health issues and disease outbreaks as early as 
possible and take preventative measures to avoid large-scale 
economic losses (Thornton, 2010; Neethirajan, 2017). These 
issues, as well as escalating concerns over animal welfare, 
transparency, and environmental sustainability, have led to 
growing interest in digitalizing livestock agriculture through 
PLF technologies (Klerkx et al., 2019; Neethirajan, 2021a, 
2021b, preprint, 2021c; Samperio et al., 2021).

The term ‘Precision Livestock Farming’ dates back to 1988, 
but it was not until 2000 that it gained significant traction 
when Daniel Berckmans reintroduced the term at a European 
Union conference, widely considered as the father of mod-
ern-day PLF. Berckmans (2017) stated that PLF consists of a 
“continuous automated real-time monitoring of production/
reproduction, health, and welfare of livestock and environ-
mental impact.” PLF technologies utilize process engineering 
principles to automate livestock agriculture (Benjamin and 
Yik, 2019). Examples of recent developments in PLF technol-
ogies include monitoring cattle behavior, detecting vocaliza-
tions such as screams in pigs, monitoring coughs in multiple 
species to identify respiratory illness, and identifying bovine 
pregnancy through changes in body temperature (Neethirajan, 
2017). PLF technologies can also help farmers monitor infec-
tious diseases within livestock agriculture, improving food 
safety and availability (Neethirajan et al., 2018). The use of 
PLF technologies will ultimately improve animal health and 
welfare while reducing food safety issues and maximizing 
efficient resource use (Norton et al., 2019). As the scientific 
literature on PLF and its industrial applications has evolved, 
both research and practice started to develop the concept of 
DLF (Neethirajan and Kemp, 2021a, 2021b) enabling com-
plimentary or enhanced PSM applications. 

While PLF aims to maximize data collection to increase 
efficiency and productivity for farming and livestock man-
agement, DLF seeks to infer real-time data (i.e., “on the 
fly,” concurrently with reality) via predictive data modeling 
grounded in artificial intelligence and machine learning. Thus, 
DLF makes short-term automated management responses a 
near-term possibility and indicates a transition from reactive 
to predictive, and even prescriptive, capabilities. Instead of 
stepwise improvements by incrementally adding more data 
points, DLF introduces fundamental changes in the operations 
and value delivery that enhance the accuracy of processes and 
models in farm businesses. The removal of conventional plat-
forms enables the necessary space for a digital acceleration 
powered by novel sensor devices, mechanisms, processes, and 
services to meet the demands of the new realities in modern 
animal farming. Hence, while PLF focuses on adding new 
technological functionalities, DLF also considers the context 
and complexities of the farming business (Figure 1).

Precision measurement and management
Precision technologies can be separated into two major types: 
1) measurement and 2) management. Precision measurement is 
any technology that increases a manager’s or researcher’s abil-
ity to increase the granularity of their data, for any metrics of 
interest, within an animal production system. Precision man-
agement includes technologies that replace or minimize the 
physical work and time that a person would typically require 
for specific livestock production tasks. Recently, precision 
technologies have expanded into virtual infrastructure that 
replaces physical infrastructure like fences. Although many 
papers highlight the potential impacts of these technologies 

(Berckmans, 2017; Morota et al., 2018; Fernandes et al., 
2019; Tedeschi, 2019; Groher et al., 2020; Bailey et al., 2021; 
Tedeschi et al., 2021; Williams et al., 2021), their capabilities 
depend on the amount of data and level of granularity that is 
collected (e.g., millisecond vs. monthly), and requirements for 
communication (Wi-Fi, Bluetooth), power, human learning, 
maintenance, and infrastructure. Currently, most precision 
technologies are no more than simple alert systems; how-
ever, the industry is rapidly moving toward more complex 
applications.

Implementation process for precision technologies
Understanding how to achieve sustainable implementation 
of precision livestock technologies requires a set of princi-
ples to filter through numerous potential technologies and 
applications and how they will integrate (or not) into exist-
ing systems. Application of the precision livestock principles 
(Figure 2) provides a logical and iterative process for sus-
tainable and profitable implementation of precision technol-
ogies across confined and extensive systems. For this paper, 
we are defining the five principles for sustainable precision 
livestock implementation as 1) determining a performance 
gap, 2) increasing data collection and analysis capabilities, 
3) determining the optimal solution with the aid of PSMs, 
4) informing and implementing management changes, and 5) 
measuring systems-level responses and information feedback 
to remaining performance gaps (Figure 2).

Step 1: defining performance gaps
The first critical step requires management to identify the per-
formance gap that needs to be closed if the goals are to be 
profitable and sustainable. The performance gap is defined as 
the difference between the current state of a livestock sys-
tem’s performance and the desired state of performance (Gap 
= Desired – Actual; Sterman, 2000). Once the performance 
gap is understood, management must evaluate available pre-
cision livestock technologies and select the most appropriate 
precision measurement and management tool(s) required for 
altering production system processes aimed at closing the 
performance gap. This requires identifying which metric(s) 
or measurements will best inform management changes and, 
therefore, close the performance gap. Failure to evaluate 

Figure 1. Diagram of the conventional producer decision process, 
including mental models (producer experience) and the role of modeling 
in relation to real-time data integration. 
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trade-offs between available precision technologies and their 
strategic fit in a particular production system will likely result 
in collecting inadequate data, management frustration, and 
financial loss.

Step 2: increasing data collection and analysis 
capabilities
The use of precision measurement tools to collect data is the 
second step in the precision implementation process (Figure 
2). Data collection implies that the appropriate technology 
has been identified to measure a specific metric at a given 
interval. Successful data collection requires a consistent time-
step (e.g., daily) to ensure data quality. Humans, sensors, or 
robots may collect data. Each provides information about the 
status of a biological trait (e.g., body weight measured on a 
scale) or of its proxy (e.g., a surface measurement from an 
image as a proxy for body weight). Often measurements or 
proxies are combined (using modeling) to determine a metric 
that is not directly measurable by humans or precision devices 
(Jacobs et al., 2022, companion paper).

In considering precision measurement devices, it is import-
ant to consider the application and need for data storage 
and integration, data-processing algorithms, and potential 
sources of bias in data collection and algorithm development. 
Automated data collection provides a large volume of data. 
These data must be processed before being used and/or stored 
in a database in most cases. This includes cleaning, validating, 
and reconciling missing and abnormal values. If multiple data 
are being integrated simultaneously, which is often the case, 
the data must be further parsed and organized into a consis-
tent format. This requires adequate governance, security, and 
meta-data, making data management one of the largest and 
most difficult challenges for precision data collection.

Given that many operations require the deployment of 
multiple technologies simultaneously, often manufactured 
by different companies or are custom made (Brennan et al., 
2021; Tedeschi et al., 2021), effective data management 
and integration pose unique challenges to livestock pro-
duction managers. In addition, researchers must consider 
the amount of data needed to capture the range of animal 
behaviors and generalize predictions to entire populations 

with sufficient frequency, quality, and precision. This chal-
lenge is increased in extensive systems where topography 
and resource heterogeneity may influence animal behavior 
differently across management units. Overall, selecting the 
most appropriate technique or technology for precision 
data collection and analysis is driven by the accuracy of 
estimation, the financial costs associated with the technol-
ogy, and applicability and ease of integration into existing 
production settings.

Step 3: determining optimal solutions with aid of 
precision systems modeling
The third step of the precision implementation process 
involves the determination of optimal solutions with aid of 
PSM forms of MM. The purpose of MM is to make biological 
complexity manageable while overcoming the limitations and 
constraints of the human mind’s ability to process informa-
tion (Sterman, 1994; Cronin et al., 2009; Turner et al., 2020). 
Precision livestock MM capable of handling large amounts 
of data (step 2) can be calibrated, tested, and optimized to 
identify feasible production changes needed to minimize the 
livestock system performance gaps (step 1). In agriculture, 
models are extensively used to capture pathways, test hypoth-
eses, and identify high-leverage solutions, circumventing 
high risk, time constraints, or financial costs (Sterman, 2000; 
Turner et al., 2016; Tedeschi and Fox, 2020; Turner, 2020). 
Models have been applied to optimize diet formulation, 
livestock grazing dynamics, animal and plant performance/
production, environmental impacts, and economic outcomes 
(Thornley and France, 2007; Turner et al., 2013; NASEM, 
2016; Park et al., 2017; Tedeschi et al., 2019; Tinsley et al., 
2019; Aderinto et al., 2020; Tedeschi and Fox, 2020; Taylor 
et al., 2022). Other examples include the Integrated Farm 
Systems model to conduct a life cycle assessment (Webb et 
al., 2020), the Ruminant Nutrition System that simulates 
nutrition and growth dynamics for different ruminant animal 
classes and production phases (e.g., steer feedlot finishing diet 
formulation) as well as economic-cost optimization based on 
feedstuff costs (Tedeschi and Fox, 2020), and the Ruminant 
Farm Systems whole-farm dairy system model that accounts 
for animal, manure, soil and crop, feed storage, and dairy 

Figure 2. Conceptual diagram of five principles for sustainable precision livestock implementation using precision measurement and management tools 
integrated with mathematical models.
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environmental impacts (e.g., GHG; Kebreab et al., 2019; 
Hansen et al., 2021).

Models such as these are quickly moving from MM reliant 
on data exported from monitoring technology to real-time 
modeling capable of managing the smallest production unit(s) 
possible (Halachmi et al., 2019). Real-time data monitoring 
linked to dynamic-mechanistic MM models can execute tasks 
“on the spot,” processing data and yielding up-to-date pre-
dictions (Pomar et al., 2015, 2019; Pomar and Remus 2019a, 
2019b). In addition, real-time models are more capable of tech-
nological integration relative to mechanistic MM grounded in 
historical data and, therefore, less likely to include the most 
up-to-date information. This has led to mechanistic models 
being considered difficult to apply because of the complex 
inputs and high-level knowledge required for proper model 
use (Ellis et al., 2019, 2020). Traditionally, MMs have been 
used to understand, illustrate, and support animal production 
(Ellis et al., 2020). However, their limitations have become 
more apparent over time as the velocity and volume of data 
have increased and the available data expand from numerical 
values alone to diverse sources such as image and audio files.

As the complexity represented in MM increases, so does 
their reliance on large databases (e.g., the National Academies 
of Science and Engineering and Medicine nutrient require-
ments and related nutrition equations; NASEM, 2016). Many 
national databases have application programming interfaces 
that enable them to be linked with MM, allowing for more 
rapid updates as the current body of animal nutrition knowl-
edge advances (NASA, 2021; NRCS, 2021). Unfortunately, 
many published MM equations and parameters are difficult 
to reproduce (Jacobs et al., 2022 companion paper), although 
they have laid the foundation of animal science modeling. 
This problem is exacerbated by older programming languages 
(e.g., Fortran) that are not intuitive and difficult to translate 
into updated models.

The potential dependence of databases should be consid-
ered when developing MM for precision livestock systems; in 
essence, it is a balance between data-hungry models and mod-
eling capabilities. The challenge of automatically updating 
key input parameters highlights the growing role of real-time 
data collection (step 2). Applicability of MM is also influenced 

by the degree to which unmeasurable, yet significant param-
eters are reasonably accounted for, parameter variations in 
testing either meet or exceed observable ranges, and failure 
to consider non-measured parameters associated with real-
time measures. Nevertheless, model choices about the type 
(mechanistic vs. empirical) and data resolution (historic vs. 
real-time) involve trade-offs between fidelity and efficiency.

It is important that the appropriate model or combination 
of models for PSM be used to minimize performance gaps 
(step 1). This requires that PSMs quickly obtain and integrate 
the various types of data from precision measurement devices 
and search for an optimal solution. This is one reason that 
most real-time models have a data-driven component (Table 
1). It is also critical to understand why some livestock models 
can stay current and others become obsolete, such as over-re-
liance on large databases, so that integration with production 
systems does not overburden management with superfluous 
tasks outside normal model use and maintenance.

Step 4: informing and implementing management 
changes
A MM capable of generating valuable information for mak-
ing a management decision may be labeled a decision sup-
port tool (Figure 2). For a MM to be considered a decision 
support tool, it must pass a variety of mathematical, statis-
tical, and logical tests in order that sufficient confidence can 
be placed in the MM to deem it suitable to inform manage-
ment (Tedeschi, 2006; Turner, 2020). To pass such tests, MM 
performance is compared with the best available production 
data, descriptions of the production system, and managers’ 
experience and knowledge. The more confidence there is in 
the model to close the performance gap, the more likely the 
information is to be accepted and used.

Optimized solutions identified by the PSM (step 3 above) 
may be implemented with strictly management input, a mix of 
management input and automation, or be totally automated. 
Once implemented, the optimized solution(s) will alter the 
behavior and state of the livestock production system until the 
desired performance level has been achieved (step 1 above). 
However, changes in one element of an animal production 

Table 1. Real-time models found in the literature using the search keywords: real-time, animal science, nutrition, and modeling

Author Aim Target Type Response 

Hauschild et al. (2012, 2020); 
Remus et al. (2020c)

Provide daily tailored 
diets to individuals

Growing pigs Gray box (empirical [data-driven] and 
mechanistic)

Diet composition to sustain observed 
growth

Peña Fernández et al. (2019) Predict in real-time the 
indoor particle sizes 
concentration

Poultry Data-based mechanistic Predicted indoor particle sizes concen-
tration

Parsons et al. (2007) Integrated control of pig 
growth and pollutant 
emissions

Growing pigs Data-based mechanistic Predicted growth response based on diet 
intake

Stacey et al. (2004) Control of broiler growth 
and nutrition

Broiler Semi-mechanistic Predicted growth response based on diet 
intake and control nutrient intake

Fu et al. (2020) Predict diet energy 
digestion

Dairy cows Kernel extreme learning machine Predicted digestible energy and energy 
digestibility

Kashiha et al. (2013) Report malfunctioning 
in a broiler house to the 
farmer in real time

Broiler Empirical (data-driven) Prediction of the distribution index of 
broilers

Gauthier et al. (2019); Gail-
lard et al. (2020b)

Provide daily tailored 
diets to individuals

Sows Gray box (empirical [data-driven] 
and mechanistic)

Diet composition to sustain fetus devel-
opment and milk production
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system will inevitably lead to changes in other parts of the 
system due to their highly coupled, interconnected nature. 
Because of this, recognizing and monitoring both direct 
(intended) and indirect (unanticipated) outcomes throughout 
the production system are required for robust evaluation of 
the sustainability (or lack thereof) of chosen strategies.

Step 5: measuring systems-level responses and 
information feedback to remaining performance 
gaps
Successful implementation of precision measurement and 
management tools will likely result in changes to other parts 
of the system as a whole, such as changes in water quality, 
soil and plant health, carbon storage, biodiversity, and habitat 
conservation, among others (Figure 2). However, if optimized 
single-parameter management strategies are implemented 
and no system-wide feedback occurs (i.e., no synergistic feed-
back is generated across the production system), management 
should question if principles 1 to 4 (Figure 2 and described 
above) align with desired management changes. Although 
the adoption of precision technology makes livestock pro-
duction systems more complex, it also facilitates synergistic 
activities aimed at diverse goals: enhancing animal produc-
tivity and production, regenerating environmental systems, 
and building consumer bridges. Effective implementation of 
precision technology systems, including successful integration 
with existing systems at the individual operation and industry 
level, requires an understanding of technology and time for 
management to learn and master its use before responses in 
environmental (sustainability) and financial (return on invest-
ment) metrics will be improved. In the following sections, we 
review examples of precision livestock production in confined 
and extensive operations to illustrate how the precision live-
stock implementation process described above pinpoints key 
challenges and opportunities in PSMs.

Confined Precision Operations
Case study 1: gestating sows
Within confined swine operations, the main challenge is 
to analyze the ever-increasing volume of data and use it in 
decision-making. The rapid evolution of techniques (e.g., 
machine-vision and feeders; Remus et al., 2020a, 2020b) sug-
gests that these data could become available and affordable 
for pig farms soon (Piñeiro et al., 2019). For animals housed 
in large groups and with a short lifespan, constraints on the 
devices and data management are higher to obtain quality 
information. The “classical” information on growth and feed 
intake (and thus feed efficiency) are undoubtedly the most 
promising traits to be considered in pig nutrition because the 
feed cost comprises the largest part of the production cost. 
Information on body composition and traits related to health 
status are also important but need further development to 
scale up on commercial farms.

In the case of confined precision feeding, the decisions rela-
tive to nutrition or other management purposes are generally 
based on mathematical nutrition models designed to operate 
in real-time (Brossard et al., 2009; Hauschild et al., 2012; 
Andretta et al., 2016a, 2016b for growing pigs; Gauthier 
et al., 2019 for lactating sows; and Gaillard et al., 2019 for 
gestating sows). Artificial intelligence with the application of 
machine learning from historical data in combination with 
real-time data can also be used for the prediction of risk (e.g., 

risk of occurrence of health problem), events (e.g., ovulation), 
or performance (e.g., upcoming feed intake and milk produc-
tion of a lactating sow) that can be used for the determination 
of nutrient supplies. Mechanistic models such as InraPorc 
(Dourmad et al., 2008) simulate the daily energy and nutrient 
partitioning in reproductive sows and were renewed for use in 
precision feeding for lactating (Gauthier et al., 2019) and ges-
tating sows (Gaillard et al., 2019). These nutritional models 
calculate individual nutrient requirements and are dynami-
cally connected to the flow of information provided by differ-
ent sensors. This information then passes to the feeders that 
handle and implement the decisions to optimize nutrient sup-
plies to each individual sow, each day.

Such an approach accounts for the large variability of nutri-
ent requirements between sows in commercial farms, which 
stems from variability in performance, appetite, body condi-
tion, and changes occurring over time due to reproductive 
function (i.e., development of fetuses or production of milk, 
Gauthier et al., 2019; Gaillard et al., 2020a). For gestating 
sows, energy and nutrient requirements are calculated accord-
ing to age, body weight (maintenance requirement), body 
condition at mating (requirement for body reserves), and 
expected litter size (requirement for conceptus) of the sow. 
The standardized ileal digestible lysine requirement is highly 
variable during gestation and varies with gestation stage, sow 
parity, and prolificacy (Gaillard et al., 2019).

The challenge in this approach is to get the information 
needed to calculate nutrient requirements. Body weight, 
physical activity of sows, and ambient temperature are 
required to calculate the maintenance requirement. Body 
weight can be measured at different times, for instance, 
when moving the sows from gestation to the farrowing 
pen. Backfat thickness, which is used in combination with 
body weight to determine the status of body reserves, can 
be measured simultaneously. The use of automatic weigh-
ing scales in the feeding stall allows much more frequent 
data to be obtained, and accelerometers can also be used 
to evaluate the physical activity of sows (Ringgenberg et 
al., 2010). However, this type of “mechanical” equipment 
may be challenging to maintain long-term, and video and 
image analyses may be a more promising, robust alternative 
for real-time evaluation of body weight (Cang et al., 2019), 
activity (Ahrendt et al., 2011; Labrecque et al., 2020), and 
perhaps body condition.

The interest in precision feeding strategies for gestating 
sows was evaluated through simulations by Gaillard et al. 
(2020b). In that study, a conventional 1-phase feeding strategy 
was compared with a precision feeding strategy, which con-
sisted of mixing two diets with low or high nutrient content. 
The standardized ileal digestible lysine content was assumed 
to be 4.8, 3.0, and 6.0 g/kg feed and the protein content was 
14%, 9%, and 16% in conventional feeding, low, and high 
diets, respectively. On average, the low diet represented 89% 
of the feed to be delivered by the precision feeding strategy. 
Compared with the conventional feeding, the average dietary 
standardized ileal digestible lysine content was 29.5% lower 
with precision feeding, while the average calculated dietary 
phosphorus content was 14.5% lower. The simulated pro-
portions of sows that were given an excess or deficient sup-
ply of standardized ileal digestible lysine were reduced with 
precision feeding. Compared with conventional feeding, the 
precision feeding strategy allowed for a 3.6% reduction in 
feed cost per sow during gestation, and reduced nitrogen and 
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phosphorus intake (by 11.0% and 13.8%, respectively) and 
excretion (by 16.7% and 15.4%, respectively).

Case study 2: dairy cows
Dairy cows are selected for increased milk production, which 
has challenging aspects such as the high milk yield at dry-
ing off (Knight, 2005) and an increased feed price due to 
more concentrate feed (Kolver and Muller, 1998; García and 
Fulkerson, 2005). An increase in milk production requires 
more energy to be directed to the mammary gland, and this 
energy cannot be entirely provided via feed. Therefore, the 
cow needs to use her body reserves further and extend her 
negative energy balance period, negatively affecting preg-
nancy rates and health (Butler and Smith, 1989; Veerkamp et 
al., 2003; Pryce et al., 2004) and the farm economy. Hence, 
selecting high-yielding cows requires several management 
changes to solve these challenges.

Different strategies can be put in place to support milk pro-
duction and reproductive performance. For example, increas-
ing the frequency of milking from two to three times per day 
can increase milk production throughout lactation by about 
10% to 20% (Pearson et al., 1979; Klei et al., 1997; Smith 
et al., 2002) and has been shown to increase milk produc-
tion during the entire lactation (Erdman and Varner, 1995). 
However, it requires more working hours by the farmers or 
the use of automatic milking systems. In both cases, it reduces 
the time cows spend lying down or feeding, which are import-
ant activities for ensuring milk production and cow health 
(Gomez and Cook, 2010).

Another strategy is to delay the insemination day to a 
period during which the energy balance is back to positive 
(which is usually not the case for the typical 10 mo of lacta-
tion). This delay of rebreeding leads to an extended lactation 
that appears to be more advantageous, in terms of daily milk 
yield and economic profitability, for primiparous cows com-
pared with multiparous cows (Arbel et al., 2001; Osterman 
and Bertilsson, 2003; Gaillard et al., 2016). This is probably 
partly due to the higher persistency of primiparous cows than 
multiparous, helping them maintain good milk production at 
the end of lactation. Regarding pregnancy rates, in most cases, 
no significant difference was found between cows in extended 
lactation and cows in a normal 10-mo lactation (Arbel et al., 
2001; Gaillard et al., 2016).

Finally, the third option is to adjust the ration composition. 
Several feeding strategies have been experimentally evaluated 
and validated, like adjusting the energy content of the ration 
when the optimal proportion of concentrates is distributed 
(Jensen, 2014; Machado et al., 2014). Feeding a single ration 
to all the cows does not seem appropriate anymore as it 
could limit the expression of their milk potential (Bossen and 
Weisbjerg, 2009). Feeding cows according to lactation stage 
or even individually, for example, according to their energy 
balance, could potentially increase milk production. Thus, 
several individualized feeding strategies have recently been 
studied or are being evaluated, like the concentrate substitu-
tion rate strategy, defined as the reduction in feed dry matter 
consumption when the concentrate dry matter consumption 
increases. Maltz et al. (2013) worked on a weekly ration with 
a substitution rate of concentrates individually adjusted to 
the trough. Other experiments have been based on a single 
adjustment per cow at the end of the mobilization (Bossen 
et al., 2009; Alstrup et al., 2015). Milk production gener-
ally increases in the short term and sometimes throughout 

lactation (Bossen et al., 2009; Maltz et al., 2013). The effects 
of this individualized strategy also depend on the variable used 
for the adjustment (i.e., milk production vs. energy balance).

In this context, models can be useful to predict the conse-
quences of different management strategies in terms of pro-
duction and reproduction. The simulation of the distribution 
of nutrients through physiological functions and according to 
genotypes has been the subject of several models (Dumas et 
al., 2008; Friggens et al., 2013) with the aims to predict the 
performance of an animal and to help the breeders to make the 
best management decisions. This is the case of the GARUNS 
model, developed by Martin and Sauvant (2010), which con-
siders the changing priorities of an animal during its life, and 
through repeated reproduction cycles. It has been tested and 
validated on cows of different breeds and parities (Phuong et 
al., 2015) and for different lactation durations (Gaillard et al., 
2016). Looking forward, to developing, testing, and validat-
ing these models, data need to be collected through sensors or 
automatons (Cabrera and Fadul-Pacheco, 2021). Long-term, 
to obtain a PSM working in real time, data will need to be 
available almost instantaneously. Using wearable sensors and 
the Internet of Things, farmers will, for example, be aware of 
not only the productivity of each animal but also their health 
status. Therefore, they will be able to detect diseases such as 
mastitis or any other disease that can reduce milk production.

Case study 3: mixed system—goats
Goats are one of the most adaptable livestock animals, and 
goat husbandry can be found worldwide in confined produc-
tion systems or harsh, extensive environments. Both systems 
can benefit from the implementation of precision farming 
technologies, and in the last few years, some studies have been 
published regarding the applicability of PLF in goats (Puillet 
and Martin, 2017; Giger-Reverdin et al., 2020; Rao et al., 
2020; Cellier et al., 2021; Su et al., 2022). Specifically, the 
implementation of precision livestock technologies in inten-
sive/confined goat production systems is expected to happen 
earlier as the controlled environment makes it easier to meet 
the communication and infrastructure needs for installing and 
maintaining cameras, sensors, and other tools (Vaintrub et al., 
2021). Such tools generate large datasets that need to be ana-
lyzed and interpreted to create benchmarks for phenotypic 
traits (Puillet and Martin, 2017). For instance, Abdelkrim 
et al. (2021) developed a perturbed lactation model in dairy 
goats incorporating representation of perturbations. This 
model is a valuable decision support tool as it allows the char-
acterization of the potential milk production of a dairy goat 
(i.e., Saanen or Alpine) throughout lactation in a non-lim-
iting environment as well as the depiction of the deviations 
induced by the on-farm conditions. The deviations represent 
the ability of the lactating goat to cope with environmental 
challenges. However, the main limitation of this model is the 
dependency on the data quality to avoid confusion between 
the deviation related to the environment and the low accuracy 
of the data recorded (Abdelkrim et al., 2021).

In contrast, the benefits of implementing precision livestock 
technologies in extensive pasture-based goat production sys-
tems would not be immediate. However, these systems would 
benefit considerably from such technologies. The possibility of 
monitoring animals in remote locations without human inter-
ference would improve animal management related to preda-
tor attacks, health, and welfare issues, consequently resulting 
in significant labor reduction to monitor the herd (Aquilani 
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et al., 2022). Efforts have been made in developing sensors 
with different suitability for grazing animals, for instance: 
using jaw activity to monitor feeding behavior (Navon et al., 
2013), measuring heart rate and body temperature to deter-
mine predator attacks (Sendra et al., 2013), emitting auditory 
or electrical stimuli for virtual fencing (Marini et al., 2019; 
Aquilani et al., 2022), among others. Virtual fencing is one 
of the most interesting precision farming technologies for 
pasture-based goat farms as it replaces physical fences with 
virtual boundaries (Vaintrub et al., 2021). The use of virtual 
fencing would allow for the movement of animals accord-
ing to forage availability and better pasture management that 
considers the soil–plant–animal interaction (Anderson et al., 
2014; Figure 3).  

Despite a great potential for precision farming in goat 
production systems, this technology is still incipient, espe-
cially for extensive conditions. For example, the adoption 
of electronic sensors and measuring devices is substantially 
lower in dairy goat farms (48%) compared with dairy cat-
tle farms (88%) in a study from Switzerland (Groher et 
al., 2020). Among the electronic sensors and measuring 
devices, the most adopted by dairy goat farms are the digi-
tal milk meter, milk temperature sensor, and electronic ear 
tags (Groher et al., 2020). In the same study, 70% of dairy 
goat farmers indicated that they do not adopt any electronic 
control devices (i.e., automatic feeding system, automatic 
kid feeder, and selection gates) and electronic data-pro-
cessing options (i.e., a camera system for monitoring body 
condition score, pasture management, disease detection, 
estrus detection, data transfer into herd management sys-
tems, among others) compared with 28% of dairy cattle 
farmers (Groher et al., 2020). The low implementation of 
PLF in goat farms is likely due to the diversity of produc-
tion systems, poor on-farm and/or on-field infrastructure 
for technological implementation—mainly in mountainous 
and remote areas, and high device costs—due to the need 
for miniaturization of sensors used for large ruminants 
combined with the high production costs of lower manu-
facturing amounts (Caja et al., 2020). Overall, the oppor-
tunities for increasing the adoption of PLF in goat farms 

rely on the development of interpretative tools to facilitate 
benchmarking (Puillet and Martin, 2017; e.g., PSM) and 
developing compact wearable devices, which still have a 
substantial life span and are wireless and robust enough to 
tolerate chewing by goats (common due to their inherent 
curiosity) (Caja et al., 2020).

Extensive Precision Operations
The importance of extensive livestock systems
The majority of advances in precision livestock manage-
ment have been made in confined operations where greater 
control over animal nutrition and monitoring can be made. 
Many challenges exist in studying animals on rangelands 
due to the difficulty of accessing data across vast distances 
(~80 to 60,702 ha; Figure 4) with limited connectivity, het-
erogeneity of forage resources, and variable environmental 
conditions to which animals and technology are exposed. 
The most common grazing practice is continuous, or sea-
son-long, grazing in which livestock graze a single pasture 
for the entirety of the growing season without allowing the 
rest and recovery of the forage resource (Figure 3). Over 
time, animals tend to repeatedly graze preferred forage areas 
resulting in heavy grazing pressure, degradation of forage 
resources, and increased bare ground and undesirable plant 
species (Oates et al., 2011). In contrast, rotational grazing 
involves animals moving among divided paddocks to allow 
for the rest and recovery of forage resources following 
grazing events (Figure 3). Due to the higher stocking den-
sity within grazed paddocks, fewer preferred patches are 
grazed, which can increase desirable grasses, biomass pro-
duction, and soil protection (Conant et al., 2003; Teague 
and Barnes, 2017). Precision technologies combined with 
real-time monitoring will likely result in whole system 
improvement in extensive livestock production systems 
such as rangelands.

Case study 4: beef cattle
GPS technology has been used in beef cattle production sys-
tems to study animal movement and selection on extensive 

Figure 3. Continuous vs. rotational grazing as each relates to decision flow, information feedback, and management decisions, labor, and data.
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heterogeneous landscapes. This has given researchers and 
livestock managers valuable insight into the influence of for-
age quality, fire, topography, animal genetics, and manage-
ment practices on livestock grazing distribution (Bailey et 
al., 2008, 2015; Zengeya et al., 2013; Augustine and Derner, 
2014; Stephenson et al., 2017; Raynor et al., 2021). For 
example, GPS data from seven research stations across the 
United States demonstrated that topography alone could be 
used to predict grazing locations, with cattle utilizing low-
land areas 120% more intensively than associated uplands. 
Additional factors such as steep topography and large dis-
tances to water can also greatly influence livestock grazing 
distribution, resulting in under- or over-utilization and degra-
dation of specific sites (Bailey, 2005).

Traditionally, the application of this technology has been 
limited primarily to researchers within university and gov-
ernment organizations due to the high cost of commercially 
available GPS collars. Advances have been made to utilize 
“off-the-shelf” GPS tracking devices and open-source hard-
ware solutions to reduce the cost to track animals (Knight et 
al., 2018; McGranahan et al., 2018; Karl and Sprinkle, 2019). 
In addition, GPS technology has been coupled with motion 
sensing technology such as 3-axis accelerometers that can help 
identify GPS locations associated with animal behaviors such 
as grazing, resting, and walking to better understand livestock 
behavior within extensive rangeland systems (Augustine and 
Derner, 2013; Brennan et al., 2021; Sprinkle et al., 2021a). 
For example, differences in grazing behavior can be used to 
identify differences in low residual feed intake vs. high resid-
ual feed intake cows, to ultimately select for animals that are 
better adapted to grazing rugged rangelands (Sprinkle et al., 
2021b).

Despite GPS technology advancing knowledge of factors 
that drive livestock distribution on the landscape, appli-
cations in production settings have not been realized. For 

livestock, GPS and accelerometer monitoring devices often 
store data on board, requiring data to be downloaded and 
analyzed following deployment. A challenge with utilizing 
high-frequency accelerometer data is the large volume of gen-
erated data, making uploading information in real-time diffi-
cult. Edge computing accelerometers can reduce the data rate 
required by uploading less frequent machine learning model 
predictions based on raw sensor data inputs. Though the use 
of edge computing devices has been investigated to monitor 
animal behavior and health in sheep, no research has looked 
at deploying these devices on extensive rangelands over long 
periods (Kaler and Ruston, 2019; Vázquez-Diosdado et al., 
2019). For these technologies to become a valuable tool for 
livestock producers operating on extensive grasslands, devices 
will need to incorporate communication technology and edge 
computing capabilities to reduce data transmission size and 
enable real-time tracking of animals.

As technological costs have come down for GPS tech-
nology, many commercially available options have become 
available for producers interested in tracking livestock. These 
devices can transmit livestock location using satellite commu-
nication technology or by sending data via long-range radio 
or “LoRa” communication to base stations (dos Reis et al., 
2021). The availability of real-time GPS tracking opens many 
applications to livestock producers. The simplest example 
may include algorithms to detect and alert producers when 
animals are outside of pasture boundaries or remotely locate 
animals in areas where rough terrain or travel distance lim-
its frequent opportunities for livestock managers to observe 
cattle welfare visually. More advanced algorithms have been 
used with GPS and accelerometer sensors to accurately pre-
dict livestock behavior and calculate metrics such as individ-
ual daily time spent grazing (Brennan et al., 2021). Variability 
in movements and behavior associated with GPS-tracked live-
stock can be an effective way to monitor livestock welfare 

Figure 4. An example of the challenges of data transmission and range of data acquisition from base stations on extensive rangelands. The figure on 
the left is the potential range (400 m) of a Bluetooth 5.1 reader placed at a water source within a 72-ha pasture. The image on the right is the potential 
range (16 km) of a LoRa gateway over the same location. Other factors such as topography and line of site can affect data transmission range. Advances 
in cube satellite technology will enable data transmission globally between on-the-ground Internet of Things sensors and low earth orbit satellites.  
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concerns such as water failure, disease detection, or changes 
in behavior linked to distress or parturition (Tedeschi and 
Menendez, 2020; Tobin et al., 2020, 2021; Fogarty et al., 
2021).

GPS and accelerometer-based sensors are an example of 
precision measurement technologies that can be used to better 
understand animal movement and behavior. With the advent 
of precision management technologies such as virtual fencing, 
measurement technologies that can identify and move ani-
mals within extensive landscapes to improve natural resource 
management and nutrient capture can be incorporated into 
PSMs. For example, metrics of association patterns and dis-
tance traveled among cattle within a herd may indicate ani-
mals searching for more palatable forage (Tobin et al., 2021), 
which in turn can be used to virtually rotate animals to a new 
paddock.

Among one of the most promising applications of pre-
cision livestock management within extensive systems is 
the integration of remotely sensed satellite imagery data to 
inform virtual fencing rotations. The democratization of 
satellite imagery has generated a wealth of free or low-cost 
imagery, enabling new ways to study, observe, and mea-
sure the earth’s natural systems. This is especially true in 
extensive grasslands where remote sensing greatly improves 
our ability to study and understand complex ecological 
interactions across the landscape, allowing assessment at 
landscape-level scales compared with traditional point-
based assessments (Ramoelo et al., 2015; Yu et al., 2018). 
As technology advances, monitoring of rangeland vegeta-
tion via remote sensing platforms will facilitate research 
products freely available to land managers (Browning et al., 
2015). The value of remote sensing to measure and monitor 
grasslands has been well documented including modeling 
seasonal changes between above-ground biomass and indi-
vidual pasture phenology (Wang et al., 2019), estimating 
biomass across different pastures and plant communities 
(Primi et al., 2016; Otgonbayar et al., 2019), and estimating 
paddock grazing capacity (Phillips et al., 2009).

Precision measurement data derived from satellite or 
drone imagery can also be used to monitor forage composi-
tion, quantity, quality, and grazing intensity on the landscape 
through time (Goodin and Henebry, 1997; Todd et al., 1998; 
Ausseil et al., 2011; Franke et al., 2012; Zengeya et al., 2013; 
Ramoelo et al., 2015; Figure 3). The ability to map forage 
metrics based on remotely sensed imagery could be a power-
ful tool for making data-driven decisions about paddock rota-
tion to maximize forage nutrient capture for grazing animals 
and minimize the deleterious effects of overgrazing on the 
system (Jones et al., 2021). Other precision technologies like 
real-time weighing may be used synergistically with remotely 
sensed data to more precisely adjust stocking rates relative to 
forage resources and animal requirements. Real-time weigh-
ing is possible using precision walk-over scales located within 
pastures that measure daily individual weight. These weight 
data have the potential to improve model inputs when using 
equations like net energy for gain (NASEM, 2016; Figure 3) 
instead of an estimated body weight. Thus, incorporating vir-
tual fencing technology into precision pasture management 
allows land managers the ability to draw fence boundaries 
based on environmental factors that are derived from other 
precision measurement technologies (e.g., remote sens-
ing) such as elevation, soil type, plant communities, animal 
weight, and forage quality, giving greater control over animal 

movement on the landscape and potentially allowing animals 
to capture the highest quality forage (Figure 3).

Case study 5: sheep
Grazing sheep in extensive systems offers the ability to pro-
duce food and fiber with low input costs. Precision technol-
ogy has a role in sheep management in extensive systems to 
enhance food and fiber production. Nutrient requirements 
change based on the production stage, the number of fetuses a 
pregnant ewe is carrying, and the desired growth rate of lambs 
(NRC, 2007). Utilizing technology, remote drafting systems 
can be used to provide precise supplementation to individual 
animals without the requirement of sorting sheep into groups 
and multiple housing locations for each group (Jordan et al., 
2006). Additionally, precision feeding had an estimated gross 
margin of AU$6,000 and improved the reproductive success 
of a flock (Jordan et al., 2006). Bowen et al. (2009) evalu-
ated the accuracy of a remote, solar-powered drafting system 
to supplement grazing Merino wethers. Treatment groups 
were allowed access to ad libitum lupin grain 1, 2, 4, or 7 
d a week through an automated drafting gate at the water 
source. Based on their radio frequency identification tag and 
assigned treatment group, the remote drafter allowed access 
to supplement or sorted the sheep back to pasture. Sheep were 
accurately given access to the supplement yard through the 
automated gate with only 2.1% of incorrect drafts into the 
self-feeder (Bowen et al., 2009; Brown-Brandl et al., 2019).

Virtual fencing systems have been investigated to control 
the movement of grazing sheep (Jouven et al., 2012; Marini 
et al., 2018). Marini et al. (2018) assessed the use of com-
mercial dog training units (Garmin Ltd., Olathe, KS, USA) to 
keep Merino wethers out of an exclusion zone within a pad-
dock. The exclusion zone was comprised of sandy soils with a 
greater likelihood of erosion. Virtual fencing effectively con-
trolled a small group of sheep (n = 6) within a 20 × 80 m pad-
dock. Additionally, by day 3, sheep were deterred from the 
exclusion zone by an auditory warning cue prior to electrical 
stimulation (Marini et al., 2018). Unfortunately, results vary 
on the efficacy of virtual fencing systems for sheep. Jouven 
et al. (2012) also found that virtual fencing was effective on 
small groups of sheep (n = 5), but when applied to larger 
flocks (n = 35), it could not replace traditional fences for com-
plete control. The challenge with sheep is their naturally gre-
garious nature. Marini et al. (2020) found that at least 66% 
of the flock needed virtual fence collars for effective control 
but suggested further studies are needed based on the small 
sample size (n = 9).

Modeling can assist in optimizing the management strat-
egies of invasive species that sheep and goats can manage. 
Chalak and Pannell (2012) utilized stochastic dynamic 
simulation modeling to understand the most efficient and 
cost-effective solutions to managing weed blackberry (Rubus 
anglocandicans), an invasive shrub found worldwide. These 
modeling techniques were used to determine the estimated 
net present value of various control measures across different 
infestation levels. Results showed that control strategies were 
highly dependent on labor cost and method, and infestation 
level. Similar models could be applied to other plants com-
monly managed by small ruminants and potentially enhanced 
using precision management technologies like virtual fenc-
ing. However, if collars are required for nearly every animal, 
the cost of the system for a commercial operation may be a 
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concern, especially given the standard five sheep per one cow–
calf pair animal unit equivalent on grazing land.

Precision technology combined with machine learning can 
also quantify changes in sheep behavior to assist in monitor-
ing health and well-being (Mansbridge et al., 2018; Vázquez-
Diosdado et al., 2019). Using accelerometer and gyroscope 
sensors on ear tags and collars of sheep (n = 6) paired with 
various machine learning algorithms, Mansbridge et al. 
(2018) were able to classify the eating behaviors of sheep. 
Both ear and collar locations could distinguish between graz-
ing, ruminating, and non-grazing behavior, saving time and 
reducing cost and human error of traditional observation. 
Random forest models had the greatest accuracy for behavior 
classification for both ear (91%) and collar locations (92%). 
Confusion matrices indicated that the prediction of all three 
types of behavior had overall performance values of 86% and 
greater. The combination of accelerometer and gyroscope fea-
tures was likely a contributing factor to increased accuracy 
given both technologies’ greater number of features.

Accelerometer and gyroscope sensors were also used on 
the ears of differing ages, breeds, and body conditioned sheep 
(n = 26; Vázquez-Diosdado et al., 2019). Walking, lying, and 
standing behaviors were classified with online and offline 
algorithms. Additionally, research technicians visually time-
stamped behaviors with computer synchronized stopwatches 
for 2 h in the morning and 1 h in the evening. Results indi-
cated that a combined algorithm of offline k-nearest neighbors 
and online k-means was most accurate in predicting behavior. 
The greatest precision was for predicting walking (92.9%), 
while the least accurate was for predicting standing (78.4%), 
with an overall accuracy of 85.2%. Discrepancies in preci-
sion technology and actual observed behavior exemplify the 
need for continued research and validation of technology and 
modeling for sheep production. However, this study showed 
that using both online learning algorithms and offline trained 
classification approaches can accurately identify sheep behav-
ior (Vázquez-Diosdado et al., 2019).

Discussion
Precision technology has the potential to result in significant 
improvements in efficiency in livestock production systems, 
both confined and extensive, and accelerate animal science 
research across a range of subdisciplines ranging from ani-
mal health, nutrition, reproduction, and behavior. The five 
principles outlined in the precision livestock implementation 
process will aid both technology adopters and scientists to 
ensure their efforts to collect and utilize appropriate data 
and PSM will achieve desired animal performance improve-
ments. Tremendous value exists in using the five principles 
for sustainable precision livestock implementation to better 
understand and utilize “big data” through precision tech-
nology integration. In confined systems, precision feeding is 
commonly used to close the performance gap in feed use and 
harness individual animal potential. Likewise, in extensive 
systems, GPS and virtual fencing provide opportunities to 
close the gap between animal performance gains and resource 
utilization.

Precision tools required to capture key metrics must do so 
non-invasively to individual animals at costs low enough to 
facilitate economies of scale. Within extensive systems, pre-
cision tools need to be autonomous and not require signifi-
cant maintenance and human intervention, given that most 

precision technology is secured to an individual grazing ani-
mal that may be grazing for months at a time between gather-
ings. Therefore, the effective use and implementation of PSM 
in both confined and extensive systems require aligning tech-
nology implementation and data storage and processing with 
management expectations for cost, payback period, and time 
and effort required to maintain the technology. Identifying 
and communicating challenges in automated implementation 
are required to enhance effectiveness. For instance, precision 
applications between species (cattle, swine, and goats) must 
be customized to increase the practicality of use. Adopting 
a systems-level approach to precision livestock management 
will support the successful identification of performance gaps, 
implementation of measurement and management tools, and 
PSM development.

Realizing optimal PSM solutions that are feasible and prac-
tical in confined systems will result from increasing function 
and reliability, such as balancing individual rations, milk pro-
duction, and lactation duration. In confined systems, improve-
ments in precision feeding will likely decrease input feed 
requirements and increase nutrient cycling from manure. In 
extensive systems, PSM can balance optimal grazing rotations 
with energetic efficiency from differences in distance traveled 
for forage and water (including use of strategic or precision 
supplementation), so long as data communication challenges 
to inform PSM are overcome given the extant geographic 
nature of extensive systems, highlighting the importance of 
selecting the correct variables and avoiding unnecessary data 
collection. Extensive operations aim to increase resilience to 
climatic variations and maintain forage production, qual-
ity, and water quality, thereby decreasing nutrient variation 
and economic risks of nutrient shortages (e.g., selling due to 
drought). In either case, successful applications will increase 
confidence in precision solutions to inform and implement 
autonomous livestock management in both confined and 
extensive systems, where the health and welfare of livestock 
stand to be improved as individual animal data are collected 
and models provide additional insights over time.

Maximizing the potential benefits of precision livestock 
production and PSM implementation requires the consider-
ation of longer-term production capacity and human capital 
needs. Thus, a causal loop diagram was developed to illus-
trate the complexity of precision livestock production system 
development and adoption (Figure 5). Causal loop diagrams 
identify the complex feedback relationships (goal-seeking bal-
ancing relationships or reinforcing effects that either build or 
erode desired synergies) and associated time delays for key 
variables (Sterman, 2000) that would otherwise make under-
standing the effects of a change to a system difficult (e.g., 
shifting from conventional to precision livestock production). 
These feedback mechanisms drive the behavior (e.g., animal 
productivity) of a system and determine the level of response 
to changes in management decisions. Understanding which 
feedback mechanisms either drive or constrain precision live-
stock production capacity and implementation is critical to 
gain a more holistic understanding.

Improving system understanding through the long-term 
effectiveness in precision livestock systems requires produc-
ers, industry, and researcher entities to activate a reinforcing 
mechanism that enhances animal production and productiv-
ity, enhances economic profitability, and consequently fuels 
adoption (Figure 5). As knowledge, benefits, and implementa-
tion of precision technology expand, it will create a precision 
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workforce of professionals and aspiring young adults in com-
munity colleges, technical colleges, and universities seeking to 
improve the agricultural industry through precision technol-
ogy (Figure 5). An effective precision workforce will provide 
sufficient labor capacity, helping to keep maintenance and 
service costs well below the enhanced revenues gained from 
precision technology (Figure 5).

While there are numerous benefits to precision technol-
ogy, there have been anecdotal observations that suggest 
hidden feedback processes reside below our collective sur-
face of awareness. For example, as more precision technol-
ogy is employed in real-world production environments, 
producers and consultants have greater opportunities to 
observe the emerging needs and prospects that precision 
technology can fill in confined and extensive systems. As 
this information is relayed back to technology developers, 
both hardware and software upgrades and customizations 
are made in an attempt to address these emergent gaps. The 
gap between desired and actual levels of precision animal 
science skills is widened, as it will take significant time for 
existing experts to incorporate new information into their 
knowledge-base and service capabilities. Therefore, it may 
be more challenging to produce the number of trained 

specialists and service providers needed as learning and 
training requirements increase (i.e., workforce mastery; 
Figure 5).

The way to overcome the unintended fragmentation of 
workforce mastery is through modeling and the scientific 
research process. By harnessing the expected exponential 
growth in quantitative data, the adjustments to current tech-
nology features, and the emergent technology capabilities 
under development, animal science researchers will be better 
equipped to conceptualize, parameterize, and test valid PSMs 
that meet the criteria of production systems to result in sus-
tainable improvements as well as the clarity and user-flexi-
bility needed to communicate model insights to managers. 
Lastly, a much-needed system improvement link will match 
industry stakeholders with scientists to provide more oppor-
tunities for those in the field, facilitating technology transfer 
and management support to inform researchers about pro-
ducers’ goals, constraints, and habits that to-date have not 
been well integrated into individual precision applications. 
Incorporating human dimensions into model development 
will hedge against future unintended consequences of preci-
sion technology innovations and facilitate managers adopting 
and experimenting with such tools (Figure 1).

Figure 5. Causal loop diagram of precision livestock integration through precision system models, education workforce development, and producer and 
industry synergies. A positive (+) relationship between variables indicates that as the value of the arrowhead moves in the same direction (increases 
or decreases) as the variable at the tail (e.g., as Precision Technology Use increases, the Maintenance of Technology Infrastructure also increases). A 
negative (–) relationship between variables indicates that the variable at the arrowhead moves in the opposite direction of the variable at the tail (e.g., as 
Learning and Training Requirements increases, the number of Precision Specialist and Service Providers decreases). The double perpendicular lines on 
arrows represent time delays between variable responses. The R and B labels identify reinforcing (positive feedback) or balancing (negative feedback) 
relationships.
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Conclusion
Successful implementation of precision technology is critical 
for both confined and extensive systems. PSMs are required to 
achieve desired goals, and many opportunities exist to lever-
age current MM to achieve effective PSM. The five princi-
ples for sustainable precision livestock implementation are 1) 
determining a performance gap, 2) increasing data collection 
and analysis capabilities, 3) determining the optimal solution 
with aid of precision systems modeling, 4) informing and 
implementing management changes, and 5) measuring sys-
tems-level responses and information feedback to remaining 
performance gaps (Figure 2) create an outline for evaluating 
opportunities and overcoming implementation challenges 
of precision livestock production. Synergistic relationships 
between managers, industry (i.e., tech firms), and researchers 
will enable sustainable and long-term success while avoiding 
unintended consequences (Figure 5). Precision livestock pro-
duction in extensive systems is likely to have a tremendous 
impact given the environmental scope (54% of global sur-
face area) and livestock numbers represented within exten-
sive production settings. Technological advances required for 
extensive systems are likely to help further refine confined sys-
tems because they operate with far less infrastructure. Finally, 
the standardization of precision livestock management in 
extensive and confined systems will lead to better communi-
cation across supply chains (Menendez and Tedeschi, 2020) 
and consequently enhance consumer perception of animal 
production, especially regarding quality, environmental sus-
tainability, and welfare.
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