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Abstract: In business, managers may use the association information among products to define
promotion and competitive strategies. The mining of high-utility association rules (HARs) from
high-utility itemsets enables users to select their own weights for rules, based either on the utility
or confidence values. This approach also provides more information, which can help managers to
make better decisions. Some efficient methods for mining HARs have been developed in recent
years. However, in some decision-support systems, users only need to mine a smallest set of HARs
for efficient use. Therefore, this paper proposes a method for the efficient mining of non-redundant
high-utility association rules (NR-HARs). We first build a semi-lattice of mined high-utility itemsets,
and then identify closed and generator itemsets within this. Following this, an efficient algorithm is
developed for generating rules from the built lattice. This new approach was verified on different
types of datasets to demonstrate that it has a faster runtime and does not require more memory than
existing methods. The proposed algorithm can be integrated with a variety of applications and would
combine well with external systems, such as the Internet of Things (IoT) and distributed computer
systems. Many companies have been applying IoT and such computing systems into their business
activities, monitoring data or decision-making. The data can be sent into the system continuously
through the IoT or any other information system. Selecting an appropriate and fast approach helps
management to visualize customer needs as well as make more timely decisions on business strategy.

Keywords: data mining; non-redundant high-utility association rule; high-utility association rule;
high-utility itemset; lattice; Internet of Things

1. Introduction

In recent years, the Internet of Things (IoT) has offered many useful applications in healthcare,
transportation, agriculture, trade, etc. For instance, in retail groceries, IoT has built an infrastructure to
enable real-time interaction with customers in both physical and virtual stores [1]; Bluetooth-based
positioning systems have been combined with processing mining to investigate customer behaviors
regarding gender using their paths through a shopping mall [2]. Applying IoT into business brings
great value and convenience to management. However, with the growth of IoT, a large number of
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transactions are being tracked continuously, and thus there is a massive amount of data. Efficient
methods of data mining are necessary for better decision-making in this context. Many researchers
have focused on investigating data mining solutions for IoT and sensor systems, including works
such as: “Detecting Incremental Frequent Subgraph Patterns in IoT Environments” [3], “Mining
Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care” [4], and
“Mining Algorithm for Discovering Sequential Pattern in Wireless Sensor Network Environments” [5].

In traditional approaches [6], the mining of association rules is based on a support-confidence
framework in which the items have no difference in terms of importance between transactions, and the
utility (e.g., the weight) of each item is not taken into consideration. In recent decades, many researchers
have dedicated their efforts to high-utility itemset (HUI) mining, and several publications have been
released, for example on the mining of HUIs from vertically distributed databases [7], a two-phase
algorithm [8], the HUI-Miner algorithm, which uses a utility-list structure to store both utility and
heuristic information for pruning the search space [9], the EFIM algorithm, with an effective search
space pruning strategy [10], the mining of the top-k HUIs [11], and mining of HUIs with multiple
minimum utility thresholds [12]. In HUI mining (HUIM), each item is associated with a weight
(e.g., a utility, profit, etc.). An itemset is called a HUI if its utility is greater than a specified minimum
utility threshold (min-util).

HUIM is a more difficult problem than frequent itemset mining (FIM) [13] since the
downward-closure property does not hold. This property states that the subsets of a frequent
itemset are frequent, and that the supersets of an infrequent itemset are infrequent (and therefore
anti-monotonic). This has formed the basis for various previously developed methods, and is used to
discard the redundant parts of the search space. The supersets and subsets of a HUI may have a utility
that is lower, equal to, or higher than the utility of the itemset, and thus the utility of an itemset cannot
satisfy the downward-closure property. Many recent algorithms for mining HUIs have focused on
reducing the number of candidates generated [8–10,14]. However, relatively little effort has been made
to generate rules from HUIs.

Sahoo et al. [15] developed a method to mine HARs from HUIs. For each high-utility closed
itemset (HUCI), the algorithm scans all generators of each subset of HUCIs to generate a high-utility
generic basis (HGB), and from the HGB the authors proposed an algorithm to generate all HARs.
Mai et al. [16] also introduced the LARM algorithm by applying a lattice structure to construct a
semi-lattice of HUIs, and then to generate all HARs.

1.1. Motivation

Sahoo et al. [15] and Mai et al. [16] focused on the problem of mining all HARs. In some
decision-support systems, users only need to mine a small set of HARs for efficient use. Therefore,
this paper proposes a method for the efficient mining of NR-HARs. This approach can be applied into
any decision-making system in order to increase its potential to support business decisions based on a
set of NR-HARs instead of large set of HARs.

1.2. Contributions

The primary contributions of this research to a solution for mining NR-HARs using an HUI
semi-lattice structure are as follows:

• We provide a complete definition of NR-HARs based on HGB [15] in order to follow the best practice
of association rule mining that the rules should follow a condition related to their confidence.

• We propose the LNR-HAR algorithm generating all NR-HARs based on a lattice of HUIs.
• We experiment with various conditions to explore the efficiency of the LNR-HAR algorithm so

that this algorithm will be the best choice applying into any real applications, which need to
generate NR-HARs.
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The remaining sections are organized as follows. We review related works on mining HUIs, HARs,
and association rules from a lattice in Section 2. In Section 3, we present a statement of the problem
and some basic definitions, along with some theorems and propositions, where possible. The new
algorithm, LNR-HAR, is developed and illustrated in Section 4. Section 5 describes the performance
evaluation of the algorithm in detail, based on experimental results for both the runtime and memory
utilization. In the final part, we present the conclusion and discuss some directions for future research.

2. Related Work

2.1. High-Utility Itemset Mining

It is easy to recognize that each item has its own weight in a real transaction database, and many
recent studies take the utility into consideration. The purpose of HUIM is to solve problems that FIM
cannot. In HUIM, each item can appear one or many times in each transaction, and each item has its
own weight.

Several algorithms for HUIM have been proposed. Liu et al. [8] designed an algorithm for
mining HUIs, although this needs to scan the database multiple times and generates many candidates.
Many approaches have thus been put forward to avoid large numbers of database scans and the
generation of numerous candidates, such as those using the incremental high-utility pattern (IHUP) [17],
fast high-utility miner (FHM) [18], efficient high-utility itemset mining (EFIM) [10], high-utility itemset
miner (HMiner) [19], utility-list buffer for high-utility itemset miner (ULB-Miner) [20], and sliding
window based high-utility pattern mining (SHUPM) [21].

Ahmed et al. [22] also investigated the HUIM problem and proposed a new approach for mining
HUIs by applying new three novel tree structures: (1) incremental HUP lexicographic tree (IHUPL-Tree)
to capture the incremental data without any restructuring operation; (2) IHUP transaction frequency
tree (IHUPTF-Tree) to obtain a compact size by arranging items according to their transaction frequency
(descending order); and (3) IHUP-transaction-weighted utilization tree (IHUPTWU-Tree), which is
designed based on the TWU value of items in descending order to reduce the mining time.

Fournier-Viger et al. [18] presented the FHM algorithm, which is considered effective for mining
HUIs; however, this approach encounters problems with storage space due to the generation of a
huge set of HUIs. Zida et al. [10] investigated the calculation of a new and tighter upper bound on
the utility, called the sub-tree utility, at parent nodes rather than at child nodes during a depth-first
search, and proposed the EFIM algorithm; this is a very effective algorithm, which effectively prunes
the redundant search space.

Krishnamoorthy [19] examined the utility list and introduced a novel compact version, and also
defined a data structure called a virtual hyperlink. This new algorithm and data structure were
applied in the HMiner algorithm in combination with a candidate pruning strategy to give an effective
technique for mining HUIs. Duong et al. [20] realized that using a utility list structure in the mining
of HUIs involves high memory consumption. These authors proposed the ULB-Miner algorithm,
which uses a novel structure called a buffered utility list to reuse the memory allocation for the utility
list, so that the set of HUIs can be returned quickly without the need for a large amount of memory.
Yun et al. [21] investigated the HUIM problem and proposed a representative algorithm called SHUPM.
This new solution does not generate candidate itemsets, and hence reduces the search space so that the
HUIM process is more effective in terms of runtime and memory usage. Nguyen et al. [14] proposed
an efficient method for mining HUI in dynamic profit databases. The authors stated the problem of
mining HUIs in such databases, modified the EFIM algorithm as a baseline algorithm, and proposed
an efficient algorithm based on P-set to reduce the number of transaction scans.

Song and Huang [23] proposed a HUIM framework, (Bio-HUIF) including three algorithms,
HUIF-PSO, HUIF-GA, and HUIF-BA, for mining high-utility itemsets in a transaction database using
evolutionary algorithms (bioinspired algorithms). The authors also conducted multiple experiments
and found that it performed better in term of speed compared to the HUPEUMU-GARM algorithm
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(GA-based HUIM algorithm) proposed by Kannimuthu and Premalatha [22] and HUIM-BPSO algorithm
developed by Lin et al. [24].

Recently, Dawar et al. [25] proposed a hybrid framework for mining HUIs. This algorithm is more
effective than the FHM [18] and EFIM algorithms [10], especially on dense datasets.

Most researchers have been focusing on how to eliminate redundant candidates during the process
of mining HUIs; however, the time needed to compute the utility value of itemsets is a significant
part of the whole running time. To reduce the long runtime of utility computation, Qu et al. [26] thus
presented the basic identification algorithm (BIA) for mining HUIs. They then proposed a candidate
tree with a novel structure and based on this developed a candidate tree-based algorithm called the
fast identification algorithm (FIA) to quickly identify HUIs. The FIA is able to mine HUIs quickly,
although it consumes much memory since it is based on a candidate tree, which is saved completely in
the memory.

Wu et al. [27] also investigated the same problem and found that most of previous algorithms
generate large set of candidates. They then proposed a new approach which applied pruning strategies
and named the algorithm HUI-PR (HUIM with pruning strategies). The algorithm aimed to reduce the
computation time as well as reduce the search space.

Gan et al. [28] extended the occupancy measure to assess the utility of patterns in transaction
databases. The authors then proposed the high-utility occupancy pattern mining (HUOPM)
algorithm. This focuses on user preferences in terms of frequency, utility, and occupancy. They also
presented a novel frequency-utility tree (FU-Tree) and new kinds of compact data structures (utility
occupancy list and FU-table). Based on these, HUOPM can extract complete HUIs quickly without
candidate generation.

Recently, Gan et al. [29] conducted a survey of utility-oriented pattern mining (UPM) to
present current approaches to high-utility itemset mining. The authors reviewed the current
basic approaches, including apriori-based approaches, tree-based approaches, projection-based
pattern-growth approaches, and new data format-based approaches. They then did surveys on
some advanced topics of HUIM, such as mining high average utility itemsets, HUIM in dynamic
environments, concise representations of utility patterns, mining high-utility quantitative itemsets and
rules, high-utility sequential pattern mining, high-utility episode mining, UPM in big data, UPM in
stream data, and UPM with various interesting constraints.

Besides high-utility itemsets mining, researchers have also focused on an extension problem of
high-utility itemset mining, i.e., high average utility itemset mining. Because the utility of a larger
itemset is generally greater than that of a smaller itemset, high average utility itemsets provide a better
assessment of the utility of each itemset by considering both the length of itemsets and their utilities.
The HAUI-Miner algorithm proposed by Lin et al. [30], a more efficient algorithm with multiple
minimum high average-utility counts (called MEMU) proposed by Lin et al. [31], and the HAUIM
algorithm proposed by Zhang et al. [32], are representative approaches to solving high average utility
itemset problems.

2.2. High-Utility Association Rule Mining

The utility-confidence framework is widely used in multiple systems and applications,
and especially in retail and e-commerce. Lee et al. [33] proved this in their research on marketing
solutions for cross-selling using utility-based association rule mining as compared to HUIM.

Sahoo et al. [15] presented a definition of NR-HARs, and proposed the HGB algorithm to generate
NR-HARs and the HGB-HAR algorithm to explore a set of high-utility association rules (HARs).

Mai et al. [16] also applied the lattice concept [34] to mine HARs better. Their approach [35]
involved constructing a lattice structure of HUIs, and then using the LARM algorithm to generate
HARs. The lattice approach was proved to be efficient for mining frequently closed itemsets [34] and
closed high-utility itemsets [36], mining generalized association rules [37], mining non-redundant
association rules [38], and mining association rules [39]. With regard to HUIM, LARM is the first
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algorithm that applies the lattice approach and it has shown good performance in the mining of HARs,
especially when used on large datasets.

3. Problem Statement

Let I be a finite set of items, I = {i1, i2, . . . , im}, in which each item ir ∈ I (1 ≤ r ≤ m) has a weight
(utility) value p(ir). Itemset X is formed from a collection of k distinct items, X = {j1, j2, . . . , jk} (ju ∈
I). A set of transactions Tid (where id is a unique identifier) is called a database D = {T1, T2, . . . , Tn}.
In each different transaction Tid, each item ir is associated with a quantity value q(ir, Tid), which is the
number of items purchased ir. The problem of mining all NR-HARs from D involves generating all
NR-HARs with a utility no less than a user-specified minimum utility threshold min-util, and a utility
confidence no less than a user-specified minimum utility confidence threshold min-uconf.

Sahoo et al. [29] introduced a definition of non-redundant association rules in which R1 : X1 → Y1

and R2 : X2 → Y2 are two valid HARs in the utility-confidence framework. R2 is made redundant by
R1 if X2 ∪ Y2 ⊆ X1 ∪ Y1, R1. utility ≥ R2.utility, support (R1) = Support (R2), X1 ⊆ X2, and Y2 ⊆ Y1

where Ri.utility is the utility of rule Ri, i = 1, 2 and support (Ri) = supp(Xi ∪ Yi). However, in most
cases related to the mining of association rules, this definition should include a condition related to the
confidence of the rules, as set out below.

Definition 1. Let R1 : X1 → Y1 and R2 : X2 → Y2 be two valid HARs in the utility-confidence framework.
R2 is made redundant by R1 if X2 ∪ Y2 ⊆ X1 ∪ Y1, ucon f (R1) ≥ ucon f (R2), support (R1) = Support (R2),
X1 ⊆ X2, and Y2 ⊆ Y1.

4. Mining NR-HARs from a Lattice of High-Utility Itemsets

The high-utility itemsets lattice (HUIL) structure is made up of several nodes, and there are
parent–child relationships between each pair of nodes. Figure 1 shows the HUIL built from HUIs that
are mined from above sample database in Tables 1 and 2. The list of HUIs is presented in Table 3.

Each node represents an itemset, utility, support, “closed” flag and “generator” flag [36]. The utility
and support values of the root node are equal to zero. If the value of the IsClosed flag for a node is true,
the node represents a HUCI. Likewise, if the value of the IsGenerator flag for a node is true, the node
represents a generator. The identity or name of a node is constructed by aggregating all the items in
the itemset represented by the node.
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Figure 1. Lattice of HUIs with closed and generator itemsets.

Table 1. Transaction database D.

Tid Transaction

T1 B:4, D:1, E:6, F:2
T2 C:1, E:4, F:5
T3 A:4, C:1, E:5, F:1
T4 C:1, E:2, F:6
T5 B:3, C:1, E:1
T6 A:1, F:2, G:1
T7 C:1, E:1, F:4, G:1, H:1
T8 C:7, E:3
T9 H:10

Table 2. Items and weights (utilities).

Item Utility

A 4
B 3
C 2
D 5
E 1
F 1
G 1
H 2
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Table 3. List of high-utility itemsets (HUIs) from D with a min-util of 20.

Itemset Utility Itemset Utility Itemset Utility

A 20 AF 23 ACE 23
B 21 BE 28 BEF 20
C 22 BD 31 BDE 38
E 22 CE 37 CEF 36
F 20 CF 24 ACEF 24
H 22 EF 36 BDEF 25

AE 21 AEF 22

4.1. Algorithm

The LNR-HAR algorithm is developed to traverse across the nodes in a HUCIL and mine all
NR-HARs. Starting from the root, for each child node {A, B, C, E, F, H}, the FindNR-HARs method is
triggered at line 3. The FindNR-HARs(latticeNode) method will search the rules with an antecedent
node via the EnumerateNR-HARs method (line 7). If a node is a generator (node.IsGenerator = True)
(line 6), then the FindNR-HARs method is called recursively (lines 10–12) for all child nodes of the
node. In the EnumerateNR-HARs method, the queue data structure Q is initialized (line 14) with
all child nodes of childNode (line 16), and each child node is tracked to avoid a collision using the
trackingList collection variable (line 14). We then process each node Li taken from Q. If Li is a HUCI,
rule R : Lc.Itemset → Li.Itemset r Lc.Itemset is used; if R has a utility confidence value (R.uconf ) greater
than or equal to min-uconf (line 24), R is added into the results (line 25–27). If R is valid, Q is enqueued
in the list of child nodes of Li (lines 32–37). If R is invalid and Q still has itemsets, the algorithm
continues to process the itemsets dequeued from Q. The details of algorithm 1 are described as follows.
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Algorithm 1: LNR-HAR (HUCIL, min-uconf )

Input: HUCIL, min-uconf
Output: Set of NR-HARs: NRs
Methods:
FindNR-HARsFromLattice()

1. NRs = ∅
2. Foreach childNode ∈ rootNode.Children
3. FindNR-HARs(childNode)
4. End

FindNR-HARs(node)

5. If node.Flag = False then
6. If node.IsGenerator = True then
7. EnumerateNR-HARs(node)
8. End
9. node.Flag = True
10. Foreach childNode ∈ node.Children
11. FindNR-HARs (childNode)
12. End
13. End

EnumerateNR-HARs(node)

14. Q = ∅, trackingList = ∅
15. Foreach childNode ∈ node.Children
16. Q.Enqueue(childNode)
17. trackingList.Add(childNode)
18. End
19. While Q ∅
20. Li = Q.Dequeue()
21. ProcessChild = True
22. If Li.isClosed = True then
23. R = {node.Itemset → Li.Itemset \ node.Itemset}
24. u = CalculateConfidence (R)
25. If ucon f ≥ min-uconf then
26. R.conf = u
27. Add R into NRs
28. Else
29. ProcessChild = False
30. End
31. End
32. If ProcessChild then
33. Foreach Lc ∈ Li.Chidren
34. Q.Enqueue(Lc)
35. trackingList.Add(Lc)
36. End
37. End
38. End
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4.2. Illustrations

This section illustrates how the proposed LNR-HAR algorithm works to mine NR-HARs from the
database given in Tables 1 and 2. The LNR-HAR algorithm will generate a result of 10 NR-HARs as
shown in Table 4.

Table 4. Non-redundant high-utility association rules (NR-HARs) with min-uconf = 80%.

Rule Confidence (%) Utility Support

A→F 100 23 2
F→E 90 36 6

A→CEF 80 24 2
B→DE 100 38 2

BEF→D 100 25 1
C→E 100 37 5
E→F 81 36 7

AE→CF 100 24 1
F→CE 80 36 6
CF→E 100 36 4

Firstly, the result variable NRs is initialized to NULL. Then, the algorithm scans all children nodes
of rootNode: {A, B, C, E, F, H}. For node A, which is a generator, the algorithm will call FindNR-HARs to
check whether all of the rules formed by the antecedent A (R: A → X , X is child node of A) are valid.
Below is a step-by-step description of the mining of rules from a lattice node A with min-uconf = 80%.

• Enter the FindNR-HARs method with itemset A (node A).
• A.Flag is False and A.IsGenerator is True, so the EnumerateNR-HARs (A) method is called.
• In EnumerateNR-HAR with A as an input parameter, declare Queue = ∅, MarkLNode = ∅.
• Enqueue Q and extend trackingList by the list of child nodes of A, Q = {AE, AF}, trackingList =

{AE, AF}.
• Next, set Q , ∅, Li = Q.Dequeue() = AE.
• AE is not a HUCI. Push child nodes of AE into Q and trackingList. Q = { AF, ACEF}, trackingList =

{AE, AF, ACEF}.
• Next, set Q , ∅, Li = Q.Dequeue() = AF.
• Since AF.IsClosed = True (AF is an HUCI), RA1 : A → F, R.ucon f = 100% > min − ucon f ⇒

Add RA1 into RuleSet. Since RA1 is valid, the ProcessChild variable is True, and all child nodes of
AF are inserted into the queue, Q = {ACEF}, trackingList = {AE, AF, ACEF}.

• Set Li = Q.Dequeue() = ACEF.
• Since ACEF is a HUCI, RA2 : A → CEF, R.ucon f = 80% ≥ min− ucon f ⇒ Add RA2 into RuleSet .

Then, child nodes of ACEF are pushed into Q and trackingList. Node ACEF has no child nodes,
i.e., Q = ∅.

• FindNR-HARs is called recursively to process the child nodes {AE, AF} of A. The steps for finding
rules from these child nodes are similar to those for the processing of node A.

The LNR-HAR algorithm will then carry out similar steps for the remaining child lattice nodes
of the root node {E, F, C, B, H}. Since node H has no children (Figure 1), no rules are formed when
processing node H.

Based on Definition 1, we introduce the HGB* algorithm by modifying the line 6 of the HGB
algorithm [15] to achieve the same result, produce a more accurate set of results, as well as follow the
best practice of association rule mining. The completed HGB algorithm with the modified sixth line is
shown in algorithm 2.
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Algorithm 2: HGB* (HUCI, min-uconf )

Input: HUCI, min-uconf, min-util
Output: Set of non-redundant high utility association rules RuleSet

1. For each itemset h ∈ HUCI do
2. Set Lma = ∅ //minimal antecedent
3. For each h′ ⊆ h in increasing order of size
4. Set Ltemp = ∅

5. For each g ∈ HGh′ and g , h

6. If luv (g,h)
u(g) ≥ min− ucon f then //modified from HGB algorithm to obtain more accuracy set of non-redundant

high utility association rules
7. Compute Lma = Lma ∪ g
8. else
9. Compute Ltemp = Ltemp ∪ g
10. End
11. End
12. For each g ∈ Ltemp
13. Compute A1 = {i1, i2, . . . ., ik}, where each ij ∈ h′ r g

14. For (j = 1, Aj , ∅; and (i ≤ k); i ++)

15. For all l ∈ Aj

16. If ( luv({gl}, h)
u({g})

≥ min− ucon f and @ gs ∈ Lma
∣∣∣ gs ⊆

{
gl
}
) then

17. Remove all l’ ⊃
{
gl
}

from Lma
18. Compute Lma = Lma∪

{
gl
}

19. End
20. End
21. Compute Aj+1 = Apriorigen (Aj, min-util)

22. End
23. End
24. For each gs ∈ Lma
25. Compute R = gs → h gs
26. Compute R.Utility = h.utility

27. Compute R.ucon f = luv (gs, h)
u(gs)

28. Compute RuleSet = RuleSet ∪R
29. End
30. End

Although HGB* applies definition 1 to have more accurate data, its performance is still not better
than LNR-HAR algorithm. The LNR-HAR algorithm extracts results from the lattice of HUIs having
IsClosed and IsGenerator indicators, and then based on a flag, ProcessChild to determine finding rules
with child nodes to be stopped or continued. This ProcessChild flag helps to save most of processing
time. HGB or HGB* process all set of HUCIs, and for each HUCI these algorithms scan all subsets of
each HUCI and generator to form a Lma list (a list of all the generators of a HUCI), and then process
the Lma list to produce HARs. The whole process of HGB or HGB* needs a long time to finish as well
as significant memory storage. The details of the comparison are described in the following section.

5. Experimental Results

HGB* algorithm is an extension of HGB algorithm to mine NR-HARs. However, HGB* aims to
provide more accurate data since the problem of mining association rules should include a condition



Sensors 2020, 20, 1078 11 of 17

related to the confidence of the rules. The above change in algorithm 2, modifying the line 6 of the HGB
algorithm [15], does not create the difference on performance in term of runtime and memory usage
between HGB and HGB*. In this section, we compare the performance of the LNR-HAR algorithm
with that of the HGB* in terms of mining NR-HARs. The experiments were implemented in the
C# programming language using .Net framework 4.5. The testing machine was a sixth-generation
quad-core 64 bit Core-i7 processor, clocked at 2.5 Ghz (6500U), running Windows 10 with 16 GB RAM.
The testing datasets [40] are summarized in Table 5. The following datasets are common one that
have often been used to evaluate the efficiency of algorithms. As detailed in below Table 5, Chess,
Mushroom, and Accidents are dense datasets having small groups of items and a large number of
items per transaction, while Retail and Chainstore are sparse datasets having large groups of items and
fewer items per transaction. In terms of size, Chess and Mushroom are two small datasets, Accidents
and Retail are medium-size datasets, and Chainstore is a large dataset.

Table 5. Summary of the testing datasets.

Dataset Transactions Items Size (MB) Type

Chess 3196 75 0.63 Dense
Mushroom 8124 119 1.03 Dense
Accidents 340,183 468 63.1 Dense

Retail 88,162 16,470 6.42 Sparse
Chainstore 1,112,949 46,086 79.2 Sparse

We also executed our algorithm (LNR-HAR) on different datasets, with different values of
min-uconf (between 60% and 90% in intervals of 10%), and selected min-util values according to each
dataset. The results for the NR-HARs are reported in Table 6.

Table 6. Number of NR-HARs from the testing datasets.

min-uconf
(%)

Chess Mushroom Retail Chainstore Accidents

min-uti
(%)

# of
NR-HARs

min-uti
(%)

# of
NR-HARs

min-util
(%)

# of
NR-HARs

min-util
(%)

# of
NR-HARs

min-util
(%)

# of
NR-HARs

90 25 47,622 10 2405 0.01 1859 0.005 49 10 25,061
80 25 161,631 10 2774 0.01 5573 0.005 69 10 100,614
70 25 325,207 10 3178 0.01 12,819 0.005 143 10 232,272
60 25 439,584 10 3555 0.01 20,967 0.005 366 10 422,415
90 26 19,626 11 1376s 0.02 437 0.01 16 11 6411
80 26 61,469 11 1481 0.02 1441 0.01 19 11 23,911
70 26 111,304 11 1616 0.02 3751 0.01 31 11 51,700
60 26 139,006 11 1721 0.02 6629 0.01 67 11 83,388
90 27 8028 12 685 0.03 219 0.02 9 12 1657
80 27 22,945 12 707 0.03 664 0.02 11 12 5568
70 27 36,495 12 740 0.03 1733 0.02 12 12 11,332
60 27 39,614 12 757 0.03 3132 0.02 15 12 17,778
90 28 2788 13 334 0.04 149 0.03 5 13 367
80 28 7215 13 334 0.04 394 0.03 6 13 1024
70 28 9203 13 340 0.04 1025 0.03 6 13 1855
60 28 9,286 13 340 0.04 1862 0.03 7 13 2453

5.1. Runtime for Mining NR-HARs

We conducted testing and compared the performance between the LNR-HAR and HGB* algorithms
on two kinds of dataset, sparse and dense. Sparse datasets have a large number of transactions compared
to dense datasets, and the items appear in very few transactions. A large number of HUIs is generated
from a dense dataset, in which there are also large numbers of HUCIs and generators. The LNR-HAR
algorithm runs faster than the HGB* algorithm on dense datasets, although there is not much difference
because both suffer from the problem of a large number of HUCIs and generators. The LNR-HAR
algorithm also applies definition 1 to skip processing a large number of nodes. It operates more
efficiently with the set of HUIs generated from a sparse dataset and produces results much faster
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than the HGB* algorithm. The following reports present the details of the runtime comparison on
each dataset.

For the same set of HUIs, the execution time of the LNR-HAR algorithm was reduced if the value
of min-uconf was increased. In some testing datasets, such as Chess and Mushroom, there were few
NR-HARs for a high value of min-uconf (greater than 60%). The runtime of HGB* for the mining of all
NR-HARs, therefore, was increased if we increased min-uconf (Figure 2 and Figure 6).
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When mining NR-HARs from the Chess dataset using the LNR-HAR algorithm with min-util =

27%, the execution time for min-uconf = 80% was 273.73 ms, for min-uconf = 90% it was 125.36 ms,
and for min-uconf = 100% it was 61.02 ms. In contrast, with the HGB* algorithm it took 23.221 ms for
min-uconf = 80%, 49.397 ms for min-uconf = 90%, and 61.932 ms for min-uconf = 100% (Figure 2a).

We also evaluated the performance on the Chess dataset using a constant value of min-uconf =

70% and several values for min-util ∈{29%, 28%, 27%, 26%, 25%}. The runtime for mining NR-HARs
increased for both the HGB* and the LNR-HAR algorithms; however, LNR-HAR needed lesser time
than HGB* (Figure 2b).

Using a similar testing approach to that used for the Chess dataset, we kept min-util fixed at 0.03%
and used different min-uconf values with the Retail dataset. The LNR-HAR algorithm needed much
less time than the HGB* algorithm; while HGB* needed an average of 3,163 ms to extract all NR-HARs,
LNR-HAR only took an average of 13 ms to complete this task (Figure 3a). We also increased the
number of HUIs to evaluate the speed of LNR-HAR at a fixed value of min-uconf = 70%, as shown in
Figure 3b. The runtimes for both the LNR-HAR and HGB* algorithms increased, although the former
remained faster.Sensors 2019, 19, x FOR PEER REVIEW 12 of 16 
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For the Mushroom dataset, the execution time of LNR-HAR was 114.34 ms, and that of HGB* was
519.18 ms for min-util = 12% and min-uconf = 70% (Figure 4). This indicates that LNR-HAR performs
better with regard to processing speed.
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The results for the other datasets, namely Chainstore (Figure 5) and Accidents (Figure 6),
also verified that LNR-HAR required a lower execution time than the HGB* approach.
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The LNR-HAR algorithm showed its extremely good performance compared to the HGB*
algorithm when both were applied to the Accidents dataset by keeping fixed min-uconf = 70% and
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inputting various min-utility ∈ {11%, 12%, 13%, 14%, 15%}. On the Accidents dataset, with min-util =
15%, the LNR-HAR algorithm only required 0.01 ms while HGB* required 0.97 ms to mine all NR-HARs
having min-uconf = 70%. In other cases, where min-util = 14%, min-uconf = 70%s, the LNR-HAR
algorithm needed 0.97 ms while HGB* took 2 ms; where min-util = 11%, min-uconf = 70%, the runtime
for the LNR-HAR algorithm was only 15% of the runtime for HGB* (363 ms/2470 ms). Figure 6b shows
the logarithmic scale chart indicating the performance comparison in term of runtime for mining
NR-HARs from the Accidents dataset. Overall, the runtime to execute the LNR-HAR algorithm is
much lesser than that required to execute the HGB* algorithm.

5.2. Memory Usage for Mining Non-Redundant Association Rules

Since the mining of NR-HARs is based on HUCIs and generators, both LNR-HAR and HGB* have
the same set of rules. The memory required to handle HUCIs, generators, and NR-HARs was also the
same. Our experimental results, shown in Figures 7–11, indicated that the memory usage required by
both algorithms (LNR-HAR and HGB*) to mine all NR-HARs was approximately equal.
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6. Conclusions

In this research, we present an efficient method for mining NR-HARs called LNR-HAR.
The algorithm is based on the utility-confidence framework and the lattice concept, and can obtain
the semantic relationships among HUIs. To the best of our knowledge, this is the first study of the
mining of NR-HARs using a lattice structure. The outcome of this work is a new algorithm, LNR-HAR,
and the modified algorithm HGB* from the HGB algorithm [15], in which the new LNR-HAR algorithm
needs less execution time for the same memory usage as the HGB* algorithm. The approach can be
integrated into various systems to quickly mine NR-HARs. The algorithm was tested on the popular
datasets including both dense and sparse types, which could be generated from the systems based
on IoT or sensor systems. We also compared the proposed algorithm to the previous research to
evaluate the performance as well as the correctness. In future work, we intend to improve the memory
usage of LNR-HAR algorithm and study ways of quickly generating HUIs, HUCIs, and generators,
in order to rapidly extract HARs and NR-HARs. Besides, we intend to carry out research on providing
non-redundant high-utility association rules as a representative training sets for machine learning
algorithms to speed up the decision-making activities or predict the trends of customers.
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