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Abstract: Globally, tuberculosis (TB) is a major cause of death due to antimicrobial resistance.
Mycobacterium tuberculosis CAS1-Kili strains that belong to lineage 3 (Central Asian Strain, CAS)
were previously implicated in the spread of multidrug-resistant (MDR)-TB in Lusaka, Zambia. Thus,
we investigated recent transmission of those strains by whole-genome sequencing (WGS) with Illu-
mina MiSeq platform. Twelve MDR CAS1-Kili isolates clustered by traditional methods (MIRU-VNTR
and spoligotyping) were used. A total of 92% (11/12) of isolates belonged to a cluster (≤12 SNPs)
while 50% (6/12) were involved in recent transmission events, as they differed by ≤5 SNPs. All the
isolates had KatG Ser315Thr (isoniazid resistance), EmbB Met306 substitutions (ethambutol resis-
tance) and several kinds of rpoB mutations (rifampicin resistance). WGS also revealed compensatory
mutations including a novel deletion in embA regulatory region (−35A > del). Several strains shared
the same combinations of drug-resistance-associated mutations indicating transmission of MDR
strains. Zambian strains belonged to the same clade as Tanzanian, Malawian and European strains,
although most of those were pan-drug-susceptible. Hence, complimentary use of WGS to traditional
epidemiological methods provides an in-depth insight on transmission and drug resistance patterns
which can guide targeted control measures to stop the spread of MDR-TB.

Keywords: Mycobacterium tuberculosis; CAS-Kili; recent transmission; multidrug resistance; whole-
genome sequencing
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1. Introduction

Worldwide, close to 4000 lives in a day are lost due to tuberculosis (TB). It is a major
cause of death ascribed to antimicrobial resistance [1]. In Zambia, like many other de-
veloping countries, TB is the leading cause of death especially among people living with
HIV/AIDS [2].

Mycobacterium tuberculosis, the cause of TB, has seven major human-adapted lineages.
One of these is lineage 3 (L3) which is predominant in East Africa, the Middle East and
South Asia [3,4]. Central Asian Strain 1-Kili (CAS1-Kili) forms part of lineage 3 sub-clades
and is more prevalent in the eastern part of Africa [3,5].

Molecular epidemiological methods such as mycobacterial interspersed repetitive
units-variable number of tandem repeats (MIRU-VNTR [6], spoligotyping [7] and IS6110-
based restriction fragment–length polymorphism (RFLP) [8] have been applied to under-
stand M. tuberculosis transmission based on genotypic clustering [9–11]. Nevertheless, these
genotypic methods, though targeting polymorphic sites, only interrogate one percent of
the M. tuberculosis genome and have limited discriminatory power [12–14]. Therefore,
whole-genome sequencing (WGS) provides an ultimate method for high resolution of
strain relatedness and investigation of recent transmission [15]. Further, it explores more
drug-resistant mutations that occur outside the targeted regions by PCR-based assays [16].
Recently, WGS has become affordable, though it is still a very big challenge for developing
nations. Based on WGS results, though not yet standardized, many reports have described
strains belonging to a cluster and been involved in a recent transmission event when they
differ by twelve or fewer single nucleotide polymorphisms (SNPs) and five or fewer SNPs,
respectively, in their core genomes [15,17].

Previously, we reported a relatively higher percentage of lineage 3 Spoligotype Inter-
national Type (SIT) 21/CAS1-Kili strains among multidrug-resistant (MDR) M. tubercu-
losis strains in Zambia when compared to other southern African countries [18]. Despite
its low proportions in the region compared to predominant lineage 4, lineage 3 strains
(SIT21/CAS1-Kili) were associated with MDR-TB and implicated for its spread in Lusaka,
Zambia [18,19]. Among the studied MDR M. tuberculosis strains, 24-loci MIRU-VNTR and
spoligotyping showed clonal expansion of the SIT21/CAS1-Kili strains [18]. The findings
in those studies supported the possibility of recent transmission, though this could not
be concluded due to the limitations of the genotyping methods used in discriminating
between closely related strains. Thus, this study aims to investigate recent transmission of
the MDR M. tuberculosis SIT21/CAS1-Kili strains in Lusaka, Zambia, by WGS.

2. Results
2.1. Cluster Analysis

Among our Zambian strains, 11/12 (92%) differed by not more than 12 SNPs, while 6
(50%) strains differed with at least one other strain by 5 or fewer SNPs. Strain 7 was closely
related to strains 4, 5, and 11. Additionally, strain 7 had the lowest average SNP difference
of 9 SNPs to other strains, as shown in Table 1. On the contrary, strain 6 had the highest
average SNP difference of 23 SNPs to the other strains.
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Table 1. Similarity matrix showing core-SNP differences of the 12 SIT21/CAS1-Kili strains. SNPs
differences between strains ranged from 1 to 26 SNPs.

Strain ID SNP Difference 1

S01 S03 S13 S08 S10 S09 S12 S04 S07 S11 S05 S06 ≤5 ≤12 ≥13

S01 9 8 11 12 9 11 11 10 11 14 24 0 9 2

S03 9 7 10 11 8 10 10 9 10 13 23 0 9 2

S13 8 7 9 10 7 9 9 8 9 12 22 0 10 1

S08 11 10 9 3 5 12 10 9 10 13 23 2 9 2

S10 12 11 10 3 6 13 11 10 11 14 24 1 8 3

S09 9 8 7 5 6 10 8 7 8 11 21 1 10 1

S12 11 10 9 12 13 10 12 11 12 15 25 0 8 3

S04 11 10 9 10 11 8 12 1 2 7 23 2 8 1

S07 10 9 8 9 10 7 11 1 1 6 22 2 10 1

S11 11 10 9 10 11 8 12 2 1 7 23 2 10 1

S05 14 13 12 13 14 11 15 7 6 7 26 0 5 6

S06 24 23 22 23 24 21 25 23 22 23 26 0 0 11

Legend:

Antibiotics 2022, 11, x FOR PEER REVIEW 3 of 12 

S12 11 10 9 12 13 10 12 11 12 15 25 0 8 3 
S04 11 10 9 10 11 8 12 1 2 7 23 2 8 1 
S07 10 9 8 9 10 7 11 1 1 6 22 2 10 1 
S11 11 10 9 10 11 8 12 2 1 7 23 2 10 1 
S05 14 13 12 13 14 11 15 7 6 7 26 0 5 6 
S06 24 23 22 23 24 21 25 23 22 23 26  0 0 11 

Legend:  ≤ 5 SNPs;  ≤ 12 SNPs;  ≥ 13 SNPs. 1 Number of strains differing by ≤5, ≤12, and ≥13 SNPs to an indi-
vidual strain. The letter S before the ID stands for strain. Boxes are highlighted according to the SNP differences as shown 
in the legend. 

2.2. Resistance Patterns and Phylogeny 
All strains had the same mutations for isoniazid resistance (KatG, Ser315Thr). With 

the exception of one strain with EmbB Met306Leu (Strain 6, Figure 1), 92% (11/12) had the 
same mutation associated with ethambutol resistance (Met 306 Ile) though only 25% (3/12) 
had the corresponding phenotypic resistance, as shown in Figure 1. Among 11 EmbB 
Met306Ile mutants, 36% (4/11) strains had additional mutations in embA, and three of these 
were phenotypically resistant to ethambutol. Additionally, all the 12 strains had re-
sistance-associated mutations to streptomycin. Of these twelve strains, four and one had 
mutations in rpsL and rrs genes, respectively, and all were resistant to streptomycin, while 
7/12 had mutations in gid and only two out of those seven were resistant to streptomycin. 
Overall, strains had different mutations towards rifampicin resistance while all RpoB 
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> T and −16 C > G nucleotide variants in the embA gene. Strains having the same mutations
for drug resistance to several drugs had a correspondingly small number of SNP differ-
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Kingdom (Figure 2b). The majority of the global strains were pan-susceptible (78%, 
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pared to strains from other countries (p < 0.000) (Supplementary Figure S2). 
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2.2. Resistance Patterns and Phylogeny

All strains had the same mutations for isoniazid resistance (KatG, Ser315Thr). With
the exception of one strain with EmbB Met306Leu (Strain 6, Figure 1), 92% (11/12) had
the same mutation associated with ethambutol resistance (Met 306 Ile) though only 25%
(3/12) had the corresponding phenotypic resistance, as shown in Figure 1. Among 11 EmbB
Met306Ile mutants, 36% (4/11) strains had additional mutations in embA, and three of these
were phenotypically resistant to ethambutol. Additionally, all the 12 strains had resistance-
associated mutations to streptomycin. Of these twelve strains, four and one had mutations
in rpsL and rrs genes, respectively, and all were resistant to streptomycin, while 7/12 had
mutations in gid and only two out of those seven were resistant to streptomycin. Overall,
strains had different mutations towards rifampicin resistance while all RpoB Ser450Leu
mutants had compensatory mutations in RpoC Val483 (Figure 1). Among four strains
having RpoB Asp435 deletion, three had a mutation in RpoB Thr1047Ile and one had that
in RpoC Trp105Arg. The strains seemed to have accumulated drug-resistance-associated
mutations in a stepwise pattern (Figure 1). One strain (strain 3) had both −16 C > T and
−16 C > G nucleotide variants in the embA gene. Strains having the same mutations for
drug resistance to several drugs had a correspondingly small number of SNP differences
between them (Table 1, Figure 1, and Supplementary Figure S1).

2.3. Phylogenetic Assessment of Global Sub-Lineage SIT21/CAS1-Kili (L3.1.1)

Most of the lineage 3.1.1 (SIT21/CAS1-Kili) strains were from Europe, 52% (250/480),
followed by Africa, 48% (228/480) (Supplementary Table S1). Zambian strains formed
a monophyletic clade, closer to Malawian strains but both descending from the Tanza-
nian strains (Figure 2). The clade having the Zambian strains also had strains from the
United Kingdom (Figure 2b). The majority of the global strains were pan-susceptible
(78%, 375/480), while 13% (60/480) were MDR and 2% (9/480) were resistant to other
anti-tuberculosis drugs. Moreover, Zambian strains had the lowest median SNP distance
when compared to strains from other countries (p < 0.000) (Supplementary Figure S2).
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resistance-associated mutations of each strain are represented by different shapes on the branches 
and highlighted as indicated by the legend. Fs in the legend stand for frameshift. A, is for phenotypic 
drug susceptibility patterns. Black and white circles represent results of drug-resistant and suscep-
tible phenotypes, respectively. B, Represents drug-resistant-associated mutations. Black and white 
squares indicate the presence and absence of drug-resistance-associated mutations to a particular 
drug, respectively. CTK in the district column stands for a district Chikankata. An ‘S’ letter before 
each ID number stands for strain. In the legend, RIF, INH, STR, EMB and PZA stand for rifampicin, 
isoniazid, streptomycin, ethambutol and pyrazinamide, respectively. 

 

Figure 1. Phylogenetic tree illustrating the relations of the studied SIT21/CAS1-Kili strains. Drug-
resistance-associated mutations of each strain are represented by different shapes on the branches
and highlighted as indicated by the legend. Fs in the legend stand for frameshift. A, is for phenotypic
drug susceptibility patterns. Black and white circles represent results of drug-resistant and susceptible
phenotypes, respectively. B, Represents drug-resistant-associated mutations. Black and white squares
indicate the presence and absence of drug-resistance-associated mutations to a particular drug,
respectively. CTK in the district column stands for a district Chikankata. An ‘S’ letter before each ID
number stands for strain. In the legend, RIF, INH, STR, EMB and PZA stand for rifampicin, isoniazid,
streptomycin, ethambutol and pyrazinamide, respectively.
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Figure 2. (a) Phylogenetic tree for global L3.1.1 strains. The countries are represented by small circles
on the tips of the tree and colored as shown in the legend. The inner (R) and outer circles (C) were



Antibiotics 2022, 11, 29 6 of 12

colored according to the drug resistance patterns and regions of strain isolation (as continents),
respectively. (b) Enlargement of the clade containing the Zambian strains.

3. Discussion

The SIT21/CAS1-Kili M. tuberculosis strains were previously shown to be associated
with the clonal spread of MDR-TB in the Lusaka District [18,19]. In this study, we applied
WGS to investigate recent transmission events among SIT21/CAS1-Kili strains that was
suggested by the combination of 24-MIRU-VNTR loci and spoligotyping.

Of the 12 evaluated SIT21/CAS1-Kili strains, 11 belonged to a cluster, as they differed
by 12 or fewer single nucleotide polymorphisms (SNPs) in their core genomes, while
6 strains were involved in recent transmission events as they differed by ≤5 SNPs to at least
one other strain. Therefore, WGS revealed that the SIT21/CAS1-Kili strains were closely
related as they exhibited comparatively low variabilities in SNPs. In addition, several
strains shared the same combinations of drug-resistance-associated mutations to isoniazid,
ethambutol, rifampicin, and other anti-TB drugs. This provided more evidence on the
clonal spread of MDR SIT21/CAS1-Kili strains in this region, calling for interventions to
stop this possible outbreak.

Despite some reports indicating the reduced fitness as a result of drug resistance
evolution [20,21], others have indicated emanating high fitness strains with preserved
ability to spread [22,23]. Thus, the latter might explain the scenario in our current study.
In addition, 75% (9/12) of strains had additional mutations besides the major resistance-
associated mutations to rifampicin in rpoB, of which 33% (4/12) of strains with RpoB
Ser450Leu mutation also had compensatory mutations in RpoC, Val483Ala (2/4) and
Val483Gly (2/4). These compensatory mutations have been implicated in mitigating the
fitness defects caused by RpoB Ser450Leu substitution in M. tuberculosis [24] which in
turn contribute to the successful spread of MDR-TB. Interestingly, other strains had novel
mutations in rpoB (3/12, Thr1074Ile) and rpoC (1/12, Trp105Arg) which were suspected to
be compensatory as they occurred in association with a known mutation, Asp435 deletion
(4/12), in the rpoB rifampicin resistance determining region (RRDR). However, this can
only be confirmed by allelic exchange experiments.

Similarly, 33% (4/12) of strains had mutations in more than a single resistance-
conferring gene to ethambutol. The phenomenon has been reported to be associated
with high resistance to ethambutol [25–28]. In fact, all three strains which were phenotyp-
ically resistant to ethambutol in this study had multiple mutations towards ethambutol
resistance. In addition, one of the three EMB-resistant strains (strain 8) had a novel mutation
in the embA gene regulatory region (−35 A > deletion), whilst one other strain (strain 3) had
−16 C > T and −16 C > G nucleotide variants in embA, which was suggestive of ongoing
evolution within the strain. All the 12 MDR strains had mutations in codon embB306 which
has been associated with isoniazid resistance [29], MDR, and more likely to evolve to exten-
sively drug-resistant TB (XDR) [27,28,30]. Further, codon embB306 mutations have been
reported to reduce susceptibility of M. tuberculosis to other drugs used in the treatment regi-
men [30,31]. Hence, reports have suggested mutations in embB306 as a marker for broader
drug resistance than ethambutol resistance [31]. Therefore, based on this understanding,
it can be speculated that possibly the strains first acquired drug resistance to isoniazid
(KatG, Ser315Thr) and ethambutol (EmbB306) then independently became resistant to other
drugs, rifampicin, streptomycin, and pyrazinamide, while propagating to the next patients
(Figure 1). As a result, rapid and low-cost diagnostic techniques for detecting embB306
mutations in drug-resistant strains, particularly in high-burden drug-resistant TB areas, are
encouraged to guide patient management and control of drug-resistant TB [28,31,32].

Even though some strains were resistant to all the first-line anti-TB drugs and strepto-
mycin, none had resistance mutations to other second-line drugs. This at least left some
treatment options for these patients, though on the other hand, calls for improved resis-
tance detection and individualized treatment. The observed discrepancy in phenotypic
and genotypic drug susceptibility patterns for ethambutol can be attributed to lack of
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consistency of phenotypic DST to ethambutol resistance determination as indicated by
several reports [23,30]. Mutations in embB306, which is associated with the majority of drug-
resistant strains to ethambutol, have also been detected in susceptible strains [31], whilst
the same discrepancy for streptomycin might be due to low-level resistance-conferring
mutations in gid to the drug, which may result in susceptible phenotype [33]. Mutations in
rrs and rpsL genes have been associated with intermediate to high [34] and high levels of
resistance to streptomycin [33–36], respectively. In addition, drug susceptibility testing is
not routinely performed on all patients with TB, hence the treatment regimen in some cases
may not be appropriate and this facilitates resistance amplification and further transmission
of primary drug-resistant TB [32].

Phylogeny showed that some strains involved in recent transmission events were from
patients residing in different districts (Monze, Chikankata) and Lusaka City (Figure 1 and
Supplementary Figure S3). This conceivably suggests that there could be many unknown
related intermediary cases not captured by this study hence posing a threat for more
outbreaks in the future. Therefore, this calls for more improved contact tracing strategies to
curtail this transmission.

Further, some previously identical strains by MIRU-VNTR and spoligotyping were
delineated as unique strains by WGS, indicating its supremacy to traditional genotyping
methods [37,38]. Though the application of WGS on TB epidemiology is still challenging in
developing nations like Zambia, its combination where possible, with traditional genotyp-
ing methods, can make it cost-effective and be utilized as a supporting tool, especially for
large-size population studies.

Generally, the global SIT21/CAS1-Kili (L3.1.1) strains were pan-susceptible to anti-TB
drugs (Figure 2a). Therefore, the outbreak of drug resistance among Zambian strains
might be due to local factors such as late diagnosis, poor compliance, incomplete contact
investigations, or other unknown reasons in the TB control system. Interestingly, the
relationship of our Zambian strains to those from Malawi and Tanzania was suggestive of
the possible origin of this strain to be Tanzania, in agreement with Chihota et al., 2018 [3].
Then, it spread to Malawi before Zambia. This finding also illustrated that the TB structure
in a country is likely to be influenced by TB events in the neighboring countries in addition
to local factors. Therefore, regional coordination in TB control is cardinal as movements of
people for trade, migration, and refuge facilitate the spread of TB [39,40]. SIT21/CAS1-Kili
(L3.1.1) strains related to the Zambian and other African countries are also causing TB
disease in European countries such as the United Kingdom, as suggested by the existence
of these strains in the same clade. This spread can be attributed to the movements of people
from the eastern part of Africa to Europe for economic activities and refuge [38,41].

The study limitations included small sample size due to poor quality DNA for some
samples and inadequate patient history to precisely infer the direction for person-to-person
transmission. In addition, a larger sample size with a longer collection period of the
strains would have facilitated the determination of the emergency of MDR-TB and its
hotspots in Lusaka. Additionally, the sample size also affected the generalization of these
results. Therefore, we recommend MDR-TB surveillance on the large scale, whenever
possible, to provide more information on the spread of this strain and other genotypes in
the community, which can inform policy.

4. Materials and Methods
4.1. Study Samples

We used strains from the previous study conducted in Lusaka from 2013 to 2017 [18].
In the previous study, 87 MDR-TB strains were typed by spoligotyping and 24-loci MIRU-
VNTR, of which 25 CAS1-Kili strains formed the largest clonal cluster and were suspected
to represent a recent transmission event [18]. All CAS1-Kili strains were considered for
WGS though only 13 were successfully sequenced. The other 12 strains had poor DNA
quality, hence they were excluded from the study.
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4.2. Culturing and Drug Susceptibility Testing

Briefly, sub-culturing of the isolates was performed in BACTEC™ 960 MGIT™ (My-
cobacteria Growth Indicator Tube) system (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA) following the manufacturer’s instructions. The critical concentrations for
isoniazid, rifampicin, streptomycin, and ethambutol, as prescribed by the kit manufacturer
(Becton, Dickinson and Company), of 0.1, 1.0, 1.0, and 5.0 g/mL were used, respectively.

4.3. DNA Extraction and Genotyping

DNA was extracted by heating method as described previously [18,19]. The extracted
DNA was transported to the Hokkaido University International Institute for Zoonosis
Control, Japan for analysis. Further, 24-loci MIRU-VNTR [6] and spoligotyping [7] were
performed as previously described [18,19].

4.4. Whole-Genome Sequencing Analysis

Library preparations were performed following Nextera XT DNA Library Preparation
Kit (Illumina Inc., San Diego, CA, USA) manufacturer’s instructions, and Illumina MiSeq
2500 platform was used for sequencing.

WGS data analysis was carried out as previously described [42,43]. The raw paired
reads were checked for quality using fastqc, results compiled using multiQC [44]. Trim-
momatic was used to trim adapters, low-quality bases and filtering for a minimum read
length of 20 (SLIDINGWINDOW:4:20 MINLEN:20) [45]. Variants were called using Snippy
pipeline [46]; briefly, reads were aligned to the reference strain H37Rv (NC_000962.3) by
Burrows Wheel Aligner (BWA), manipulated with SAMtools, and variant calling with
freebayes, while variant annotation was performed with SnpEff. Further, Snippy-core
generated full and core genome alignments. Gubbins [47] was further used to generate
filtered polymorphic sites. Therefore, filtered SNPs in variable and invariable sites were
used to calculate a pairwise distance matrix and maximum likelihood phylogenetic tree
using RAxMLv8.2.11 in Geneious v 10.2.6, Biomatters, Ltd., Auckland, New Zealand
https://www.geneious.com (accessed on 16 December 2021). The mean coverages of
the analyzed reads for 12 CAS1-Kili strains ranged from 35.73 to 139.32 (Supplementary
Table S2). One strain (strain 02) was excluded due to poor coverage. Resistance patterns
and sub-lineages were determined by TB Profiler [48,49] and PhyResSE [50]. We further
manually confirmed the variants using CLC Genomics workbench 10 (QIAGEN, Hilden,
Germany). To understand the likely pattern of drug-resistant mutations acquisition by the
strains, the drug-resistant mutations were conveniently plotted on the phylogenetic tree.

4.5. Phylogenetic Assessment of Global Sub-Lineage SIT21/CAS1-Kili (L3.1.1)

Sub-lineage 3.1.1 strain’s accession numbers were obtained from TB-Profiler, projects
PRJEB29435 [51] and PRJEB33896 [32]. A total of 527 pairs of raw reads were downloaded
from the ENA browser and 480 of these were successfully analyzed. All raw reads were
processed as described above. Additionally, to avoid false hits in the repetitive regions,
SNPs in PE/PPE gene families were filtered by M. tuberculosis BED mask file included in
Snippy-package. Further, Gubbins generated filtered polymorphic sites and a maximum
likelihood phylogenetic tree rooted to M. canetti. The phylogenetic tree was trimmed
of M. canetti but topology maintained, for better visualization using ggtree [52–55]. To
confirm the sub-lineage and drug resistance patterns for some strains, TB-Profiler was
used. Further, SNP distances using Ape package [56] and Wilcoxon signed-rank test were
calculated in R-studio [55]. Only countries with more than 10 strains were considered for
SNP distance calculation.

5. Conclusions

The study revealed ongoing transmission of MDR SIT21/CAS1-Kili strains in Lusaka,
Zambia, which is a public health concern and needs more evaluation. It also showed the
high resolution of WGS in delineating closely related strains and determining antibiotic

https://www.geneious.com
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resistance. Further, the study supports the complimentary use of WGS with traditional
methods. Intensified case finding, improved drug resistance detection and adherence to
treatment can help interrupt the transmission chains.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics11010029/s1, Supplementary Figure S1: Nucleotide changes in drug-resistance-
associated genes and number of strains having the same nucleotide change among the 12 SIT21/CAS1-
Kili strains. The strain IDs are arranged in relation to Figure 1 (starting from the top). Fs in the table
represents frameshift. Supplementary Figure S2: Comparison of median SNP distances of global
representative L3.1.1 strains by country to Zambian strains. The differences in median SNP distance
were significant (p < 0.000). Only countries with more than 10 strains were considered. Supplementary
Figure S3: Map showing the residence districts of the 12 patients highlighted in different colors. Seven
patients were from Lusaka, and one from Chikankata. Monze and Kabwe had two patients each.
Supplementary Table S1: Number of L3.1.1 global strains from each country that were successfully
analyzed. Supplementary Table S2: Information on the 12 CAS1-Kili Zambian strains.
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