
Frontiers in Immunology | www.frontiersin.

Edited by:
Iñaki Alvarez,

Universitat Autònoma de Barcelona,
Spain

Reviewed by:
Howard Davidson,

University of Colorado Anschutz
Medical Campus, United States

Bruce Verchere,
University of British Columbia, Canada

*Correspondence:
Alexia Carré
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Autoimmune type 1 diabetes (T1D) results from the intricate crosstalk of various immune
cell types. CD8+ T cells dominate the pro-inflammatory milieu of islet infiltration (insulitis),
and are considered as key effectors of beta-cell destruction, through the recognition of
MHC Class I-peptide complexes. The pathways generating MHC Class I-restricted
antigens in beta cells are poorly documented. Given their specialized insulin secretory
function, the associated granule processing and degradation pathways, basal
endoplasmic reticulum stress and susceptibility to additional stressors, alternative
antigen processing and presentation (APP) pathways are likely to play a significant role
in the generation of the beta-cell immunopeptidome. As direct evidence is missing, we
here intersect the specificities of beta-cell function and the literature about APP in other
cellular models to generate some hypotheses on APPs relevant to beta cells. We further
elaborate on the potential role of these pathways in T1D pathogenesis, based on the
current knowledge of antigens presented by beta cells. A better understanding of these
pathways may pinpoint novel mechanisms amenable to therapeutic targeting to modulate
the immunogenicity of beta cells.

Keywords: antigen presentation, antigen processing, autophagy, crinophagy, insulin granule, MHC class I, neo-
epitopes, signal peptide
INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-
producing beta cells. It stems from a complex interplay of innate and adaptive immune cells. CD8+
T cells dominate the immune infiltration of islets and play a prominent role as final effectors of beta-
cell loss (1). There is also growing evidence supporting the idea that beta-cell dysfunction is another
key driver of T1D pathogenesis (2). The heterogeneity of pancreas histopathology between T1D
donors and even across islets from the same pancreas, both in terms of immune infiltrates and
residual beta cells, have led to the definition of age-related endotypes (3), in which the component of
beta-cell dysfunction may be dominant in adult-onset cases (4, 5). Effector CD8+ T cells recognize
MHC Class I (MHC-I)-peptide complexes at the surface of beta cells. The conventional MHC-I
antigen processing and presentation (APP) machinery is a multi-step process (Figure 1A) where
i) cytosolic proteins of microbial or self-origin are degraded into peptides in a proteasome-mediated
manner; ii) the resulting peptides are transported into the endoplasmic reticulum (ER) via the
org March 2021 | Volume 12 | Article 6396821
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transporter associated with antigen processing (TAP). Here,
iii) they are further trimmed by ER aminopeptidase (ERAP)1
prior to iv) loading on nascently-formed MHC-I molecules that
are associated to TAP through tapasin; v) the stable peptide-
MHC-I complexes are finally translocated to the Golgi complex
and to the cell surface (6). This review addresses the specificities of
the direct alternative MHC-I APP (aAPP) machinery within beta
cells and its potential role in T1D pathogenesis (Figures 1B–D).
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It therefore focuses on the CD8+ T-cell responses that are
triggered by MHC-I APP, notwithstanding the role of other cell
types, and particularly of MHC-I and MHC-II APP by
professional antigen-presenting cells (APCs) for the priming of
naïve T cells. Since the beta-cell APP pathways are poorly if at all
documented, we here provide a hypothesis-generating review that
bridges the separate bodies of knowledge available forMHC-I APP
and beta-cell biology.
A B D

C

FIGURE 1 | Conventional (A) and putative alternative APP pathways (B–D) in beta cells. (A) In conventional APP pathways, misfolded proteins are degraded by the
proteasome into peptides that are transported through TAP into the ER lumen. Here, they are further trimmed by ERAP1 and loaded onto MHC-I molecules that are
associated to TAP via tapasin. The peptide-MHC-I complexes are exported to the Golgi and then to the cell surface. (B) Under inflammatory conditions, ER stress
induces the UPR, which increases protein degradation and antigen presentation. The immuno-proteasome is also induced, further increasing APP and possibly
resulting in alternative peptide splicing events and neo-epitopes generated. (C) Signal peptides are docked within the ER membrane. While the protein translation
continues, the signal peptide is cleaved by the signal peptidase (SP) and further trimmed by the signal peptide peptidase (SPP). The N-terminal cleavage products of
the signal peptide are released in the cytosol and can re-enter the ER through TAP for antigen presentation. The C-terminal cleavage products remaining in the ER
can be loaded onto MHC-I molecules in a TAP- and proteasome-independent manner. (D) I. Cellular components are engulfed by nascent phagophore at the ER
membrane, thus forming autophagosome, likely containing MHC-I molecules. II. Endocytosis of cell surface component forms endosomes, which can contain both
MHC-I molecules and TAPBR promoting peptide exchange within endosomes. These vesicles can be directed to the Golgi apparatus, where peptides (free or
released from MHC-I) can be trimmed by Golgi enzymes such as furins prior to loading onto MHC-I molecules. Autophagosomes, if not directly fused to lysosomes
for degradation of their content, can fuse with endosome to form amphisomes, thus opening another peptide exchange pathway. These vesicles can subsequently
be directed to lysosomes for degradation. III. Old insulin granules can be degraded by crinophagy. T1D induces changes (in red) characterized by enhanced ER
stress (B), increased insulin production and signal peptide processing (C), and altered vesicle trafficking (D), thus enhancing surface exposure of MHC-I complexes.
Red marks indicate changes occuring in T1D: vertical arrows represent the increase or decrease of a step or pathway; bended arrows represent favored events;
crosses represent blocked events. Some cellular components were modified from Servier Medical Art (smart.servier.com).
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SECRETING INSULIN: THE ACHILLES’
HEEL OF BETA CELLS?

Like other endocrine cells, beta cells are hormone-secreting cells
organized in glands that are highly vascularized, allowing the
secretion of their products directly into the bloodstream. These
features may influence the APP pathways used by these cells (2).
Indeed, beta cells are equipped to sense changes in blood glucose
levels and to respond by releasing appropriate amounts of
insulin. For this purpose, they need to constantly adapt their
secretory response to changes in metabolic and nutritional state.
This adaptation is critical compared to that of other tissues
because beta cells are long-lived and virtually non-proliferating,
hence they can only modulate their function but not their cell
numbers. Beta cells accommodate these metabolic variations by
intensifying the synthesis of insulin and its precursor proinsulin.
Under these intense bio-synthetic rates, misfolded proteins are
more likely to accumulate within the ER, activating the unfolded
protein response (UPR) (7). The UPR is a natural adaptive
response that maintains cellular homeostasis by fulfilling three
main tasks: to decrease the protein translation rate, to enhance
the synthesis of protein-folding chaperones, and to increase the
degradation of misfolded proteins into peptides through the
proteasome (7). While part of the free cytosolic peptides
generated by this process is further hydrolyzed to single amino
acids, another portion is transported to the ER via TAP for the
loading onto MHC-I molecules, thus shaping the catalog of
MHC-I-bound peptides (immunopeptidome) presented at the
beta-cell surface (Figure 1B). Beta cells rely on a well-balanced
UPR to ensure their function and survival (8). Thus, beta cells are
constantly functioning on the edge between physiological and
pathological UPR and are exquisitely sensitive to additional
stressors that can flip this delicate balance and lead to a
compensatory maladaptive UPR further increasing ER stress
prior to apoptosis (9, 10). Metabolic overload can act as an
accelerator but is unlikely to drive this UPR transition on its own, as
such overload is more common in type 2 diabetes and yet does not
usually trigger islet autoimmunity. The environmental factors at
play are likely multiple, but their identity and interaction with a
susceptible genetic background remain ill-defined, with the possible
exception of enteroviral infections (11). Considering the link
between the UPR and APP through increased proteasomal
degradation of misfolded proteins, the shift from physiological to
pathological UPR may modulate the immunopeptidome and the
beta-cell visibility to the immune system.

Under physiological conditions, the beta cells maintain
consistent intracellular stores of insulin granules to allow their
rapid exocytosis when the glycemia rises. While insulin granules
are found by thousands in individual beta cells (12), not all are
secreted. Indeed, the remarkable functional plasticity of beta cells
includes recycling pathways to dispose of old (>5 days) or excess
secretory granules. Commonly, insulin granules are degraded
through macro-autophagy, by which they are engulfed by
autophagosomes prior to degradation in lysosomes. Another
endocrine-specific recycling pathway is a specialized macro-
autophagy process named crinophagy, by which insulin
Frontiers in Immunology | www.frontiersin.org 3
granules fuse directly with lysosomes, thus generating so-called
crinosomes (Figure 1D). While the role of these different types of
autophagy has been extensively studied in type 2 diabetes,
investigations in T1D are scanty. One recent study (13)
reported defective macro-autophagy and diminished
crinophagy in the beta cells of non-obese diabetic (NOD) mice
compared to non-diabetic NOD littermates and non-obese
resistant (NOR) mice. These conclusions were confirmed in
T1D pancreas specimens and were based on the lack of co-
localization of the lysosomal marker Lamp1 with either the
granule marker proinsulin or the autophagosome marker LC3,
thus suggesting a defect in the late stage of autophagy, when
granules/autophagosomes fuse with lysosomes. An alternative
explanation is that this reduced crinophagy may simply reflect a
limited accumulation of old granules due to a compensatory
higher insulin exocytosis rate in remaining beta cells.
Interestingly, this study also reported a parallel increase of
autophagosomes in insulin-positive cells of pancreata from
autoantibody-positive non-diabetic donors in comparison to
both control and T1D donors, whose autophagosome content
was instead similar. As autophagy helps to prevent oxidative
damage and promote cell survival, we can hypothesize that the
beta-cell stress imposed by the inflammatory milieu of insulitis
triggers an increase in their autophagy rate (14), prior to, and
likely independently of, overt hyperglycemia. Interestingly,
lysosomal autophagy can also degrade mitochondria (15). This
process, known as mitophagy, is also part of stress responses
(16), and is regulated by CLEC16A, whose genetic locus encodes
variants associated with T1D risk (17). Pancreatic CLEC16A
knockout mice harbor a defect in both mitochondrial and
granule turnover (16), pointing to an intersection between the
mitophagy and crinophagy pathway. It is thus possible that the
altered granule disposal observed in stressed beta cells may also
reflect overloading of this pathway by mitochondrial substrates.
Its modulation by the CLEC16A genetic background may
exacerbate the effect of stress on aAPPs. This feature also
emphasizes the current view of lysosomes as dynamic
structures that interact with different intracellular organelles
and are continuously consumed and re-formed rather than just
being end-stage degradation hubs (15).

Given this notion of impaired autophagy in T1D (13), what is
the fate of the autophagosomes and insulin granules that are not
degraded by lysosomes? In non-professional APCs, surface
peptide-loaded MHC-I molecules seem to be recycled by
clathrin-independent mechanisms, forming endosomes (18,
19). Whether and how these endosomes are degraded by
lysosomes or targeted toward an early or late recycling
pathway is unclear. Nonetheless, peptide exchange for MHC-I
loading is likely to occur within the endosome. The TAP binding
protein related (TAPBPR) chaperone is currently held as the
main candidate for this role (20), and its preference for a slightly
acidic to neutral pH is in the range of that found in endosomes.
Another possibility is the encounter between endosomes and
autophagosomes prior to recycling (21), forming so-called
amphisomes (Figure 1D). Hence, the autophagosomes that are
not degraded by lysosomes may be more likely to fuse with
March 2021 | Volume 12 | Article 639682
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endosomes and gain access to the cell surface. Considering that
the autophagosome membrane is thought to derive from the ER
and can thus harbor MHC-I molecules amenable to peptide
loading (22), this process may provide an aAPP pathway.
Similarly, insulin granules that are not degraded by lysosomes
could indirectly participate in APP through engulfment by
autophagosomes. Collectively, these data suggest that
alternative autophagy-derived pathways for MHC-I loading
could be operational in beta cells and participate in the
recycling processes needed for disposing of insulin granules.
While these pathways are active in resting beta cells, they may be
further enriched in T1D as autophagy is impaired, possibly
providing novel disease-enhanced pathways.

Besides insulin, secretory granules contain other proteins that
we r e po r t e d t o dom ina t e t h e b e t a - c e l l - s p e c ifi c
immunopeptidome targeted by islet autoimmunity. First, a
large fraction of MHC-I-bound peptides recovered from a
human beta-cell line and primary islets originate from these
granule proteins (23), which is not unexpected given the
abundance and fast turnover of these proteins in beta cells
(24). Second and most important however, these granule-
derived peptides were also prominent targets recognized by
circulating CD8+ T cells (23, 25). More recently, we found that
H2-Kd-restricted peptides derived from the murine orthologues
of some of these proteins, namely secretogranin-5, urocortin-3
and proconvertase-2, are also recognized by islet-infiltrating CD8
+ T cells in prediabetic NOD mice (25). Moreover, CD8+ T cells
recognizing these peptides were diabetogenic upon in-vivo
transfer into NOD/scid recipients (25). Besides their
localization in granules, it is noteworthy that these novel
antigens (together with chromogranin A and others) (26) share
Frontiers in Immunology | www.frontiersin.org 4
several other features with insulin. First, they are all soluble
proteins that are released along with insulin during granule
exocytosis, a feature that could endow beta cells with a unique
capability of sensitizing T cells at distance following APP of these
proteins by extra-pancreatic APCs (2, 27). Second, they are all
produced as precursors (pro-proteins) and subsequently
undergo intermediate processing, first in the ER to cleave the
signal peptide (see below), and then in immature granules
through proconvertases, carboxypeptidase E (CPE) and furins
that lead to their bioactive products (Figure 2). Intriguingly,
reduced levels of proconvertases and CPE along with impaired
proconvertase activity and proinsulin processing in beta cells has
been repeatedly reported for T1D, even before clinical onset (4,
28–32). These enzymatic defects could lead to increase protein
misfolding, which might feed the proteasomal recycling pathway
and further fuel the APP machinery. It is also possible that
granule protein byproducts may accumulate in the ER, the Golgi
or the cytosol and thus become accessible for processing by other
enzymes and for loading onto MHC-I molecules, either directly,
through retrograde transport to the ER, or indirectly, via TAP.
Of further note, proconvertases themselves as well as (pro)
cathepsins are also synthesized as inactive precursors and
subsequently activated, often through auto-enzymatic
reactions. We can thus speculate that ER stress and impaired
proconvertase activity may also negatively impact these
processes since their earliest steps of ER export and
self-activation.

An unsolved conundrum is how the T-cell targeting of
granule antigens that are mostly shared with other endocrine
cells such as alpha cells leads to an autoimmune response that is
exquisitely beta-cell-specific. This question is even more
A

B

FIGURE 2 | Schematic representation of (A) the insulin maturation process and (B) mapping of proconvertase cleavage sites within insulin granule proteins.
(A) Insulin is translated as a preprohormone comprising a signal peptide (light blue), followed by the B chain, C peptide and A chain. The first processing step (1)
consists in the cleavage of the signal peptide, followed by (2) the cleavage by proconvertases of the C peptide and formation of disulfide bonds between the A and B
chain. In T1D, this second step is often impaired, leading to proinsulin accumulation. (B) PC1/3 and PC2 optimal (RR, KR) and minimal (KK, RK) cleavage sites along
with furin cleavage sites (R-X-X-R) (where X is any amino acid) are mapped on major insulin granules proteins. aa, amino acids.
March 2021 | Volume 12 | Article 639682
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important in light of recent reports suggesting that MHC–I
upregulation is more prominent in alpha cells, even before
clinical T1D (33). Protective factors at play in alpha cells may
include their lower biosynthetic rate, the narrower dynamic
range of their secretory response (34), their lower susceptibility
to ER stress-induced apoptosis (35), and their higher expression
of non-classical, inhibitory MHC-I molecules, i.e. human
leukocyte antigen (HLA)-E (36). Moreover, autophagy seems
less important for the maintenance of alpha-cell metabolism (37)
than it is for beta cells (38), possibly making autophagy-related
APP pathways less active.
NEO-EPITOPE GENERATION
IN BETA CELLS

The large stores of insulin granules and the functional
adaptability to metabolic changes of beta cells point to a
remarkably active translation machinery, which enhances the
odds of neo-epi tope generat ion. Neo-epi topes are
unconventional peptides such as post-translational modified
sequences, defective ribosomal products (DRiPs), alternative
mRNA splicing products and proteasomal peptide splicing
products (i.e. resulting from the fusion of two non-adjacent
regions of a protein). We reported that some of these products
contribute to the MHC-I peptidome of beta cells (23, 25, 26).
Very little is however known about how such peptides are
generated and whether the required pathways are active in beta
cells and/or professional APCs. In spite of their tissue specificity,
the overall quantitative contribution of neo-epitopes to the beta-
cell immunopeptidome appears to be minor, as only a limited
number of MHC-I-restricted neo-epitopes has been reported to
date (26). A possible scenario is that these neo-epitopes might be
symptomatic of early beta-cell dysfunction, e.g. altered granule
bio-synthesis/disposal, and become visible to T cells via the
uptake of granules or of their exocytosed content by APCs (2).
The combination of generation mechanisms favored by early
beta-cell dysfunction and of recognition mechanisms favored by
T cells that have escaped thymic deletion may endow them with a
crucial role in the onset of islet autoimmunity.

Another aspect is the central role that the constitutive
proteasome, and its inflammation-induced counterpart, the
immunoproteasome, play in the generation of some of these
neo-epitopes (39). It is noteworthy that in-vitro exposure of beta
cells to interferon (IFN)-g induces the expression of the
immunoproteasome (40) which is known to enhance
proteolysis, whereas immunoproteasome-deficient cells
accumulate reactive oxygen species (ROS) (41). The
immunoproteasome deficiency has also been investigated by
in-vivo knockout in mice (42), which led to a CD8+ T-cell-
mediated multi-organ autoimmunity comprising insulitis and
CD8+ T cells reactive to an IGRP beta-cell peptide with low
affinity H-2Kb binding. The authors hypothesized that the
constitutive proteasome alone could fail at generating enough
high-affinity MHC-I binders. This possibility is supported by
Frontiers in Immunology | www.frontiersin.org 5
other studies highlighting that the immunoproteasome uses the
same cleavage sites as the constitutive proteasome, hence
impacting the relative quantity rather than the quality of the
peptides produced (39, 43, 44). Defective immunoproteasome
activity and the resulting decrease in peptide output could thus
allow weak-binding immunogenic peptides usually outcompeted
by stronger binders to be processed and presented. Conversely,
the inflammatory insulitis microenvironment of T1D may
induce the well-known MHC-I upregulation (45), but also
immunoproteasome expression, thus further enriching the
immunopeptidome and favoring strong MHC binders. The
higher binding affinity of these peptides may synergize with
MHC-I upregulation to increase their availability for T-cell
recognition. This increase in beta-cell visibility to T cells may
provide one explanation to our recent observation that beta-cell-
reactive CD8+ T cells circulate at similar frequencies in T1D and
healthy donors (23, 46). This observation suggests that the
difference between the ‘benign’ autoimmunity of healthy
donors and the progressive autoimmunity of T1D patients may
lie not only in their T-cell repertoire, but also in their beta-cell
vulnerability (2).
PATHWAYS FOR SIGNAL
PEPTIDE EPITOPES

Insulin is a protein hormone that is initially synthesized as a
preprohormone. Preproinsulin is linearly composed of a signal
peptide, as most secretory and membrane proteins, a B chain, a C
peptide and an A chain (Figure 2A). Once the signal peptide is
translated, it binds the signal recognition particle that docks to its
receptor within the ER membrane and thus allows the direct
translocation of newly synthesized insulin into the ER (Figure
1C). As the translation continues, the signal peptide is cleaved by
signal peptidase (SP) and undergoes intramembrane proteolysis
by the signal peptide peptidase (SPP) (47) while the nascent
proinsulin is released in the ER. Proinsulin is further cleaved by
endopeptidases that remove the C peptide, and folded by
chaperones that favor the formation of two disulfide bonds
between the B and the A chain, leading to mature insulin
stored into granules until its exocytosis. The biosynthesis and
secretion of insulin are two distinct and thoroughly regulated
processes. Secretion is triggered by a higher glucose
concentration (48, 49), meaning that insulin biosynthesis is
continually active even at normal glucose concentrations and
that most regulation occurs at the secretion stage. This feature
has two consequences for APP. First, high numbers of free signal
peptides are continually cleaved and released in the cytosol and
ER. Second, this high bio-synthetic rate leads to a high number of
misfolded insulin molecules, estimated to represent up to 20% of
insulin production in normal, unstressed, beta cells (7).

The fate of post-cleavage signal peptides is poorly described.
The most studied instance is that of non-classical HLA-E
molecules, which present signal-peptide sequences derived
from classical HLA-A, -B and -C molecules (50). Surface
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peptide-loaded HLA-E complexes serve as a marker of proper
MHC-I expression and prevent NK-cell activation and killing
(51). Even though the presentation of HLA signal sequences by
HLA-E is altered when TAP or tapasin are inhibited or knocked-
out (52, 53), most reports suggest that the MHC-I presentation of
signal peptides is a TAP- and proteasome-independent process
(47, 54, 55). The presentation of signal-peptide-derived
sequences is also increasingly recognized for classical MHC-I
molecules, as described for tumor epitopes (56) and beta-cell
peptides (23). We identified several HLA-A2-restricted
sequences presented by beta cells and originating from the
signal peptide of insulin granule proteins such as insulin,
urocortin-3 (UCN3), islet amyloid polypeptide (IAPP) and
proconvertase 2 (PCKS2), although the latter was not
recognized by CD8+ T cells (23). Interestingly, preproinsulin
epitopes restricted for HLA-A2 (23) and other MHC-I variants
(57) map to the short (24 aa) signal peptide region. Focused
investigations have therefore been conducted to characterize the
generation of preproinsulin signal peptides for MHC-I
presentation (57, 58). Using K562 cells transfected with a
single MHC-I allele and insulin gene, different signal peptide
products were found bound to each variant tested, and the fate of
insulin signal peptide sequences was dependent on their ER
intramembrane location. Indeed, after SPP cleavage within the
ERmembrane, N-terminal peptides are more likely to be released
in the cytosol (Figure 1C). These cytosolic free peptides can
follow the conventional APP route and be translocated to the ER
through TAP transport and subsequently loaded on nascent
MHC-I molecules after ERAP1 trimming. On the opposite,
upon SPP cleavage, C-terminal peptides are directly released in
the ER lumen and loaded on MHC-I molecules, in a TAP- and
proteasome-independent manner (57, 58). It is unknown how a
peptide can be loaded into MHC-I molecules without TAP and
whether ERAP1 trimming is always required, as is the case for a
PPI15-24 peptide (59). TAPBPR is the chaperone that likely
replaces TAP, as tapasin and TAPBPR are mutually exclusive
in their binding to MHC-I (55). One of the enzymes suspected to
assist peptide trimming in the trans-Golgi network (TGN) is
furin. Furin is a proconvertase that is known to traffic from the
TGN to the cell surface via the vesicular pathway, where it can
cleave peptides and proteins (60). Besides being involved in the
maturation of secreted proteins such as those of the granule,
furin has been shown to process antigens and direct them to the
secretory route for MHC-I presentation in a TAP-independent
manner (61). Similarly to another proconvertase from the same
protein family (PC7) that has been shown to rescue unstable
HLA-B51 complexes (62), furin could be crucial in post-ER
stabilization of peptide-MHC-I binding. Indeed, resident TGN
enzymes like furin could ensure an allele-dependent stability of
these complexes against the destabilizing effect of the slightly
acidic pH of the TGN. The mono-allelic HLA-I-expressing cells
used in these studies may however introduce some bias and
might not be representative of (multi-allelic) human beta cells.
Consistent with their functional pH range, furin could also be
involved in peptide exchanges occurring in the endosomes.
Frontiers in Immunology | www.frontiersin.org 6
Collectively, the considerable translation rate of insulin and
other granule proteins may provide a major source of aAPP
pathways already within resting beta cells, through the release of
high amounts of signal peptides and further protein processing.
CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Beta cells are very active cells with a specialized secretory activity.
On one hand, this activity requires unique recycling pathways to
maintain homeostasis. On the other, it is a burden that makes
beta cells more vulnerable to additional ER stress. These
properties may enhance the contribution of MHC-I aAPP
pathways in beta cells. Although direct evidence is missing,
data from other cellular models make this possibility plausible
and invite further investigations. Gaps in knowledge that need to
be filled include: 1) the relative contribution of each APP
pathway to the beta-cell immunopeptidome under basal and
stressed conditions; 2) how these pathways are modulated in the
pro-inflammatory environment of insulitis; and 3) whether the
same antigenic peptides are generated by professional APCs, a
required step to prime naïve T cells in draining lymph nodes
before their homing to the pancreas.
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Carré and Mallone Antigen Processing/Presentation in Beta Cells
autoimmune diseases. J Immunol (2011) 187:2302–9. doi: 10.4049/
jimmunol.1101003

43. Mishto M, Liepe J, Textoris-Taube K, Keller C, Henklein P, WeberrußM, et al.
Proteasome isoforms exhibit only quantitative differences in cleavage and
epitope generation. Eur J Immunol (2014) 44:3508–21. doi: 10.1002/
eji.201444902

44. Winter MB, La Greca F, Arastu-Kapur S, Caiazza F, Cimermancic P, Buchholz
TJ, et al. Immunoproteasome functions explained by divergence in cleavage
specificity and regulation. eLife (2017) 6:e27364. doi: 10.7554/eLife.27364

45. Marroqui L, Dos Santos RS, Op de Beeck A, Coomans de Brachène A, Marselli
L, Marchetti P, et al. Interferon-a mediates human beta cell HLA class I
overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks
of early human type 1 diabetes. Diabetologia (2017) 60:656–67. doi: 10.1007/
s00125-016-4201-3

46. Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, et al.
Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood,
distinguish type 1 diabetic patients from healthy donors. Sci Immunol (2018)
3:eaao4013. doi: 10.1126/sciimmunol.aao4013

47. Martoglio B, Dobberstein B. Signal sequences: more than just greasy peptides.
Trends Cell Biol (1998) 8:410–5. doi: 10.1016/S0962-8924(98)01360-9

48. Alarcón C, Lincoln B, Rhodes CJ. The biosynthesis of the subtilisin-related
proprotein convertase PC3, but no that of the PC2 convertase, is regulated by
glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J Biol
Chem (1993) 268:4276–80. doi: 10.1016/S0021-9258(18)53606-1

49. Schuit FC, In’t Veld PA, Pipeleers DG. Glucose stimulates proinsulin
biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc
Natl Acad Sci USA (1988) 85:3865–9. doi: 10.1073/pnas.85.11.3865

50. Braud V, Jones EY, McMichael A. The human major histocompatibility
complex class Ib molecule HLA-E binds signal sequence-derived peptides
with primary anchor residues at positions 2 and 9. Eur J Immunol (1997)
27:1164–9. doi: 10.1002/eji.1830270517

51. Braud VM, Allan DSJ, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS,
et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.
Nature (1998) 391:795–9. doi: 10.1038/35869

52. Lampen MH, Hassan C, Sluijter M, Geluk A, Dijkman K, Tjon JM, et al.
Alternative peptide repertoire of HLA-E reveals a binding motif that is
strikingly similar to HLA-A2. Mol Immunol (2013) 53:126–31. doi: 10.1016/
j.molimm.2012.07.009

53. Celik AA, Kraemer T, Huyton T, Blasczyk R, Bade-Döding C. The diversity of
the HLA-E-restricted peptide repertoire explains the immunological impact of
the Arg107Gly mismatch. Immunogenetics (2016) 68:29–41. doi: 10.1007/
s00251-015-0880-z
Frontiers in Immunology | www.frontiersin.org 8
54. Wei ML, Cresswell P. HLA-A2molecules in an antigen-processing mutant cell
contain signal sequence-derived peptides. Nature (1992) 356:443–6.
doi: 10.1038/356443a0

55. Oliveira CC, van Hall T. Alternative Antigen Processing for MHC Class I:
Multiple Roads Lead to Rome. Front Immunol (2015) 6:298:298. doi: 10.3389/
fimmu.2015.00298

56. Hage FE, Stroobant V, Vergnon I, Baurain J-F, Echchakir H, Lazar V, et al.
Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined
tumor epitope processed by a proteasome-independent pathway. Proc Natl
Acad Sci USA (2008) 105:10119–24. doi: 10.1073/pnas.0802753105

57. Kronenberg-Versteeg D, Eichmann M, Russell MA, de Ru A, Hehn B, Yusuf
N, et al. Molecular Pathways for Immune Recognition of Preproinsulin Signal
Peptide in Type 1 Diabetes.Diabetes (2018) 67:687–96. doi: 10.2337/db17-0021

58. Skowera A, Ellis RJ, Varela-Calviño R, Arif S, Huang GC, Van-Krinks C, et al.
CTLs are targeted to kill beta cells in patients with type 1 diabetes through
recognition of a glucose-regulated preproinsulin epitope. J Clin Invest (2008)
118:3390–402. doi: 10.1172/JCI35449

59. Thomaidou S, Kracht MJL, van der Slik A, Laban S, de Koning EJ, Carlotti F,
et al. b-Cell Stress Shapes CTL Immune Recognition of Preproinsulin Signal
Peptide by Posttranscriptional Regulation of Endoplasmic Reticulum
Aminopeptidase 1. Diabetes (2020) 69:670–80. doi: 10.2337/db19-0984

60. Thomas G. Furin At The Cutting Edge: From Protein Traffic To Embryogenesis
And Disease. Nat Rev Mol Cell Biol (2002) 3:753–66. doi: 10.1038/nrm934

61. Medina F, Ramos M, Iborra S, de León P, Rodrıǵuez-Castro M, Del Val M.
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