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Analysis of genetic diversity and discrimination of Oil Palm DxP populations
based on the origins of pisifera elite parents
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A total of 251 Dura cross Pisifera (DxP) hybrid palms from six populations descending from six parental
African Pisifera origins and involving 12 progenies were analyzed with 19 selected Simple Sequence Repeats
(SSR) markers. A total of 110 alleles were produced, ranging from three to eight per SSR, with a mean of 5.8
alleles per SSR locus. Of these, 68.5% were considered shared alleles by more than one population and the
remaining 31.5% were population specific alleles. They generated between six and 21 haplotypes in all popu‐
lations, and depending on the SSR marker, between one and 10 haplotypes within populations. Various
parameters for analyzing genetic variability, differentiation and genetic structure were computed using
GenAlEx, Structure and Darwin software. The obtained results confirmed microsatellites as a robust, feasible
and trustful method for obtaining DNA fingerprints, tracing the source of oil palm samples. With respect to
the authenticity of materials or for solving legitimacy issues, accession belonging to each population by SSR
markers could be distinguished, but additional SSR should be screened for improving this process.
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Introduction

The oil palm (Elaeis guineensis, Jacq.) is a perennial crop
that is expected to reach a production of 75 million tons
of vegetable oil in the coming years (Foreign Agricultural
Service. USDA, 2020). This tropical palm, originally from
West Africa, is nowadays the biggest vegetable oil source
in the world. The revolution of the crop breeding started
with the discovery of the dominant monogenic inheritance
of the Shell thickness gene (Beirnaert and Vanderweyen
1941). The so-called Sh gene determines the three existing
fruit variety types in the oil palm: the Dura genotype (D,
homozygote dominant with a thick shell), Pisifera (P,
homozygote recessive and usually, female sterile shell-less
genotype) and the hybrid Tenera (T). The heterozygous
Tenera is the product from DxP crosses, has a shell with
30% more mesocarp than dura and produces significantly
more oil (Corley and Tinker 2016). The Sh gene has been
very well characterized (Singh et al. 2013a), and it became
a priority for oil palm research with the subsequent applica‐
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tion in breeding programs. Currently, most oil palm high
productive varieties represent mixtures of closely related
Tenera genotypes derived from Dura by Pisifera crosses,
designated for both oil and seed production. The mother
palms represent several selected individuals of DxD self‐
ings and the pollen donors are recovered Pisifera palms
derived from TxT or TxP crosses. Particularly, the selected
D palms may change over time for seed production
(Setiawan 2017). Semi-clonal and bi-clonal parental palms
are entering slowly in this process, due to frequently
observed malformation of bunches in the resulting Tenera
palms, if the parents are multiplied in vitro (Ong-Abdullah
et al. 2015).

Indonesian producers entered years ago into a new stage
of applied research in the field of molecular genetics, for
demonstrating that sustainable palm oil production is possi‐
ble. This does not only improve the quality of the plant
material that can be obtained, but facilitates also the pro‐
cess of seed production and monitoring (Barcelos et al.
2015). These techniques promote seeds or plants which
have been selected by long experience and well-established
breeding methods, giving an added value of quality and
reliability, together with a molecular certification. Plant
information can be reinforced with molecular information
reflecting the potential of each individual. In addition, the
uniqueness of each individual may not be distinguished
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from the phenotype, but can be seen from molecular infor‐
mation. Each individual has its own “fingerprint” that
shows the individual’s uniqueness, kinship with other indi‐
viduals and the parental origin of that individual (Corley
and Tinker 2016). Sometimes fraudulent seed trade has
been detected, where oil palm seeds are sold with a false
variety name (Cheyns and Rafflegeau 2005). Normally, fal‐
sification of seeds cannot be detected and may be possible
when palms are growing, but it is generally difficult to dis‐
tinguish varieties phenotypically with certainty. However,
with genetic marker analysis revealing variety-specific
fingerprints, the parental origin and the authenticity of
these seeds can be known in a short time (Teh et al. 2019).

One of the molecular marker types used to analyze diver‐
sity and kinship relationships are Simple Sequence Repeats
or SSRs (Singh et al. 2007). SSR markers amplify the scat‐
tered DNA sequences in the genome and produce often
highly polymorphic DNA fragments between accessions.
Microsatellites form part of a wide database of molecular
resources in oil palm, which is increasing continuously, and
even the genome sequence has been available for some
years (Singh et al. 2013b). However, nowadays large sets
of new markers, such as SNPs (Cros et al. 2018), are
applied for these purpose and analyses can be refined even
more considering additional genomic regulatory factors
such as epigenetics (Kawakatsu and Ecker 2019). Although
SSR markers may be considered classic, in the case of
crops where genetic resources are limited, they are still
useful, as shown in a recent example of sago palm, a close
relative of the oil palm (Purwoko et al. 2019).

Billotte et al. (2005) published some SSR markers in oil
palm, which were also relevant for this study. Singh et al.
(2007) reported a set of 12 informative SSR markers for
fingerprinting oil palm accessions. Since then, SSR mark‐
ers have been used in different studies related to the analy‐
sis of germplasm diversity or for differentiating oil palm
populations (Cochard et al. 2009, Okoye et al. 2018, Ting
et al. 2014). Microsatellites also provide a powerful method
to evaluate different origins of plant material. More diver‐
sity gives a wider range of genetic variability, which is the
success of any crop improvement program, something
needed in perennial trees such as oil palm with a narrow
genetic base (Kumar et al. 2018). Previously, SSRs have
been regularly used for the development of molecular
breeding strategies (Billotte et al. 2010, Cros et al. 2015,
Marchal et al. 2016) and character studies (Montoya et al.
2013, Morcillo et al. 2013, Singh et al. 2014).

There are important companies that are oil palm seed
producers in Indonesia. Innovation and genetic resources
are needed by these companies to become trustful pro‐
ducers and to gain good positions in this highly competitive
market. Currently, there are specific seed varieties as
achievements of breeding programs that contain outstand‐
ing phenotypes among their variants. Moreover, the
released varieties are continuously monitored and evaluated
for validating the selection of the parental material in the

breeding program and for producing a superior next genera‐
tion in the future. The uniqueness of varieties can be seen
phenotypically but a more detailed genotypic analysis was
not available. Therefore, the purpose of this study was to
develop a preliminary DNA fingerprint system in order to
analyze genetic variation, the structure of breeding popula‐
tions and to identify markers for specific DxP varieties,
which later on, can be used to prevent counterfeiting of
seeds in the field.

Materials and Methods

Plant material
A total of 251 individual DxP palms from 16 progenies

were analyzed. All pisifera parents were from six different
African origins which determine varieties with specific
superior characters called Siriwijaya (SJ) 1 to 6. These elite
parents were collected in the 90’s to form part of the Bina
Sawit Makmur (BSM) breeding program and since that
time they were continuously evaluated and selected. Each
of the six Sriwijaya DxP varieties has beside a general
favorable agronomic performance, different superior char‐
acteristics. For example: SJ 1 DxP has advantages in fresh
fruit bunch (FFB) productivity, SJ 3 is outstanding in terms
of bunch numbers per year and SJ 6 has a high yield poten‐
tial. The characteristics of the DxP varieties used in this
research are presented in Table 1.

DNA isolation and SSR analyses
Genomic DNA of E. guineensis plant material was

extracted using a modified Cetyl-trimethylammonium
bromide (CTAB) method (Orozco-Castillo et al. 1994)
from spare leaves of every accession grown at the Surya
Adi Research Station at OKI (South Sumatra, Indonesia).

Thirty microsatellites covering all chromosomes of oil
palm were preselected from the publication of Billotte et al.
(2005) and finally, nineteen unlinked SSRs showing clear
polymorphisms were used in this study (Table 2). The SSRs
fragments were amplified in a C100 BioRad thermocycler

Table 1. List of variety samples based on the male parent origin and
its superior characters

No Pisifera
origin Variety Total

palms
No of DxP
progenies Superior characters

1 Nigeria SJ 1 52 2 VIR, PO, FFB, HT, BW
2 Ghana SJ 2 50 3 FL, HT, FFB
3 Ekona SJ 3 50 4 BN, FFB
4 Avros SJ 4 19 2 Drought M/F, BW
5 Dami SJ 5 57 2 SF, IER, FL
6 Yangambi SJ 6 23 3 OB, OM, BW

Total 251 16

* Bunch number (BN), bunch weight (BW), Drought tolerance, fresh
fruit bunch (FFB), fruit color virescens (VIR), frond length (FL),
height increment (HT), mesocarp to fruit (MF), oil to wet mesocarp
(OWM), oil to bunch (OB), palm oil yield (PO), palm oil industrial
extraction rate (IER), shell to fruit (SF).
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and the PCR reactions were performed in a total volume of
25 μL containing: 1× Promega GoTaq® Green master mix
(Taq DNA polymerase, dNTPs, MgCl2 and reaction
buffer), 15 μmol forward primer, 15 μmol reverse primer
and 10 ng of genomic DNA. The PCR conditions were as
follows: initial denaturing at 94°C for 3 minutes, followed
by 35 cycles of denaturing at 94°C for 30 seconds, anneal‐
ing step at 53°C for 45 seconds, extension step at 72°C for
1 minute and a final elongation step at 72°C for 7 minutes.
The amplified products were separated on 8% polyacryl‐
amide gel in 1× SB buffer (Brody and Kern 2004). The gels
were pre-run until constant temperature (50–60°C) was
reached. After the electrophoresis process, the DNA bands
were visualized using Gelred@ Biotium staining in a Bio
Rad Gel DocTM UV-Transiluminator. The polyacrylamide
gels were processed via Image Lab Software (version 6.0)
along with 50 bp DNA ladder as a standard. Allele sizes
were estimated and counted objectively by two different
persons for consistency scoring. Unclear bands were dis‐
carded and in the case of double or stutter bands, only the
upper size band was recorded. Ambiguous genotypes were
repeated for verification.

Data analysis
SSR marker alleles were scored by allele band sizes in

each genotype and treated as co-dominant markers. These
bi-allelic marker data were used to estimate the diversity in
the populations. For each SSR standard genetic parameters
were computed using GenAlEx 6.5 (Peakall and Smouse
2012). These included total number of generated haplo‐
types and haplotypes per population, allele distributions in
terms of population specific, shared and total alleles, poly‐
morphic information content (PIC) values, probability of

identity (PI) and gene flow (Nm). PI values were calculated
as Nei’s genetic identity for each pairwise combination of
populations (Nei 1973).

Genetic variability parameters for all six groups were
computed as average and effective number of alleles per
locus (A and Ae) and the percentage of polymorphic loci
(P). Gene diversity for observed and expected heterozy‐
gotes (Ho and He), as well as inbreeding coefficients (Fis)
were calculated according to Hamrick and Godt (1996).

The evaluation of gene diversity and distribution were
calculated using the formulas of Nei (1977) for total
genetic diversity (HT), genetic diversity within population
(HS), average genetic diversity among subgroups (DST) and
partial of total genetic diversity partitioned among popula‐
tion (GST). The genetic structure within and among popula‐
tions was evaluated using F-statistics FIT, FIS, and FST
according to Wright (1965). The FIT and FIS coefficients
were measured from homozygotes or heterozygotes, rela‐
tive to the total expectations (within the entire sample and
within population). The FST coefficient was estimated rela‐
tive to the population differentiation and was determined at
the locus level. Gene flow was estimated through two
approaches; the first was calculated from Nm (number of
migrants per generation) based on GST and the second from
the average of rare alleles found only in one population
(Slatkin 1985).

A principal coordinate analysis (PCoA) was conducted
using the GenAlEx program (Peakall and Smouse 2012) to
evaluate inter-population relationships based on allele fre‐
quency distributions, considering only polymorphic loci in
these analyses. Cluster analysis was conducted on genetic
identities applying the unweighted pairwise group method
using an arithmetic average (UPGMA) with DARwin V6

Table 2. Primer information and allele ranges revealed by microsatellite SSR markers

No Locus name Repeat
motif

Sequence Linkage
group

EMBL acces‐
sion number

Allele range
size (bp)Primer (5ʹ-3ʹ) Primer (3ʹ-5ʹ)

1 mEgCIR3392 (GA)21 AGCAAGGGAGAAAGATG CGAGCAATCAACCTGACTA 1 AJ578660 238–250
2 mEgCIR3328 (GA)22 GAGGGGGTTGGGACATTAC TAGCTCACAACCCAGAATCTAT 1 AJ578648 198–224
3 mEgCIR3775 (GA)18 TCTTGATATTAAAAGGTCAGGAGAA CGTTCCCTTTTTCCATAGAT 2 AJ578724 160–198
4 mEgCIR3693 (GA)16 TGCACACAGGCACACATA AAAATGGGGTGTAGAGTTG 2 AJ578706 280–306
5 mEgCIR3533 (GA)15 TCTATGGCTCTGTCGTGTAT CGAGCCGGTAGAAACTAT 2 AJ578674 134–144
6 mEgCIR3428 (GA)15 GACAGCTCGTGATGTAGA GTTCTTGGCCGCTATAT 3 AJ578667 150–168
7 mEgCIR0802 (GA)12 CTCCTTTGGCGTATCCTTTA TACGTGCAGTGGGTTCTTTC 3 AJ578549 214–250
8 mEgCIR3382 (GA)24 TGTAGGTGGTGGTTAGG TGTCAGACCCACCATTA 4 AJ578655 108–130
9 mEgCIR2422 (GA)16 GCCCTCCCTCAACTCAAAAA ATGGTGTCTGGGACTCTGAGTA 5 AJ578597 214–264
10 mEgCIR3785 (GA)21 AAGCAATATAGGTTCAGTTC TCATTTTCTAATTCCAAACAAG 6 AJ578726 314–332
11 mEgCIR0788 (GA)13 ACATTCCCTCTATTATTCTCAC GTTTTGTTTGGTATGCTTGT 6 AJ578543 126–150
12 mEgCIR3683 (GA)23 GTAGCTTGAACCTGAAA AGAACCACCGGAGTTAC 8 AJ578703 128–164
13 mEgCIR0894 (GA)18 TGCTTCTTGTCCTTGATACA CCACGTCTACGAAATGATAA 9 AJ578562 200–238
14 mEgCIR2600 (GA)15 GGGGATGAGTTTGTTTGTTC CCTGCTTGGCGAGATGA 9 AJ578612 280–300
15 mEgCIR3362 (GA)19 CCCATCATCTGCTCAGGATAGAC ACCCTCTCCTCTTGGGAAGA 11 AJ578652 150–168
16 mEgCIR3607 (GA)14 ATTGCAGAGATGATGAGAAG GAGATGCTGACAATGGTAGA 11 AJ578691 190–238
17 mEgCIR2427 (GA)14 GAAGGGGCATTGGATTT TACCTATTACAGCGAGAGTG 11 AJ578599 118–140
18 mEgCIR2569 (GA)16 TAGCCGCACTCCCACGAAGC CCAGAATCATCAGACTCGGACAG 12 AJ578607 226–276
19 mEgCIR3544 (GA)14 AGCAGGGCAAGAGCAATACT TTCAGCAGCAGGAAACATC 14 AJ578679 178–198
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(Perrier and Jacquemoud-Collet 2006). AMOVA (Analysis
on Molecular Variance) analysis was also performed with
the GenAlEx program.

Structure V2.3 (Pritchard et al. 2000) was used for
assigning the individuals into subpopulations when the
number of groups is unknown (K value). The optimal K
value was determined using Structure Harvester (http://
taylor0.biology.ucla.edu/struct_harvest/, Earl and vonHoldt
2012). Additional in silico analyses were performed by
(i) combining all alleles of all SSR loci, (ii) by combining
all specific alleles of each population and (iii) SSR loci
containing population specific alleles for each variety using
Microsoft Excel.

Results

SSRs polymorphisms
SSR markers produced different band sizes which were

scored for each genotype obtaining co-dominant patterns
(Fig. 1). The analysis results are presented in the Table 3
for each SSR. Nineteen SSRs produced a total of 110 poly‐
morphic alleles, ranging from 3 (mEgCIR3392) to 8
(mEgCIR0802, mEgCIR3328 and mEgCIR3607) per SSR
with an average of 5.8 SSR alleles per locus. Considering

all populations, these markers distinguished between six and
twenty one haplotypes. Within populations, from one to ten
haplotypes were generated depending on the SSR marker.

In general, the molecular markers used in this study were
very informative with an average PIC value of 65%. The
highest PIC value was observed for SSR mEgCIR0802
(0.844) and the less informative SSR was mEgCIR3392
(0.389). Only four out of 19 loci have PIC values below
50%. The probability of identity (PI) was calculated to
quantify the ability of an SSR to distinguish between two
individuals. SSR marker mEgCIR3328 was very informa‐
tive, with a high PIC value as well. The smallest PI value of

Fig. 1. Gel example for SSR mEgCIR2427 where it is shown five
out of six alleles produced by this marker in twenty four palms. Line
one: 50 bp DNA ladder.

Table 3. Characteristics of individual and combined SSR markers and observed polymorphisms. Total, specific and shared alleles, polymor‐
phic information content (PIC), probability identity (PI), partial of total genetic diversity (GST), genetic differentiation (Fst) among populations,
gene flow (Nm)

Locus name
Haplotypes (Specific alleles) in ...

Shared
alleles

Total
alleles PIC PI Fst Gst Nm

Total
haplo-
types

SJ 1
n = 52

SJ 2
n = 50

SJ 3
n = 50

SJ 4
n = 19

SJ 5
n = 57

SJ 6
n = 23

mEgCIR3328 7(1) 5 5 2 4 5(1) 6 8 0.80 0.25 0.51 0.28 0.62 21
mEgCIR3362 5 9 4 4 5 5 5 5 0.66 0.29 0.43 0.23 0.78 11
mEgCIR3382 3 4 4 3 7 3 5 5 0.75 0.31 0.47 0.29 0.58 14
mEgCIR2600 5 3 7 3(1) 5 3(1) 5 7 0.81 0.32 0.51 0.38 0.39 17
mEgCIR2427 7 2 7 6 6 6 6 6 0.73 0.33 0.45 0.32 0.50 16
mEgCIR3785 3 3(1) 4 3 5 2 3 4 0.52 0.36 0.35 0.21 0.87 8
mEgCIR3607 6 6 6(1) 1 5(1) 5(2) 4 8 0.83 0.36 0.51 0.39 0.38 19
mEgCIR0802 4 6 5(1) 1(1) 4 3(1) 5 8 0.84 0.42 0.53 0.48 0.26 16
mEgCIR3693 3(1) 3(1) 3 6(1) 3 2 3 6 0.71 0.42 0.45 0.40 0.35 11
mEgCIR2569 3 2(1) 5(1) 4 4(1) 4 3 6 0.61 0.45 0.33 0.34 0.47 12
mEgCIR0788 7 8 7 2 10 3 6 6 0.73 0.45 0.43 0.41 0.34 16
mEgCIR0894 6(1) 7(1) 2 3 4 3 3 5 0.61 0.48 0.36 0.38 0.39 13
mEgCIR2422 2 2 4(1) 3 3 1(1) 3 5 0.44 0.49 0.13 0.18 1.10 7
mEgCIR3683 3(1) 2(1) 4 1 3(1) 5(1) 3 7 0.56 0.52 0.23 0.37 0.42 11
mEgCIR3544 3(1) 3 3 3(1) 4(2) 3 3 7 0.73 0.52 0.46 0.53 0.22 13
mEgCIR3775 5 1 3(1) 2 7 3(1) 3 5 0.48 0.54 0.16 0.29 0.55 11
mEgCIR3428 2(1) 4 3 1 3 4 3 4 0.49 0.59 0.29 0.50 0.24 6
mEgCIR3533 1 6(1) 4 1 3 5 4 5 0.77 0.70 0.47 0.73 0.09 12
mEgCIR3392 3 6 1 1 1 2 3 3 0.39 0.74 –0.11 0.45 0.29 6
Total (SA) (6) (6) (5) (4) (5) (8) 76 110 12.6 6.97 7.20 8.83 240
Tot com HT 52 50 44 17 55 22 240
Tot com SA 47 49 49 19 57 23 244
Mean 5.8 0.65 0.45 0.37 0.38 0.465 12.6

* Tot com HT = Total haplotypes of all combined SSR.
* Tot com SA = Total haplotypes for combined specific SSR alleles.
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0.74 was observed for SSR mEgCIR3392.
With respect to the power of discrimination, a total of 76

alleles out of the 110 SSR alleles were observed in more
than one population (shared alleles, 68.5%). Among them,
five SSR markers with a total of 24 alleles revealed only
shared alleles (mEgCIR3392, mEgCIR3362, mEgCIR3382,
mEgCIR0788 and mEgCIR2427). A total of thirty four
alleles (31.5%) revealed population specific SSR alleles,
which were absent in all other populations, but generally
not present in all accessions of the target population. Three
SSR markers revealed population specific alleles only for
one population (mEgCIR3428 for SJ1, mEgCIR3785 and
mEGCIR3533 for SJ2). The other 11 SSRs showed specific
alleles in two to four populations. Combinations of popula‐
tion specific SSR alleles could be used to identify specific
haplotypes in each population. They could be considered as
significant markers, since most of them showed values
above 0.25 in two approaches for measuring genetic differ‐
entiation among populations (GST and FST). In both cases,
the average degree of differentiation surpassed 0.36, indicat‐
ing high genetic divergence among SJ origins. Only three
markers (mEgCIR3785, mEgCIR3362 and mEgCIR2422)
revealed a lower GST value. This low genetic differentiation
effect is also reflected for these three loci in high gene flow
(Nm) values, but does not affect the average Nm value of
0.47, which is considered as low for the transfer of genetic
variation (Godt et al. 2005).

The combination of all alleles of all SSR loci (that is,
110 total alleles) generated a total of 240 haplotypes distin‐
guishing all accessions from populations SJ1 and SJ2 (see
row “Tot com HT” in Table 3). A total of 244 haplotypes
were generated for the combination of individual specific
alleles per population (that is, 34 specific alleles). In this
case all accessions from populations SJ4, SJ5 and SJ6
could be distinguished (see row “Tot com SA” in Table 3).
For the other populations SJ1, SJ2, SJ3 a total of five, one
and one uninformative haplotypes of the type “0 0 0 0 ....”
remained, respectively. Supplemental Table 1 shows in
detail all haplotypes estimation.

Genetic variability and differentiation
The genetic diversity was evaluated for each population.

Table 4 summarizes the results. The average number of
alleles per locus (A) was 2.41 across population, ranging
from 1.79 for the lowest number of alleles in population
SJ4 to 2.63 for the highest in populations SJ2 and SJ5. Pop‐
ulation SJ4 revealed also the lowest percentage of polymor‐
phic loci (P = 64%), while the other populations revealed
P values of 95% or above. Based on the observed P values,
the 19 loci could identify a unique individual with around
90% probability on average (Table 4). The set of SSR
markers used in the analysis revealed more allelic polymor‐
phisms in all populations than the expected mean Ae = 1.89
based on the observed heterozygosity. The observed het‐
erozygosity (Ho) ranged between 0.301–0.486 and the
expected heterozygosity (He) ranged between 0.254 and

0.469. In three populations, the value of He is higher than
the Ho with positive Fis values (Ghana, Ekona and Dami)
indicating a deficit of heterozygotic individuals. In the
other three populations (Nigeria, Avros and Yangambi), Ho
was higher than He showing more diversity and no deficit
of heterozygosity.

The genetic differentiation between populations is shown
in Table 5. The average genetic diversity among groups
(HS) and total genetic diversity (HT) was 0.41 and 0.68,
respectively, indicating that accessions from each origin
contributed notably to the increase in total genetic diversity.
The average genetic diversity among subgroups (DST) of
0.54 reflects high variability within groups. The analysis
shows also a high coefficient of genetic differentiation
(GST and FST values). These values were almost the same
(around 0.38) between populations. The distribution of
each group within populations was measured by inbreeding
coefficient (GIS). This value was very low and close to zero,
but positive and significant 0.03 (p < 0.001) and showed
some deficiency of heterozygotes relative to Hardy-
Weinberg expectations. The GST is also used as indirect
estimator of the gene flow (Nm). The value was low 0.423
and very similar to the estimated gene flow based on poly‐
morphic alleles (0.465). This trend is also reflected in the F
statistics, showing significant values of 0.37, 0.46 and 0.14
for inbreeding coefficients of FST, FIT and FIS, respectively.

Table 4. Genetic variability parameters of the populations. Average
number of alleles per population (A), average number of effective
alleles (Ae), percentage of polymorphic loci (P), observed hetero‐
zygosity (Ho), Hardy-Weinberg expected heterozygosity (He), in‐
breeding coefficient within individuals (Fis)

Pop Na A Ae P Ho He Fis

SJ1 52 2.53 2.05 95% 0.49 0.47 –0.036
SJ2 50 2.63 2.03 95% 0.44 0.45 0.018
SJ3 50 2.47 1.96 95% 0.39 0.45 0.123
SJ4 19 1.79 1.48 64% 0.30 0.25 –0.185
SJ5 57 2.63 1.93 90% 0.36 0.42 0.135
SJ6 23 2.42 1.91 100% 0.47 0.45 –0.045
Mean 2.41 1.89 90% 0.408 0.415 0.002

a Number of individuals in the population.

Table 5. Genetic differentiation based on Nei’s diversity, differentia‐
tion coefficients and F-statistics. Average genetic diversity within
groups (HS), total genetic diversity (HT), average genetic diversity
among subgroups (DST), coefficient of genetic differentiation (GST),
inbreeding coefficient (GIS), gene flow (Nm)

HS HT DST GST GIS Nm Mean

0.41 0.68 0.54 0.38 0.03 0.423
FST 0.372*
FIT 0.461*
FIS 0.142*

* p = 0.001 statistical significance level.
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Genetic structure analysis
The phylogenetic relationships between populations are

shown in the dendrogram of Fig. 2. This dendrogram was
calculated based on Jaccard´s similarity coefficient and
using UPGMA and the Neighbor joining algorithm. Three
main clusters divided in six sub-clusters are visible. One
of the main clusters separated specially the West African
origins (Nigeria and Ghana) and the other two clusters
matched the origins of the central belt (Congo and
Cameroon). The coefficients of similarity varied between
0.263 and 1.000 in all analyzed samples. The highest dis‐
tance of 0.659 was observed between SJ1 and SJ2, while
the lowest value of 0.334 was obtained between SJ1 and
SJ6.

Also, a principal coordinate analysis (PCoA) was used
for evaluating the phylogenetic relationship among popula‐
tion. The PCoA showed a significant grouping of the popu‐
lations that were plotted into six subgroups (Fig. 3). The
first and second coordinates explained 17.75 and 15.96% of
the total variance, respectively. These results were in accor‐
dance with those of the AMOVA analysis (Table 6) where
38% of the total variance was explained by the variation
among populations based on the allelic distance matrix.
However, the highest variance of 56% resulted from the
variation within all individuals. An additional analysis with
Structure software confirmed six components in our set of
individuals (Fig. 4A) and validated the K value of 6 using
Structure harvester (Fig. 4B).

Fig. 2. Neighbor-joining tree showing the phylogenetic relationships
among the populations based on genetic distance data.

Discussion

Large efforts were made in the past by classical breeders to
select the best elite trees, to establish comprehensive breed‐
ing programs and to obtain improved genetic materials. In
this context, molecular approaches are becoming important
tools to support trustworthy variety production (Kumar et
al. 2018). We have used microsatellite markers to investi‐
gate the level of genetic diversity, the distribution of
genetic variation and the genetic relatedness in DxP palms
of different parental Pisifera origins. The selected SSRs
were highly informative and have been widely applied in
previous studies not only for diversity analyses, but also for
fingerprinting, for linkage map construction (Billotte et al.

Fig. 3. Two-dimensional plot of principal coordinates analysis
(PCoA), depicting the genetic relatedness among six populations.

Table 6. Results of the Analysis of Molecular Variance, AMOVA

Source df SS MS Est. Var. %

Among populations 5 994.788 198.958 2.388 38%
Among individuals 245 1048.819 4.281 0.385 6%
Within individuals 251 881.000 3.510 3.510 56%
Total 501 2924.608 6.283 100%

Fig. 4. Population structure results. (A) Distruct plots for K = 6.
Overall proportion of memberships of the samples in each of the 6
clusters. (B) Structure harvester result for optimal K. X axis displays
units in logarithmic scale base 10 showing the stabilization at K = 6.
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2010, Seng et al. 2011, Ting et al. 2013) and for analyzing
associations between microsatellite variation and interest‐
ing characters in oil palm, such as oil production and vege‐
tative traits (Hama-Ali et al. 2015a, Jeennor and Volkaert
2014, Montoya et al. 2014, Xiao et al. 2014). Historically,
SSR markers are considered as robust, since they are co-
dominant, highly polymorphic, show a good reproducibility
and particularly due to their simplicity of use (Collard et al.
2005). Moreover, they map in different genetic back‐
grounds to the same genome location and some can be even
transferred to related species (Arias et al. 2015, Ithnin et al.
2017, Zaki et al. 2012). Elaies guineensis SSRs markers for
example were successfully tested in a diversity study of the
closely related species Elaeis oleifera, the American oil
palm. Nowadays, there are modern molecular marker
databases, which are highly informative and have free
access, such as OpSatdb from the Indian Institute of Oil
Palm Research (Babu et al. 2019, https://ssr.icar.gov.in/
index.php). This database includes beside genomic SSRs
also genic SSR markers (EST-SSR). Other genomic
resources represent for example PalmXplore from
Malaysian Palm Oil Board (MPOB) with exhaustive infor‐
mation about palm oil biosynthesis genes, resistance genes
and other genes of interest, including the whole genome
sequence of this tropical palm (Sanusi et al. 2018, http://
palmxplore.mpob.gov.my/palmXplore).

In our case, the use of highly polymorphic SSRs from
Billotte et al. (2005) was sufficient for the variability study
in our set of analyzed samples. Our set of SSR markers
revealed on average 5, 8 alleles per locus. This number is
lower compared for example, with the 13.1 alleles/locus
obtained by Bakoume et al. (2015). However, this result
was obtained in a much larger set of populations. Higher
values were also obtained in other studies, where large
germplasm collections from Asia, Africa and Latin America
were characterized (Cochard et al. 2009). The number of
polymorphic alleles per locus is obviously influenced by
the number of analyzed samples and the number of origins.

Our batch of SSR markers revealed a high level of poly‐
morphic information content (PIC) of up to 85%, higher
than that obtained with other kind of markers such as AFLP
or isoenzymes (Barcelos et al. 2002, Purba et al. 2000). It
is comparable with the PIC values of other studies in oil
palm using similar sources of markers evaluated on six dif‐
ferent crosses (Budiman et al. 2019), as well as with similar
plant material origins (Arias et al. 2014).

With respect of the power of discrimination, the markers
can distinguish a unique individual with more than 95% of
probability and interestingly, fourteen of them can detect
specific patterns in the DxP varieties, representing informa‐
tive loci. Chee et al. (2015) used microsatellites as a dis‐
crimination tool applying a set of only eleven polymorphic
SSRs to separate related oil palm populations. Other SSR
fingerprint evaluations were used to perform parentage
analysis and for solving illegitimacy issues in commercial
materials and breeding programs. Thongthawee et al.

(2010) could reach a level of less than one percentage of
planting errors with a combination of only four SSR mark‐
ers and Hama-Ali et al. (2015b) reported sixteen useful
microsatellites for detecting illegitimacy in oil palm. Both
authors proposed the use of some additional microsatellites
markers for the detection of pollination errors. Nowadays,
legitimacy in breeding and genetic diversity analyses are
also performed with high throughput markers such as SNPs
were required (Cros et al. 2017, Teh et al. 2019, Xia et al.
2019).

In this context, the distinction of all accessions belonging
to each population was one aim of this study, in view of
seed certification or for solving legitimacy issues. In princi‐
ple this purpose has been achieved. With respect to the
combination of alleles from all SSR loci (110), the 11
repeated haplotypes, ordered in 8 groups of 2 or 3 repeated
haplotypes were detected. Fortunately, the accessions of
each group belong to the same population in each case. In
this way, it is possible to assign unambiguously all acces‐
sions from each population to the corresponding variety.
With respect to the combination of all population specific
SSR alleles (34), only seven accessions in three populations
cannot be distinguished. However, considering that for
practical applications not single alleles, but whole SSR
primers will be used, all previously unidentified samples
will disappear. This option requires the use of only four to
maximal eight SSR primer combinations (PC) instead of
the 19 PC from the previous approach, following the trend
of effective reduction of SSR markers mentioned by
authors above.

The high genetic divergence at locus level was reflected
by GST and FST values reaching 0.3, together with a low
gene flow for the transfer of genetic variation among popu‐
lations. This trend was confirmed by the Nei’s diversity
index and by F statistics. Similar values were reported in
previous authors with material from the central belt of
Africa (Arias et al. 2014, Hayati et al. 2004), suggesting
strong differentiation in the populations mainly due to
larger distances between places and limited pollen and seed
dispersion via weevil and animals/humans, respectively
(Corley and Tinker 2016). In all mentioned studies, low
gene flow supported this level of differentiation as in our
study.

For Ghana, Ekona and Dami, the value of He is higher
than the Ho with positive Fis values, indicating a deficit of
heterozygotic individuals. This plant material shows some
level of inbreeding as reported also by Bakoume et al.
(2015) or the presence of null alleles in the population that
could not be detected (Arias et al. 2013). For Nigeria,
Avros and Yangambi, an excess of heterozygosity was
observed indicating more variability in Hardy-Weinberg
equilibrium. Historically, these origins were more diverse
and Avros or Yangambi palms have been used commonly
as Pisifera pollen donors (Alvarado et al. 2010, Barcelos et
al. 2015). Nigeria is also considered as the center of diver‐
sity of the African oil palm (Maizura et al. 2006). Although
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we saw some differences among origins in the Fis values,
low but significant inbreeding coefficients were observed.
Actually, some level of inbreeding was expected giving the
fact that less heterogenic and improved Deli mothers were
used to produce our set of samples, as also mentioned by
Cochard et al. (2009).

The major source of variation was observed between
individuals, followed by 38% variation among populations.
This AMOVA results evidenced a differentiation between
origins in the present study suggesting certain genetic struc‐
ture. Both, similarity coefficients and cluster analyses, as
well as genetic relatedness based on principal coordinates
analyses, separated the samples in accordance with the six
origins from which the parental lines were selected. In the
case of PCoA, the variance of the first two coordinates dis‐
tinguished six clusters explaining more than thirty percent
of the total variation, in accordance with the AMOVA
results. Our set of SSRs verified the six different origins of
the Pisifera parents which were used to produce the DxP
palms at a commercial scale. Other examples with similar
clear clustering of African origins were also reported previ‐
ously (Arias et al. 2014, Cochard et al. 2009). The structure
of these 6 geographical origin was clearly validated by
K = 6 subpopulations and confirmed again the used pheno‐
typic selection strategy.

Nevertheless, it is convenient to screen additional SSR
primers for simplifying the detection of the population to
which an accession belongs, preferably with only one SSR
PC. We provide our SSRs result that could be used or
summed to other markers for future verification by other
authors in terms of finding the best formula for identifica‐
tion. In the oil palm breeding, since the polymorphisms
result from the Pisifera pollen donor and only a few palms
are used as pollen donor, this reduced set of all Pisifera
palms should be used for massive SSR screenings. In addi‐
tion, also the set of accessions in this study should be
increased for validating the results. As we show in the
manuscript, the applicability for the breeding community
can be not only for accession legitimacy of different popu‐
lations but also for the germplasm management via genetic
diversity certification.

Conclusion
The conclusions of this study can be summarized in three

points: i) The use of microsatellites is a robust, feasible and
trustful method for obtaining DNA fingerprints and for
tracing the source of oil palm samples; ii) The molecular
analysis validated the good phenotypic selection of breed‐
ing materials made by company breeders based only on
phenotypic traits, matching with the arrangement as shown
in Table 1; iii) SSR markers offer an important support for
seed production by providing a molecular certification.
SSRs give an improved value as a quality control for deter‐
mining authenticity of materials or for solving legitimacy
issues. The distinction of all accessions belonging to each
population by SSR markers has been achieved. However,

the screening of additional SSRs could improve this pro‐
cess and also the set of accessions should be increased for
validating the results.
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