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Advanced sequencing technologies such as RNASeq provide the means for production of massive
amounts of data, including transcriptome-wide expression levels of coding RNAs (mRNAs) and non-
coding RNAs such as miRNAs, lncRNAs, piRNAs and many other RNA species. In silico analysis of datasets,
representing only one RNA species is well established and a variety of tools and pipelines are available.
However, attaining a more systematic view of how different players come together to regulate the
expression of a gene or a group of genes requires a more intricate approach to data analysis. To fully
understand complex transcriptional networks, datasets representing different RNA species need to be
integrated. In this review, we will focus on miRNAs as key post-transcriptional regulators summarizing
current computational approaches for miRNA:target gene prediction as well as new data-driven methods
to tackle the problem of comprehensively and accurately dissecting miRNome-targetome interactions.
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1. Introduction

An accurately fine-tuned regulation of the expression levels of
the ~20 000 protein-coding genes and the far more abundant
non-coding RNAs is essential for a healthy functioning of human
cells. Gene regulation is achieved at different levels. Epigenetic
mechanisms influence, prior to actual gene transcription, which
gene is being transcribed in a given cell at a given time. Next, a
multitude of intrinsic or extrinsic signals determine which tran-
scription factors are activated downstream of signalling cascades
to drive or inhibit transcription of target genes. At the post-
transcriptional level, the half-life, stability and other factors affect
the available amount of bioactive RNAs, but the most important
cellular instrument to adjust expression levels of most classes of
RNAs, are small non-coding RNAs called miRNAs (microRNAs).

A recent bioinformatic analysis of some 360 billion sequencing
reads, revealed 2300 true human mature miRNAs, roughly half of
which are annotated in miRBase V22 [1]. In humans, ~520 high-
confidence miRNA canonical genes and ~120 conserved miRNA
families (with similar seed sequences) have been identified [2]
with each family targeting > 400 conserved mRNAs, altogether
resulting in ~60% of all mRNAs being targeted by miRNAs [3].

miRNAs are remarkably stable 22 nt short oligonucleotides that
are produced from miRNA-encoding genes in a well understood
biogenesis process comprehensively reviewed elsewhere [2].
Mature miRNAs act as guide sequences directing the RNA-
induced silencing complex (RISC) to target RNAs, which contain
complementary binding sites that allow for a miRNA:target con-
tact. The canonical and biologically most relevant interaction takes
place between the seed region (50 nucleotides 2–7) of a miRNA and
the binding site in the 30 UTR of an mRNA target, resulting in a
rapid degradation of the mRNA or less frequently in an inhibition
of its translation into protein [4]. It has been estimated that
100 s-1000 s of miRNA molecules are necessary to efficiently
repress mRNA levels in a cell [5].

Although canonical interactions are functionally most relevant,
the highly abundant non-canonical binding to regions outside the
30UTR of mRNAs and involving nucleotides beyond the seed
sequence within the miRNA as well as miRNA binding to other
non-coding RNAs are likely contributing to post-transcriptional
gene regulation by competing with canonical binding events and
by occasionally leading to down-regulation of the non-canonical
target itself [6–8] and own unpublished data [9]. Other non-
coding RNAs such as long non-coding RNAs (lncRNAs), competing
endogenous RNAs (ceRNAs) and circular RNAs (circRNAs) have also
been shown to sequester miRNAs from the biologically active pool
within the cell [10,11]. Further contributing to the complexity of
post-transcriptional gene regulatory networks is the fact that the
expression of miRNAs themselves is also a dynamically regulated
process, involving above mentioned pre-transcriptional epigenetic
and genetic mechanisms, transcription factors and signaling path-
ways, which are generally cell type- and disease-specific and have
relevance for most physiological processes as well as in complex
diseases such as cancer [12,13]. Finally, there is redundancy in
miRNA-target gene interactions and different related or unrelated
miRNAs might have to cooperate to induce a measurable effect
on gene expression. Likewise, for an observable change in cellular
phenotypes, expression changes in only one gene are often not suf-
ficient and several genes might have to be regulated at the same
time for a functional shift in cellular behavior.

Although target gene prediction has markedly improved over
the last decade, we are still far from being able to predict the
miRNA targetome with an acceptable quota of false positive and
false negative results, although many tools are available for
prediction of miRNA target genes [14–16]. The aforementioned
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properties and the problematic target gene prediction make
miRNA-driven gene expression difficult to unravel in all its com-
plexity. Only massive amounts of well-controlled, high quality
and preferably dynamic data (collected at various time points)
from different cells/tissues from healthy and diseased conditions
representing different transcriptional states can improve our
understanding of the intricate regulatory circuits involving miR-
NAs. This being a costly and tedious endeavor might in part explain
why the initial enthusiasm on miRNA research some 10–15 years
ago has somewhat cooled down. It soon became clear that simply
generating mono-phasic miRNA profiling data would not lead to
the desired overview of transcriptional regulatory networks.

In the current review, we will provide a brief update on avail-
able computational miRNA tools and then focus on approaches of
data integration efforts aiming at jointly analysing gene expression
datasets representing miRNAs and mRNAs, lncRNAs or other non-
coding RNAs. Advancing such integrative in silico analyses becomes
even more important in view of an ever-growing number of publi-
cally available transcriptomic datasets.

2. Methodologies for analysis of miRNA-target gene interactions

2.1. Approaches to miRNA target identification

From the first identification of miRNAs in the 1990 s (lin-4 and
let-7 in C.elegans, [17,18]), tremendous efforts have gone into com-
putational prediction, experimental detection and validation of
miRNA target genes. Current experimental methods to analyse
the miRNA targetome include: i) profiling expression levels of
the entire transcriptome (by RNASeq or microarray) following
overexpression or downregulation of a miRNA of interest; ii) mea-
suring selected mRNA levels of predicted targets by qPCR and/or
measuring levels of the corresponding proteins following overex-
pression or downregulation of a miRNA of interest; iii) crosslinking
followed by immunoprecipitation of RISC complexes (CLIP and
CLASH methods); iv) reporter gene assays with the target site of
the miRNA cloned close to a reporter gene and with external deliv-
ery of the miRNA v) as well as profiling phenotypic traits following
rescue of mutated or deleted miRNAs [4,14,19–22].

Experimental methods can provide direct links between miR-
NAs and their targets, but they are not error-free, extremely labo-
rious, time consuming and expensive, especially when more than
one miRNA is investigated. Some experimental methods were crit-
icized for generating false positive results [21] and this is even
more so when analysing data from RNASeq experiments following
overexpression of miRNAs. The recent introduction of CLASH [23]
provides an interesting addition to the experimental tool box by
directly linking miRNAs with the bound mRNAs, lncRNAs or any
other potential RNA target. However, also this technology has
room for improvement as the identification of miRNA-target
hybrids is still rather inefficient [24].

Computational prediction of canonical or non-canonical miRNA
targets employ different statistical and machine-learning
approaches and generally analyse some of the following criteria:
i) degree of Watson-Crick pairing between the miRNA seed region
and target site; ii) evolutionary conservation across species; iii)
thermodynamic properties; iv) accessibility of target sites; v)
sequence composition in the vicinity of seeds and target sites.
Many studies and comprehensive reviews have described available
tools before [4,8,15,25–28] some of which will be further discussed
below.

With the development of high-throughput technologies in
experimental genomics, it became feasible to detect complete
transcriptomes and miRNomes of cells and tissues under various
conditions. Expression profiles of matching miRNomes and tran-
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scriptomes from given cells or tissues and CLIP-based next gener-
ation sequencing (NGS) provide large datasets, in which the true
interaction partners need to be identified and this is not a trivial
task. Integration of different datasets generally explores statistical
similarities and inverse correlations of mRNA and miRNA expres-
sion patterns, which can be suggestive of potential interactions
or the presence of co-regulated clusters. Such knowledge would
certainly contribute to our understanding of miRNA functions if
the number of false positive and negative predictions can be
reduced. Below and in Fig. 1, some of the most popular and promis-
ing methods for integration of mRNA and miRNA datasets are
summarized.

2.2. Databases of experimentally validated miRNA targets

Over the past 10 years, several dozen online resources with pre-
dicted or validated miRNA targets have been published [25,26].
However, many of them had quite a short life cycle and are cur-
rently either unavailable or outdated. Here we concentrate on
databases that are regularly updated, starting with experimentally
validated targets, as they are the most valuable source for miRNA-
target gene pairs.

DIANA-TarBase is the most complete collection of experimen-
tally supported miRNA targets. The current version 8 of the data-
base contains around 670 k of unique miRNA-mRNA pairs (and
over 1 M of entries of which ~800 k have direct experimental sup-
port). It has been persistently developed over the past decade and
is based on both literature curation (1.2 k) and analysis of results of
low- and high-throughput experiments [29]. Importantly, the
database can be downloaded, which makes it an interesting source
for an automatic computational analysis.

MiRTarBase is the second largest collection of experimentally
validated targets [30]. The current version describes over 430 k
miRNA-target interactions. It is based on manual curation of
around 11 k publications and is also downloadable.

2.3. Tools for prediction of miRNA targets

TargetScan. Among the target gene prediction tools, TargetScan
[28] is the most widely used. The tool and corresponding database
have been supported and developed since 2005, with the current
version 7.2 available since 2018, covering miRNA interactions in
8 mammals (including human, mouse and rat and several other
Fig. 1. An overview of the main methods for miRNA:mRNA data integration.

1156
organisms). Predictions by TargetScan are made by searching for
conserved 6–8-mer binding sites in mRNAs, matching with miRNA
seed regions and taking into account the surrounding sequences
(in total, 14 distinct parameters were used for prediction). Predic-
tion databases can be downloaded separately for conserved miR-
NAs with conserved mRNA targets and for non-conserved
miRNAs with conserved and non-conserved mRNA targets (the
most complete). Agarwal and colleagues showed that non-
canonical sites rarely lead to mRNA modulation despite binding
of miRNA, and therefore focused their predictions on the canonical
sites [28]. However, given the increasing evidence that non-
canonical interactions between miRNAs and their targets also play
an important role in some (but not all) gene regulatory networks
([2,6] and unpublished data in [9]), such interactions involving
nucleotides outside the seed of the miRNA and within the CDS
(rather than the 30 UTR) represent useful additions to current pre-
diction tools.

DIANA-microT-CDS. DIANA tools, in parallel to its validated tar-
get database introduced above also proposes the target-prediction
by DIANA-microT-CDS, the 5th version of the microT algorithm.
This method uses a machine learning approach that is trained on
photoactivatable-ribonucleoside-enhanced cross-linking immuno-
precipitation (PAR-CLIP) data and is able to predict miRNA binding
sites both in 30-UTR and in coding sequence (CDS) regions. The tool
does not allow the download of predicted targets for all miRNAs,
however it allows access to predictions through the Taverna work-
flow management system.

miRDB is an online resource for miRNA target prediction and
functional annotations [31]. The method uses the machine-
learning algorithm MirTarget based on a support vector machine,
which takes evidences from several other algorithms, including
TargetScan [28], PicTar [32], miRanda [33] and combines them
with features obtained from miRNA overexpression experiments
and CLIP data. The method allows for predicting gene targets with
binding sites both in evolutionary conserved and non-conserved
regions of 30-UTR. Current lists of predicted targets are available
for human, mouse, rat dog and chicken and can be downloaded
from the miRDB server. In total, the database contains 3.5 M
miRNA-mRNA target pairs and over 1.6 M human entries.

There are more tools available that build their predictions on
combination of the above mentioned databases and algorithms
such as the recently updated miRWalk [34]) or including experi-
mental data, miRGator [35], STarMir [36] or miRGate [37]), but
these tools seem to be applied less frequently for the moment.
Another important property of such databases is the frequency of
update. After a 5-year stand-by period, databases lose their attrac-
tiveness for the community and deviate too much from the current
version of miRBase [38].

Recently, a deep learning approach, which is based on advanced
artificial neural networks, has been applied to different tasks in
bioinformatics [39]. Although neural networks have been known
for decades as universal modelling tools (e.g. [40]) only now have
computer power and, more importantly, the size of datasets
reached the dimensions where efficient and robust networks can
be built. A convolutional neural network (CNN), one application
of deep learning models, has been successfully applied to predict
binding affinities between miRNAs and 12-mer sequences [8].
The model substantially improved prediction of mRNA repression
in cell lines. Considering these promising developments, we should
expect to see more works dedicated to application of deep learning
in miRNA target predictions. Another example of a deep learning
approach is provided by the DeepMirTar tool [41] where authors
used stacked de-noising auto-encoders to predict miRNA targets
at the site level. Interestingly, the tool showed improved perfor-
mance in target prediction compared to standard methods, includ-
ing TargetScan.
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2.4. Functional annotation

Functional annotation of individual miRNAs or related groups or
families of miRNAs is important for understanding their biological
roles and can also be useful to connect miRNAs to known func-
tional gene sets. For a small number of selected miRNAs, their
functions can be determined experimentally. However, high-
throughput datasets require bioinformatics analysis with literature
curation [42,43] or functional analysis of miRNA targets [44]. The
fact that miRNA and regulated mRNAs are linked by a ‘‘many-to-
many” relationship, significantly increases the complexity of func-
tional miRNA annotation. The most important tools are introduced
below.

miRBase – the primary public database for miRNA sequences
and nomenclature [38]. The current release 22.1 contains 38,589
entries for 271 organisms. Each entry represents a miRNA precur-
sor sequence with a predicted hairpin of the miRNA transcript, the
genomic location, references from literature, the mature miRNA
with manually curated gene ontology (GO) terms [42] and other
information. Since the first presentation in 2002, miRBase has been
widely used as a reference catalogue by other miRNA-related tools.
A somewhat adverse effect of miRBase popularity is a requirement
of a high robustness for the presented information and, therefore,
the lack of pilot tools incorporated. For example, while a single
mature miRNA can be linked to GO terms, there is no enrichment
analysis and functional annotation for a set or group of miRNAs.
Therefore, other tools have to be used in order to obtain such
annotations.

One such tool is the 2nd version of the miRNA Enrichment Anal-
ysis and Annotation package (miEAA 2.0), which aims at functional
analysis of sets of miRNAs [45]. MiEAA is based on GeneTrail, an
enrichment analysis tool for gene sets [46] and integrates data
from different sources including miRBase, miRWalk, miRTarBase
and others. MiEAA can work with lists of precursors and mature
miRNAs and performs either over-representation analysis (Fisher
exact test) or enrichment analysis (Kolmogorov-Smirnov test).
Available categories include for example GO, KEGG pathways, tar-
get genes, chromosomal location, diseases, drugs (altogether 130 k
categories). In parallel, the same group proposed another tool, miR-
PathDB. This dictionary, based on over-representation analysis of
miRNA targets provides miRNA-centric, gene-centric and
pathways-centric views [44].

Another tool, often used for functional annotation of miRNA is
TAM 2.0 [43]. The tool is based on a manual curation of 9 k papers.
It includes 1238 miRNA sets associated with different diseases,
miRNA families, transcription factors and biological functions.
With input lists of up- and down-regulated miRNA, TAM 2.0 can
analyse deregulated miRNAs in two conditions by cosine similarity.
This measure is based on the inner product of two vectors, and is
sensitive to the means of these vectors. For centred vectors (zero
mean), cosine similarity is equal to the Pearson correlation (see
Fig. 2B). Importantly, in both miEAA and TAM, users can provide
their own reference (background) set of miRNAs, reducing the bias.

DIANA tools also provide functional annotations – DIANA-
miRPath 3.0 [47] works with both single and multiple miRNAs.
Categories are represented by KEGG molecular pathways and GO
in several organisms. The tool links miRNAs with regulated mRNAs
using several target prediction algorithms (DIANA-microT-CDS,
TargetScan) and validated targets (DIANA-miRTarBase). An imple-
mented reverse-search module allows identifying miRNAs that
control specific pathways. A drawback of the tool is the fact that
reference miRNA or mRNA lists cannot be selected or changed.

A visual analytics and integration tool, miRNet 2.0 [48], pro-
vides users with the possibility to build networks based on own
lists of miRNAs, mRNAs, transcription factors (TF) and other regu-
latory elements (12 modules in total). In cases where miRNAs are
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selected as a starting module, the tool builds a network of miRNAs
and their targets (based on one of above mentioned databases) and
visualizes it. It also allows for functional annotation based on the
target list.

2.5. Data-driven methods: similarity-based

Accessibility of large transcriptomic datasets that represent
mRNA and miRNA profiles across many samples and conditions
facilitate the use of data-driven, hypothesis-free approaches to
data integration. The simplest way to integrate different datasets
would be the calculation of correlation within and between miRNA
and mRNA profiles, which is possible if both data types were col-
lected from the same samples or at least the same conditions
(Fig. 2, the heatmaps and networks illustrate the basic idea but
are based on real data from [49]). This approach, however, is
unable to discriminate between direct and fake miRNA:mRNA
interactions, originating from common hidden regulators such as
transcription factors. Therefore, additional filters should be used
to prioritize meaningful interactions. Such filtering can be done,
for example, by considering only negatively correlated miRNA:
mRNA pairs, where the mRNA is also predicted as a potential target
of the miRNA [13]. Additional layers of complexity were brought in
by the fact, that both mRNA and miRNA datasets have a high
intrinsic correlation. This could originate from simultaneous acti-
vation or repression of genes and miRNAs participating in the same
or linked functions. In order to deal with such behaviour, a
module-based method, the Learning Module Network LeMoNe
was proposed and applied to infer functions and regulated targets
of miRNAs [50]. Their two-step algorithm includes a partition of
genes into co-expressed clusters followed by inferring a regulatory
program for each cluster. This method was further developed in a
cross-platform open source Lemon-Tree tool [51].

Another approach is built on canonical correlation analysis
(CCA), a classical method to establish linear relations between
two sets of correlated observations. The method accepts the fact
that experimental data are correlated and builds linear combina-
tions of features for both datasets in a way to maximize correlation
between them. One of the most successful example of this
approach is DIABLO, an integrative method based on sparse gener-
alized CCA [52]. This method can be used to identify markers and
to build links between multi-omics data and patient groups. It
was specifically tested on integration of miRNA and mRNA data-
sets. The method is implemented as a part of a powerful mixOmics
R-package, able to integrate results across several omics datasets
or derived from different studies [53]. Recently, another useful
application of CCA was applied to identify miRNA-disease associa-
tions [54].

Pearson correlation captures only linear dependency between
expression of mRNA and miRNA. Changing to Spearman rank cor-
relation could broaden this to a wider range of monotonic depen-
dencies. However, in reality miRNA:mRNA dependency can be
more complex, and requires considering two-dimensional distribu-
tions between miRNA and mRNA expression. In [55], triangular-
shaped patterns between miRNA and its targets were reported.
The authors proposed an ‘‘antagonism pattern detection algo-
rithm”, based on counting and statistical assessment of observa-
tions in lower and upper triangles of a scatter plot. Alternatively,
mutual information can be used to detect non-random profiles.
Mutual information is able to capture different non-linear patterns
and is used in the context likelihood of relatedness (CLR) algorithm
[56]. As an example of a successful application, this method
allowed for identification of miRNA regulatory network in glioblas-
toma [57].

Several authors addressed the problem of context- or condition-
specific relations between miRNAs and their targets [58–60].



Fig. 2. Similarity-based methods. (A) Correlation or other similarity measures produce a highly-connected network of miRNAs and potentially regulated mRNAs. Due to the
high level of correlation between genes, such networks are often redundant and contain many false positives and should be filtered using miRNA target databases. (B)
Standard similarity measures used for comparison of miRNA and mRNA profiles. (C) Canonical correlation analysis (CCA) approach: new features U and V are built as linear
combinations of miRNA and mRNA profiles in a way that maximizes correlation between them.
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Context-specificity can be taken into account using biclustering, a
method to cluster subsets of genes that have similar expression in
a subset of conditions [58,59]. For instance, the rectified factor
network-based biclustering for genes, miRNAs and interactions
(rfnGMI), presented by Su et al. [59], was applied to detect genes
and miRNA markers specific to breast cancer.

2.6. Data-driven methods: Matrix factorization

Matrix factorization methods originally represent the expres-
sion matrix as a matrix product of lower rank matrices with the
original mRNA and miRNA data measured in m samples (Fig. 3).
We assume that there are some hidden (latent) variables or com-
ponents that are shared between data types. These variables can
for example, explain variability of the data over subgroups of
1158
samples (cancer subtypes or patient outcomes). The effect of a
latent variable on features (genes, miRNAs) is described by the
‘‘metagene” matrix, the effect on samples by the ‘‘weight” matrix.
Moreover, the weights of the same latent variables affecting mRNA
and miRNA data should either be the same, or should at least be
correlated. By linking these variables, it is possible to integrate
the data, linking miRNAs and mRNA belonging to the same latent
variable.

Various methods of building this matrix product and properties
of the resulting matrices have been proposed. Here we describe
several of the most widespread approaches. Some of them focus
on general integration of multi-modal (multi-omics) data, which
can also be projected onto miRNA and mRNA data integration.
The first attempt to develop matrix factorization for linking sets
of mRNA and miRNA was performed within the SNMNMF tool



Fig. 3. Matrix factorization methods. (A) Each expression matrix is presented as a product of two lower-rank matrices. Integration can be performed by correlating weight
profiles over the samples resulting in a network of linked components. Some methods (e.g. MOFA) use a single weight matrix for both datasets. (B) Variation of the approach
in different methods: JIVE, MOFA and ICA. The classical NMF approach has the same mathematical expression as ICA, but requires that both metagene (S) and weight (W)
matrices are composed of non-negative elements.
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(Sparse Network-Regularized Multiple Non-negative Matrix Fac-
torization) [61], which is, unfortunately, not available anymore.
The tool employed non-negative matrix factorization (NMF) [62],
which requires matrix elements to be non-negative. Although the
method fits well to the physical nature of non-negative RNA quan-
tities, it suffers from ambiguity of matrix decomposition and
requires additional restrictions or regularizations.

Integrative clustering of multiple genomic data types (iCluster)
used likelihoodmaximization to build a joint latent variable model,
with the ‘‘weights” matrix shared between data types. L1-norm
penalization was used to limit the loadings [63]. Its further devel-
opment, iCluster+, now allows a variety of different data types,
including binary and categorical data. The potential of the algo-
rithm for miRNA:mRNA integration has also been used in the
group structured tight iCluster method (GST-iCluster) [64].

Joint and Individual Variation Explained (JIVE) was proposed as
an extension of the Principle Component Analysis (PCA) approach.
It decomposes the original data into a sum of two informative
parts: a low-rank approximation capturing joint structures
between data types, and an approximation capturing the distinct
structures for each data type. This was shown to outperform
CCA. The method was tested on mRNA and miRNA datasets related
to glioblastoma of TCGA and, being supplemented with target pre-
diction tools, identified informative clusters of interacting miRNA
and mRNA [65].

One of the most advanced matrix factorization methods is the
Multi-Omics Factor Analysis (MOFA) [66]. The method was devel-
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oped for integration of various levels of omics data and for discov-
ering the main sources of variation in multi-omics datasets. Using a
Bayesian approach, MOFA infers a set of hidden or pre-defined fac-
tors that capture biological and technical variability in the data.
The main paradigm is in line with the representation in Fig. 3
(‘components’ are now called ‘factors’). The specificity of the
method is that the weight of matrices is considered to be identical
and is estimated for all omics data simultaneously. An advantage of
the method is also its ability to work with missing data. If some
measurements are not available either for mRNA or for miRNA
datasets, they will be imputed. MOFA allows estimating factor
importance by assessing the proportion of variance explained by
each factor in each dataset. Although this method has not been
developed for integration of miRNA and mRNA data, it has a lot
of potential for this application.

Independent component analysis (ICA) is another powerful
method to integrate multi-omics data. The algorithms decomposes
original data into signals that are as statistically independent as
possible [67]. Despite the method being completely unsupervised,
it usually finds more biologically relevant signals in the data then
PCA and helps cleaning signals from technical biases [68,69]. In
order to increase reproducibility of the analysis, we recently pro-
posed consensus ICA (consICA) [68] and showed its applicability
to integration of miRNA:mRNA data in melanoma. A multidimen-
sional version of the method, tensor ICA (tICA), was shown to out-
perform CCA, iCluster and JIVE in identifying biological sources of
data variation [70].
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2.7. Hybrid methods

Methods that combine information about miRNA targets with
experimental observations have the highest potential for context-
dependent integration of miRNA and mRNA data. For example,
we presented a basic user friendly tool CoExpress for the analysis
of miRNA:mRNA co-expression that used information from the
TargetScan database for filtering potentially linked miRNAs and
mRNAs [13].

Context-specific interactions between miRNA and mRNA were
also investigated in context-specific microRNA analysis (CoSMic)
[58]. This algorithm combines sequence-based predictions by Tar-
getScan and other tools with miRNA and mRNA expression data
(Spearman correlation) and focuses only on miRNAs that are active
in a specific subgroup of samples. The authors demonstrated in a
well-controlled cell line experiment that their method efficiently
filters out false positive interactions and helps identifying
context-specific targets.

Another example is the miRNA master regulator analysis
(MMRA), which starts from a differential analysis of miRNA and
mRNA expression and then looks for miRNAs whose targets are
enriched among differentially expressed mRNAs. After this, a net-
work is built around each miRNA. miRNAs with the highest poten-
tial to explain subtype-specific mRNAs are selected (a stepwise
linear regression is used to predict mRNA expression by miRNA)
Fig. 4. Limited overlap of validated (A) and predicted (B) miRNA targets. For TargetScan
miRNAs were used. To avoid biases due to the selection of miRNAs and mRNAs, we sep
index is reported beneath each Venn diagram. (C) Overview of all 4 tools. The number o
shown in the table.
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[60]. The approach was further developed in clustered miRNAmas-
ter regulator analysis (ClustMMRA), and tested on epithelial to
mesenchymal transition in triple negative breast cancer cells
[71]. Now, instead of analysis of each specific miRNA, genomic
clusters of miRNAs are considered. Targets of miRNAs were pre-
dicted using a combination of tools, including TargetScan and
miRTarBase.

A similar paradigm was realized in the anamiR R/Bioconductor
package. Experimental data undergo differential expression analy-
sis, correlation and intersection with databases of predicted or val-
idated targets and functional annotation of both miRNA and mRNA
data [72]. The authors developed a function-driven analysis work-
flow to identify miRNA-gene interaction pairs among those partic-
ipating in significant pathways.
3. Summary

Here we provide an overview of the most common and promis-
ing approaches that were developed over the past decade to inte-
grate miRNA and mRNA expression data in order to gain a
deeper understanding of the gene regulatory fine-tuning events
in cellular processes. Historically, a main emphasis has been placed
on miRNA-target prediction methods. However, despite recent
experimental advances with regards to next generation sequencing
, all available miRNA:mRNA pairs including conserved and non-conserved sites and
arately intersected lists of miRNAs and mRNAs considered in the tools. The Jaccard
f overlapping miRNA:mRNA pairs as well as the corresponding Jaccard indexes are
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analysis of cellular transcriptomes, the main issue of in silico target
prediction remains the limited accuracy and low agreement
between the tools. Even databases with experimentally validated
targets and targets based on curated literature mining suffer from
little congruence and not much has changed since an initial assess-
ment of precision and sensitivity of available tools was published
by Alexiou et al. [73].

To illustrate this point, the intersection between different tools
is visualized in Fig. 4. First, the overlap of experimentally validated
targets from DIANA TarBase v8 and miRTarBase is shown. Both
tools are widely used in the scientific community, but not much
attention is given to the discrepancy between these two databases.
From our observations for human miRNAs, only ~10% of the
recorded miRNA targets are common between these databases
(Jaccard index Jpairs = 0.05). At the same time, Jaccard indexes for
the considered miRNA and mRNA lists are 0.42 and 0.66, respec-
tively, and cannot explain such low overlap of the pairs. Interest-
ingly, prediction algorithms have a slightly higher accordance
(Fig. 4B) but this is most probably linked to the extremely high
number of reported miRNA:mRNA pairs. Indeed, TargetScan, in
its most unrestricted configuration, which includes both conserved
and non-conserved sites as well as miRNAs, reported ~26% of all
possible miRNA:mRNA pairs as potentially possible. An intersec-
tion of all four databases (Fig. 4C), resulted in a somewhat higher
concordance (Jpairs = 0.046) between miRTarBase and MirDB when
predicted and validated targets were combined. The overall very
low agreement between different methods and databases can be
explained, to some extent, by the notion of context-specific inter-
actions between miRNAs and mRNAs. Indeed, as one miRNA can
regulate many mRNAs, the concentration of an active miRNA
strongly depends on stoichiometric flux balance with all its inter-
actors. In addition to mRNAs, miRNAs can also bind to lncRNAs
or circRNAs that may act as a miRNA sponges [74] or miRNAs
may be degraded via target RNA-directed miRNA degradation
(TDMD) [75]. Considering the complexity of cellular gene regula-
tory models, which involve many players with unknown binding
affinities and interaction potential, we reckon that a combination
of validated experimental data with prediction algorithms trained
on more and better high throughout datasets will eventually lead
to a more accurate forecast of miRNA targets.

It is a widely accepted simplification that miRNA/mRNA inter-
actions are generally representing a negative correlation, an obser-
vation backed by most experimental data. However, several factors
can reduce observable negative correlations: (i) co-existence of
miRNAs and their targets in specific cell types can lead to a positive
correlation in an experiment where several cell types are consid-
ered; (ii) as previously shown, miRNA responses to a stimulus
may be delayed compared to mRNA responses and thus can only
be captures in a time-course experiment [13]; (iii) finally, a scatter
plot of miRNA and its targets should have a shape of a triangular
area rather than of a simple linear dependency (an absence of
miR should not lead to an increase of its target mRNA, if it was
not produced beforehand) [55].

Moreover, it is important to consider the number of samples
required for the different types of data integration. If methods
based on differential expression analysis and target databases
require only few samples (enough to find differences between
two conditions), correlation-based approaches already need
around 10 independent conditions to ensure a bell-shaped correla-
tion distribution under the null hypothesis, i.e. independence of
miRNA and mRNA. Semi-supervised matrix factorization methods,
such as MOFA, may work when the number of samples is twice
higher than the number of estimated factors. Finally, data-driven
ICA is sensitive to the number of samples. From our experience,
at least 4 samples are needed per one independent component,
with 40–50 components required for a good interpretation and
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associating of the components to the clinical information [67].
Thus, hundreds of samples are needed for such an approach.

Acquisition of high quality datasets of both miRNA and mRNA
expression profiles opens the door to apply these advanced decon-
volution methods (MOFA, JIVA, ICA) on one side and modern deep-
learning models that predict binding affinities on the other side. In
future, we may expect to see inclusion of target predictions into
matrix factorization algorithms, for example as a regularization
factor taken into account during building of the metagene matri-
ces. At the same time, deep learning models can take into account
the context of miRNA:mRNA interaction, if enough data are avail-
able. Together, these approaches will certainly help to provide
improved miRNA targetome predictions in the near future.
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