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Abstract

Assessing species richness and diversity on the basis of standardised field sampling effort

represents a cost- and time-consuming method. Satellite remote sensing (RS) can help

overcome these limitations because it facilitates the collection of larger amounts of spatial

data using cost-effective techniques. RS information is hence increasingly analysed to

model biodiversity across space and time. Here, we focus on image texture measures as a

proxy for spatial habitat heterogeneity, which has been recognized as an important determi-

nant of species distributions and diversity. Using bee monitoring data of four years (2010–

2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference

approach we test the ability of texture features derived from Landsat-TM imagery to model

local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and

species richness to some extent, with the first-order entropy texture and terrain roughness

being the most relevant indicators. However, the texture measurements accounted for only

3–5% of up to 60% of the variability that was explained by our final models, although the

results are largely consistent across different species groups (bumble bees, solitary bees).

While our findings provide indications in support of the applicability of satellite imagery tex-

tures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive

power of texture metrics reported in previous studies for avian biodiversity. We assume that

our texture data captured mainly heterogeneity resulting from landscape configuration,

which might be functionally less important for wild bees than compositional diversity of plant

communities. Our study also highlights the substantial variability among taxa in the applica-

bility of texture metrics for modelling biodiversity.
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Introduction

Assessing biodiversity is essential to the effective monitoring of ecosystems and central to the

development of sustainable management strategies and conservation plans for both natural

and cultivated areas at various spatial scales [1]. However, measuring species richness and

diversity on the basis of a standardised field sampling effort represents a cost- and time-con-

suming method, in particular over broad spatial scales [2, 3]. Therefore, complementary

approaches are required to minimize monitoring resources and to maximize a priori knowl-

edge about biodiversity patterns and quality of an area [4].

Spatial heterogeneity of habitats, i.e. the variation of the area in spatial scale, has been recog-

nized as an important determinant of species distributions and diversity as regions with higher

heterogeneity typically provide greater numbers of ecological niches and therefore can poten-

tially host more co-existing species (e.g. [5, 6]). Spatial heterogeneity can be estimated from

available satellite remote sensing (RS) data, e.g. through relationships with categorical land-

cover information [7] or through indicators of spectral variability (SV) following the spectral

variation hypothesis [2]. The latter hypothesis states that spectral heterogeneity of a RS image

correlates well with landscape structure and complexity, which are directly related to spatial

habitat heterogeneity. Hence, RS information is increasingly used to model and understand

species distributions in space and time and to predict biodiversity-rich sites (see [4, 8, 9] and

references therein). However, the commonly used land-cover classification data ignore subtle

variations within a given class and gradients between classes, i.e. variation in vegetation struc-

ture [10, 11], which, in turn, influences the distribution of biodiversity [5]. Moreover, land-

cover information is typically limited in both spatial and temporal grain, and, therefore, may

not be the most pertinent for different species. The use of spatial heterogeneity in the spectral

signal can overcome some of the limits of land-cover classifications (e.g. thematic constraints),

and can therefore be a suitable proxy for species diversity estimates (reviewed in [3]). Yet,

there are other challenges associated with this approach. For example, the strength of relation-

ships between SV and biodiversity can vary considerably with spatial scales, diversity indices

used, locations, and the imagery type [12, 13].

Similar to spectral radiance information, RS-based texture measures provide spatially con-

tinuous and temporally consistent observations of the land surface and render within-class

vegetation structure. The use of these metrics has been recognized as an important method for

quantifying spatial heterogeneity in terms of the spatial distribution [14, 15]. Image texture,

considered as a function of the spatial variation in pixel brightness, is commonly measured as

first-order (occurrence) and second-order (co-occurrence) statistics [16]. The first-order mea-

sures are summary computations, such as mean and standard deviation. They describe the fre-

quency distribution of pixel values in a defined neighbourhood (commonly implemented as

kernel or a moving window), while second-order statistics are based on the probability of joint

occurrence of two pixel-intensity values which are in certain inter-pixel distance and orienta-

tion. Many of these texture metrics have been successfully explored to assess biodiversity.

However, studies are biased towards certain species group (mainly vascular plants and birds;

[11, 17–19]). For insect communities, the applicability of satellite-derived texture metrics for

modelling patterns of local biodiversity is poorly understood. However, other remote-sensing

techniques, e.g. airborne and terrestrial laser scanning, have been successfully, although barely,

applied for modelling composition and diversity of spiders and beetles [20, 21].

Here, we focussed on wild bees, which are one of the most important groups of pollinators

in most terrestrial ecosystems and economic crops [22, 23]. Bees are highly sensitive to floral

resource abundance and diversity and probably also to the presence of nesting sites [24], and

have frequently been shown to respond strongly to landscape heterogeneity and management
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[25–27]. For example, many wild bees nest or hibernate in semi-natural habitats and visit agri-

cultural fields mainly for foraging. Consequently, pollinator species richness decrease with

increasing distance from natural or semi-natural habitats, such as field margins, species-rich

grasslands or forests edges [25]. Thus, bees are assumed to profit from complex landscapes

within their foraging distance, making this group particular useful for our purposes.

The objective of our study was to examine the utility of RS texture information for indicat-

ing patterns of pollinator diversity across small spatial extents. We particularly aimed to

explore the ability of texture features based on the Normalized Differenced Vegetation Index

(NDVI) derived from 30-m resolution Landsat imagery to capture spatial habitat heterogeneity

and model local pollinator species richness and diversity. While our results indicate some sup-

port to satellite-derived texture metrics as indicators for patterns of biodiversity, they under-

line the high level of variation among taxa in terms of the predictability of diversity measures

by RS texture metrics.

Material and methods

Ethics statement

Bee data were collected in accordance with German law. The study was approved and annual

sampling permissions were provided by the local nature conservation authorities (RL-0174-V;

issued by Federal Agency for Environmental Protection Saxony-Anhalt).

Study area and bee monitoring data

Bee monitoring data were used from six sites (Fig 1) across Saxony-Anhalt, Germany, gener-

ated in four consecutive years (2010–2013). The study sites are monitored on a regular basis as

part of the TERENO project (Terrestrial Environmental Observatories; www.tereno.net) and

of the German-European Long-Term Ecological Research network (LTER-D; http://www.ufz.

de/lter-d/). They are representative for the dominating agricultural land use in a wider land-

scape and largely differ in terms of landscape structure and altitude (for details see Table 1). In

particular, the region is characterized by a high variation in land-use intensity (from flat

regions with up to 98% agriculture and large fields to regions with high levels of altitudinal het-

erogeneity, high cover of forests or other semi-natural habitats, less agriculture and smaller

fields) and some variation in climatic conditions. The main crops are winter cereals, oilseed

rape, maize and to some extent potato, sugar beet and peas [28]. Each site covers an area of

4 × 4 km and is divided in a grid of 1 × 1 km, containing one combined flight trap (a combina-

tion of yellow funnel and window panel; [29]) per grid cell. The traps were placed randomly

within each square with the constraint that all traps had to be located at ecotones (i.e. transi-

tion zone between two habitat types, usually between an agricultural and a semi-natural area).

Trapping efficiency was proofed extremely high and confirmed by local experts [30, 31]. Polli-

nator species were collected in two periods per year, extending from May to June (early sum-

mer) and from August to September (late summer), comprising 42.5 trapping days on average

per period (41–50 days). Traps were active for two weeks before being emptied. Collected bees

were identified to species level. Honeybees were excluded from the analyses to avoid potential

anthropogenic effects caused by honeybee management. For an overview of the workflow of

the study see S1 Fig.

Remote sensing data sources and image metrics processing

The red (band 3) and near-infrared (band 4) from a 30-m resolution Landsat-5 TM scene

acquired on May 08, 2011 (path 194, row 24) were used to calculate the NDVI as implemented
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in ENVI 5.0 software (Research Systems Inc., Boulder, CO). Atmospheric correction of the

Landsat data was performed using the Landsat Ecosystem Disturbance Adaptive Processing

System (LEDAPS; [32]). The Landsat image was captured during a time that matches the early

sampling period of the pollinators at the TERENO sites. Previously published research has

been shown that NDVI texture is superior to the texture of any individual Landsat TM band

for modelling biodiversity [15]. Based on this NDVI image a set of first- and second-order tex-

ture measures was computed in ENVI 5.0, except evenness (see below), including metrics that

have been recently proven to be particular suitable to capture spatial habitat heterogeneity

[33]: mean, evenness, entropy and variance (first-order textures) as well as contrast, dissimilar-

ity, entropy and homogeneity (second-order textures); see Table 2. Evenness was calculated

with the r.diversity module using GRASS GIS 7.2.0 [34, 35]. Second-order texture measures

were extracted from a grey-level co-occurrence matrix (GLCM), a tabulation of how often dif-

ferent combinations of pixel brightness values occur in the image [16, 36]. Since this matrix is

sensitive to rotation we varied the directions for texture calculations by four different rota-

tional angels (0˚, 45˚, 90˚ and 135˚), and averaged the results [16]. All image texture analyses

were computed from a window of 3 × 3 pixels (90 m × 90 m), which was considered an ade-

quate size for measuring neighbour conditions relevant to pollinators. In addition to the mean

of the textures, we selected the measure of first-order standard deviation due to its ’intuitive

appeal’ for characterizing levels of heterogeneity [18]. In order to relate our measures to the

different foraging distances of the various pollinator groups we derived different-sized ring

buffers around each sample site (100–1000 m, 100 m intervals). For each buffer area we then

calculated the mean and standard deviation of each of the metrics using Hawth’s tool [37], as

well the mean and coefficient variation (cv) of the NDVI. Moreover, we derived a microtopo-

graphy-based ’terrain roughness’ metric from a local 10 m digital elevation model (DGM 10,

GeoBasis-DE/BKG 2012), that used the same coordinate system as the other layers (ETRS89/

UTM zone 32N). Roughness is a measure of spatial configuration or landscape heterogeneity,

as it is correlated with other terrain attributes (e.g. relief, standard deviation of elevation, slope

and standard deviation of slope). We generated this metric as the amount of elevation differ-

ence between adjacent cells according to [38] and [39] using the Geomorphometry and Gradi-

ent Metrics Toolbox v2.0 [40] and applying a moving window size of 9 × 9 (i.e. 90 × 90 m).

Hawth’s tool was again used to summarize roughness values (mean, standard deviation) within

the different buffer areas around each sample point.

Fig 1. Landsat 5 TM image (Germany, Saxony-Anhalt, path 194, row 24, acquisition date: May 8th, 2011). The

TERENO study locations are indicated by black frames (FBG: Friedeburg, GFH: Greifenhagen, HAR: Harsleben, SIP:

Siptenfelde, SST: Schafstaedt, Wan: Wanzleben), and trapping points are given as yellow filled circles.

https://doi.org/10.1371/journal.pone.0185591.g001

Table 1. Coordinates (site centroids) and characteristics of the six study sites as specified in a previous work [28]. SN = semi-natural areas;

CF = crop fields; For = forest; GL = grassland.

Site Latitude Longitude Elevation (±SD) SN CF % For % GL %

Friedeburg (FBG) 51˚6177˚N 11˚7096˚E 122 (±31) 10 71 3 8

Greifenhagen (GFH) 51˚6329˚N 11˚4340˚E 270 (±27) 6 71 12 6

Harsleben (HAR) 51˚8423˚N 11˚0753˚E 143 (±14) 17 67 13 1

Siptenfelde (SIP) 51˚6491˚N 11˚0526˚E 423 (±31) 15 18 61 4

Schafstaedt (SST) 51˚3770˚N 11˚7224˚E 177 (±11) 2 97 0.3 0.1

Wanzleben (WAN) 52˚0803˚N 11˚4518˚E 113 (±10) 8 77 4 3

https://doi.org/10.1371/journal.pone.0185591.t001
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Pollinator data: Rarefaction and diversity analyses

Data preparation and all analyses were performed in R version 3.2.5 [46]. Because we did not

expect all pollinator species to respond uniformly to measures of textures, we performed all

analyses on (i) the whole community of wild bees (dataset ’nohb’) and the community split in

two subsets; ii) bumble bees (data set ’bb’) and iii) remaining wild bees (data set ’sb’). This

roughly separates the community in large eusocial bees and smaller bees that are mostly soli-

tary. Although the second subset is not a ’pure’ trait group, this separation is often used to

identify differences relating to foraging distance (body size) and food requirements (whole col-

ony at once, or individual, solitary, foragers) [47, 48]. In addition to the number of bees (bee

count, BC; normalized to trapping days), we estimated abundance-independent species rich-

ness (SpR) by rarefaction with the iNext package [49, 50]. Species richness was interpolated to

three times the minimum abundance of individuals in the dataset. Shannon’s diversity (SD)

[51] was estimated using the ’Hs’ function in the DiversitySampler package [52].

Although BC, SD and SpR were partly positively correlated (S1 Table), we analysed them

separately following the same procedure. The three data sets were initially explored through

descriptive analysis. Pollinator data (BC, SD, SpR) was assessed per season and year in all three

datasets (see above) for normal distribution using Shapiro-Wilk tests and Q-Q plot analyses.

Annual, seasonal and location-associated differences were tested within each biodiversity mea-

surement using the Kruskal-Wallis test [53]. Finally, we used Pearson’s correlation coefficients

Table 2. The metrics generated in the study as measures of spatial heterogeneity.

Metric Measure Formula [16, 41–45]

Mean of NDVI Mean of the NDVI values within the buffer areas NDVI

Coefficient of variation Normalized dispersion of NDVI within the buffer areas SD½NDVI�
NDVI

1st order textures

Mean Mean value of NDVI of the processing window XNg� 1

i¼0

i PðiÞ

Entropy Disorder of NDVI
�
XNg� 1

i¼0

PðiÞln½PðiÞ�

Evenness Evenness of NDVI �

PNg
1¼1

PðiÞln½PðiÞ�
lnðNgÞ

Variance Dispersion of the NDVI values around the mean XNg� 1

i¼0

ði � MÞ2PðiÞ

2nd order textures

Contrast Exponentially weighted difference in NDVI between adjacent pixels XNg

i¼1

XNg

j¼1

Pði; jÞði � jÞ2

Dissimilarity Difference in NDVI between adjacent pixels XNg

i¼1

XNg

j¼1

Pði; jÞji � jj

Entropy Disorderliness of NDVI �
X

i

X

j

Pði; jÞlogðPði; jÞÞ

Homogeneity Uniformity of NDVI between adjacent pixels XNg

i¼1

XNg

j¼1

1

1þði� jÞ2
P i; jð Þ

Roughness Elevation difference between adjacent cells of a DEM
Y
hX
ðxij� x00Þ

2
i1

2

Ng = total number of distinct grey levels in the window; P(i) = proportion of occupancy of each pixel value; xij = elevation of each neighbour cell to cell (0,0);

for ArcGIS source code of roughness see [39].

https://doi.org/10.1371/journal.pone.0185591.t002
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(r) of the season classes ’early’ and ’late’ to determine whether there was a strong relationship

between them, which would provide additional evidence for a fixed seasonal effect.

Statistical analysis

To eliminate predictor collinearity prior to generating the models, we first calculated Pear-

sons’s correlation coefficients for all pairs of distance classes per variable to remove classes

with coefficients │c│> 0.7 (S2 Fig). We eliminated all data of correlated distance classes and

all variables that showed a correlation across all distance classes. Secondly, we computed the

correlation between the remaining variables and excluded the variable of a correlated pair with

│c│> 0.7 that we considered to be the less biologically important of the two (S3A and S3B

Fig). The resulting dataset contained two distance classes (100 m and 1000 m) each with five

potentially predictive variables (cvNDVI, roughness, entropy [1st order], contrast and homo-

geneity [2nd order]; Fig 2). Further potential correlations between variables within distance

classes were addressed during model building.

To investigate the potential relations of biodiversity to image texture indices, we applied lin-

ear models (LM). We used the R-packages car [54], MASS [55], MuMln [56], ncf [57] and

nlme [58]. For each dataset (bb, sb, nohb) and response variable (BC, SD, SpR) we first built a

full model by including all texture metrics as fixed effects test predictors as well as the location

site, season and year as fixed effects control predictors. Control predictors were not pertinent

to our hypotheses but have known effects that needed to be controlled for to allow valid con-

clusions about our test predictors [59]. We calculated the variance inflation factors (vif) for

each of the full models and excluded predictors with a square root of the vif > 2 [60]. Due to

their high vif the metrics homogeneity, entropy and roughness for the 1000 m distance class as

well as contrast for the 100 m distance class were excluded from the full model (Table 3 for an

overview of all predictors throughout the models, and S4 Fig). Model residuals were inspected

to assess model fit. We ensured that model residuals were not spatially autocorrelated by creat-

ing spline correlograms [61] using the ncf package in R. The significance of correlograms was

tested for distance classes increasing by 100 m using randomization test with 500 times of per-

mutation at the 0.05 level.

To assess the impact of individual image metrics, we generated models with all possible

combinations of predictors of the global model, as we did not have any a priori hypotheses on

the subsets of predictors in question. We did not fit interactions between any of the factors, as

this would require a large number of coefficients and would be difficult to interpret. All test

predictors were scaled to allow comparing their relative effects. Models on the different biodi-

versity variables (BC, SD, SpR) were compared using Akaike’s information criterion (AIC; [59,

62]). Statistical differences between models were based on ΔAIC scores larger than 2 [59].

Parameter estimates and standard errors were obtained as model-averaged estimates from the

top model set (ΔAIC� 2), and their p-values with likelihood ratio tests (LRT) of the full model

against the model without the effect in question. Finally, we constructed the null model

(including only the control predictors) and compared it to the global model to assess the

amount of variance that is explained by the test and the control predictors, respectively.

Results

Pollinator data characteristics

During four years of monitoring, more than 20.000 individual bees of 260 bee species were col-

lected. 238 out of these taxa were solitary bee and 22 bumble bee species. In most of the subsets,

the data showed a significant deviation from a normal distribution for seasons, except for the

log-transformed bee count and species richness of the full data and the solitary bees (data not

Satellite image textures and biodiversity models

PLOS ONE | https://doi.org/10.1371/journal.pone.0185591 October 3, 2017 7 / 17

https://doi.org/10.1371/journal.pone.0185591


shown). Highly significant differences in biodiversity were present between seasons and loca-

tions in the bumble bees, solitary bees and wild bees data set (S5 and S6 Figs). Again, bee count

and species richness showed no differences between years in the full and solitary-bee data sets

but in the bumble-bee data. Pearson’s correlation coefficients (r) of the season classes ’early’

Fig 2. Spatial habitat heterogeneity within the six study sites (FBG, GFH, HAR, SIP, SST, WAN) captured by the presented

texture metrics. Light blue dots correspond to the trapping points.

https://doi.org/10.1371/journal.pone.0185591.g002
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Table 3. Overview of predictors used in the averaged LMs. 1st = first order texture; 2nd = second order texture; bb = bumble bees; cv = coefficient of vari-

ance; con = contrast; ent = entropy; hom = homogeneity; nohb = all wild bees; rough = roughness; sb = solitary bees; BC = bee count; SD = Shannon’s diver-

sity; SpR = Species richness.

Fixed effects test predictors Fixed effects control

predictors

1st ent 100 m 2nd hom 100 m cv NDVI 100 m rough 100 m 2nd con 1000 m cv NDVI 1000 m location year season

BC bb x x x x x x x x x

nohb x x x x x x x x x

sb x x x x x x x x

SD bb x x x x x x x x x

nohb x x x x x x x

sb x x x x x x x x x

SpR bb x x x x x x x x

nohb x x x x x x x x

sb x x x x x x x x

https://doi.org/10.1371/journal.pone.0185591.t003

Table 4. Model-average estimates (EST) of scaled test predictors of bee biodiversity represented by bee count (BC), Shannon diversity (SD), and

species richness (SpR) using bumble bees (bb), solitary bees (sb) and all wild bees (nohb). The R2 corresponds to the global model including all pre-

dictors that remained after model selection, while the R2 of the Null model (R2
NULL) refers to the model including only the fixed effects control predictors. Δ =

R2- R2
NULL. IMP = relative importance; SD = Standard deviation; nmodel = number of models averaged; P = P-values. con2 = 2nd order contrast; ent1 = 1st

order entropy; hom2 = 2nd order homogeneity; NDVI_cv = coefficient of variance of the NDVI; rough = surface roughness; 100/1000 = 100 m or 1000 m scale.

(bb) BC (log), nmodel = 6 Shannon Diversity, nmodel = 8 Species Richness, nmodel = 6

Test predictor EST SD P IMP EST SD P IMP EST SD P IMP

con2_1000 -0.021 0.029 0.458 0.51 -0.028 0.038 0.453 0.51

ent1_100 0.051 0.019 0.006 1.00 0.065 0.023 0.005 1.00 0.013 0.051 0.803 0.15

hom2_100 0.060 0.020 0.003 1.00 0.008 0.018 0.666 0.30 0.006 0.041 0.882 0.12

NDVI_cv_100 -0.005 0.014 0.740 0.23 -0.001 0.009 0.900 0.08 -0.037 0.091 0.685 0.28

NDVI_cv_1000 0.012 0.023 0.613 0.39 0.025 0.035 0.471 0.54 0.033 0.100 0.742 0.25

roug_100 0.073 0.021 <0.001 1.00 0.101 0.027 <0.001 1.00 0.513 0.125 <0.001 1.00

R2 = 0.220; R2
NULL = 0.184; 2 = 0.036 R2 = 0.192; R2

NULL = 0.155; Δ = 0.037 R2 = 0.215; R2
NULL = 0.179; Δ = 0.036

(sb) BC (log), nmodel = 8 Shannon Diversity, nmodel = 8 Species Richness, nmodel = 6

Test predictor EST. SD P IMP EST SD P IMP EST SD P IMP

con2_1000 0.003 0.012 0.814 0.18 0.120 0.150 0.427 0.53

ent1_100 0.054 0.018 0.002 1.00 0.095 0.022 <0.001 1.00 0.380 0.091 <0.001 1.00

hom2_100 0.005 0.013 0.725 0.23 0.017 0.024 0.486 0.49 0.045 0.083 0.587 0.39

NDVI_cv_100 -0.018 0.021 0.390 0.61 -0.011 0.020 0.584 0.37

NDVI_cv_1000 0.002 0.012 0.859 0.15 -0.003 0.015 0.839 0.16 -0.126 0.144 0.383 0.59

roug_100 0.024 0.024 0.322 0.67 0.087 0.025 <0.001 1.00 0.227 0.101 0.025 1.00

R2 = 0.596; R2
NULL = 0.587; Δ = 0.010 R2 = 0.493; R2

NULL = 0.464; Δ = 0.029 R2 = 0.206; R2
NULL = 0.165; Δ = 0.041

(nohb) BC (log), nmodel = 5 Shannon Diversity, nmodel = 3 Species Richness, nmodel = 4

Test predictor EST. SD P IMP EST SD P IMP EST SD P IMP

con2_1000 -0.001 0.009 0.877 0.14 0.010 0.020 0.662 0.30

ent1_100 0.045 0.016 0.005 1.00 0.112 0.021 <0.001 1.00 0.300 0.069 <0.001 1.00

hom2_100 0.008 0.016 0.599 0.36 0.033 0.025 0.196 0.79 0.061 0.072 0.396 0.20

NDVI_cv_100 -0.028 0.020 0.160 0.83 -0.041 0.069 0.551 0.17

NDVI_cv_1000 0.002 0.010 0.848 0.15 -0.081 0.085 0.340 0.23

roug_100 0.042 0.019 0.023 1.00 0.104 0.022 <0.001 1.00 0.218 0.081 0.007 1.00

R2 = 0.525; R2
NULL = 0.509; Δ = 0.016 R2 = 0.458; R2

NULL = 0.410; Δ = 0.048 R2 = 0.149; R2
NULL = 0.118; Δ = 0.031

https://doi.org/10.1371/journal.pone.0185591.t004
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and ’late’ ranged between 0.14 and 0.42 with p-values lower than 0.01, providing indications

for a systematic seasonal effect on bee diversity (S7 Fig).

According to the spline correlograms the fitted residuals of the global LMs showed no evi-

dence for significant spatial structure among the traps (S8 Fig). This was supported by the ran-

domization tests that did not show any significant autocorrelation whatever the distance lag

considered (data not shown). Therefore, we considered the residuals as spatially independent.

Species richness and diversity models

For each of the three data sets (BC, SD, SpR), the LM explained at least 15% of the variability

of biodiversity with an R2 ranging from 0.149 (species-richness model of solitary bees) to 0.596

(bumble bee count model; Table 4). Five of the image measures (roughness, cv of NDVI, 1st

order entropy and 2nd order homogeneity within 100 m radius as well as cv of the NDVI

within 1000 m radius), were included in seven of the nine optimal models selected by AIC.

Although most of the variability was captured by the control predictors (location, year, sea-

son), the texture metric entropy (1st order) and/or the roughness of the surface contributed

significantly to each of the models (Table 4). Notably, surface roughness remained in every

model used for model averaging, while entropy remained in every model except for the species

richness of bumble bees (S2 Table). Regardless of the data set, our image metrics performed

slightly better in the Shannon’s-diversity and species-richness models (ΔR2- R2NULL = 0.031

to 0.048) compared to the bee count models (ΔR2- R2NULL = 0.01 to 0.036). However, the

overall model performance of the species-richness model in solitary bees (R2 = 0.206) and the

full data set (0.149) was substantial lower than for the Shannon’s diversity (R2 = 0.46 and 0.49)

and bee count models (0.52 and 0.60).

Discussion

Our models revealed that texture metrics derived from Landsat imagery played a significant

but minor role in explaining local pollinator biodiversity, with the first-order entropy texture

and terrain roughness being the most relevant indicators. The results are in striking contrast to

the high predictive power of texture metrics reported previously for avian communities.

Pollinator biodiversity, texture metrics and habitat heterogeneity

The results of the present study indicate some support for existing evidence that texture met-

rics represent a potential tool for modelling biodiversity. We found that on small spatial scale

(within 100 m) first order entropy and surface roughness explained a substantial proportion

(up to 5%) of the variability in pollinator count, species richness and Shannon’s diversity, with

our final models explaining between 15% and 60% of the variability. Our findings are largely

consistent with each other, regardless of the defined taxa group, suggesting that the methods

we used and the results we present are robust. Similar low but likewise significant levels (4%)

of explained variance by texture information were recently reported for biodiversity models of

Arctiinae moths [63].

In previous studies, various texture features have been proposed as best predictor for biodi-

versity at different spatial scales and for different habitat types, such as mean summary of

NDVI values for ovenbird density and occurrence [64], the angular second moment for species

richness and diversity of shrub and tree nesting bird species [18], and second order homogene-

ity for avian species richness in diverse habitat types [33]. Entropy, however, hasn’t attracted

much attention so far, although in most of the studies using texture metrics for the analyses of

biodiversity patterns, first-order entropy is among the set of ’standard’ measurements [11]. In

our study, this metric accounted for a significant amount of variance in all biodiversity indices
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within the different datasets, except for species richness of bumble bees. Species richness typi-

cally does not consider species abundances, but rather the number of species in a particular

area. As the number of bumble bee species present on our sites was considerably lower than in

solitary bees, their variance might have been too small to be captured to some degree by tex-

ture metrics.

Entropy in any system represents uncertainty, where in the case of texture analysis it char-

acterizes spatial ‘disorderliness’ of an image [16] and is inversely related to measures of local

homogeneity (e.g. the angular second moment or energy). Our study sites are dominated by

agricultural land use, but differ largely in terms of altitude and landscape structure (e.g. 2–17%

cover of semi-natural areas; Table 1). Farmland fields usually occur as homogeneous patches

of similar grey values in the image, while any discontinuity would increase heterogeneity

among grey values, leading a priori to a higher number of distinct tone levels within the mov-

ing window during analyses, and, thus, higher entropy. Ultimately, the metric relates signifi-

cantly to our underlying hypothesis that biodiversity can be modelled by local heterogeneity.

Our results line up with previous findings showing that entropy is among the most sensitive

texture metric to map farmland field size and as such the degree of local heterogeneity [65].

Consistently, entropy statistics of the NDVI have been shown to depict the diversity of vegeta-

tion types, which is assumed to be directly related to structural complexity, thus, may support

more coexisting species [63]. Since wild bees’ abundance and species richness have been

shown to be enhanced by landscape heterogeneity (percentage of semi-natural habitats) [66],

it is not surprising that the entropy texture measurement was able to explain some of the vari-

ance in our models.

Similar to first-order entropy, surface roughness accounted for a significant proportion of

the variance of bee count, diversity and richness (with the only exception being the abundance

of solitary bees). The linkage between topographic characteristics and species distribution

across different spatial scales is a well-known fact ([67, 68] and references therein) that has

been used for modelling and monitoring biodiversity, especially in plants (e.g. [68–71]), but

also in birds [28, 72]. Moreover, relief roughness has been demonstrated to be strongly related

to land-use intensity. The latter decreases rapidly with an increasing variability of the surface

area, which is accompanied by increasing landscape heterogeneity that, in turn, impacts biodi-

versity [73, 74]. Again, pollinator communities have been shown to benefit from heteroge-

neous landscapes because of both their structural as well as plant mediated positive effects on

bee diversity [26]. For example, nesting sites are almost exclusively found in (semi-)natural

habitats, underlining the importance of a heterogeneous agri-environment [75]. We assume

that plain and smooth surfaces are characteristic for larger homogeneous agricultural segments

that are intensively managed, providing less complex environments and therefore harbour less

diverse communities where generalist species dominate. In contrast, landscapes characterized

by a hilly surface are likely to have smaller agricultural patches and a mixture of different land

cover types, associated with lower land use intensity and higher natural heterogeneity [74].

Relevance of the results and limitations of the study

Although the consistency of our results in the different data sets provides indications in sup-

port of the potential of the two metrics (entropy, roughness) for modelling pollinator diversity

and richness, the relatively low amount of variability explained by textures in our models dif-

fers considerably to previous findings in bird communities. Measures of image texture were

highly effective in modelling spatial patterns of avian biodiversity in multiple habitat types,

accounting for over 50% (7–51%) or even for up to 82% (31.5–82.3%) of the variability in spe-

cies richness [15, 17]. These variations in the ability of texture metrics to predict biodiversity
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corroborate recent contributions, showing that the applicability of indicators developed from

texture analysis differ significantly among taxa [63].

Bees respond very differently to landscape features compared to birds, and textures informa-

tion probably depict only minor parts of features that bees are responding to. For example, (for-

aging) plant species composition and flower abundance [26, 76] might be functionally more

important for wild bees than geometric complexity of spatial patterning of vegetation cover

types [66]. In addition, wild bees are assumed to respond more strongly to specific habitat fea-

tures at local scale than to landscape configuration at larger spatial scales [77]. However, the res-

olution of most sensors currently employed for RS derived texture analyses has so far prevented

the examination of the internal heterogeneity of plant communities, as the size of commonly-

used pixels is too large to detect such small-scale variation [78]. Hence, the grain of Landsat

data may not be sufficient for echoing the (most) relevant habitat components of pollinator spe-

cies (e.g. nesting sites, flower diversity). In contrast, many birds respond strongly to vegetation/

habitat structure, while plant species composition is often less or equally important, particularly

over large spatial scale (landscape level) [79–81]. Therefore, avian communities represent a bio-

logical group that seems to be far more pertinent compared to pollinators to be modelled by

image textures in terms of species richness, diversity and abundance. In pollinators, image tex-

ture parameters alone appear to be less applicable for the predictability of diversity measures.

Yet, they may improve predictions of species diversity in more sophisticated models [63].

Knowing whether image texture information are differently useful in different taxonomic

groups, and which metrics are more useful than others in modelling biodiversity is important

for a number of reasons. From a practical perspective these insights will help guiding research-

ers as to which metrics and which (meaningful) taxa they should focus on when assessing bio-

diversity by texture information. Also, this knowledge will add to a better understanding at

which scale relevant biological properties, to which the respective species community is

responding, can be depicted by textural attributes.

Conclusion

Our results provide some support for previous findings that texture metrics derived from

Landsat and DEM data can indicate patterns of species diversity and richness by reflecting spa-

tial heterogeneity. However, the limited performance of the texture metrics in our models (in

particular in comparison to similar studies in avian biodiversity) underlines both the substan-

tial variation among taxa in terms of the applicability of these measures and an insufficient

spatial resolution. Other, for pollinator species potentially more relevant information, such as

compositional heterogeneity of ground vegetation, was possibly not reflected by textural attri-

butes at the given resolution. It is hoped, that recently launched sensors (e.g. Sentinel-2) will

provide habitat data with higher spatial and temporal resolution (compared to Landsat) that

will probably greatly facilitate analyses as in the study at hand.
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