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Abstract

The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asym-

metric cell division driven by precise interactions and regulations of proteins, which makes

Caulobacter an ideal model organism for investigating bacterial cell development and differ-

entiation. The abundance of molecular data accumulated on Caulobacter motivates system

biologists to analyze the complex regulatory network of cell cycle via quantitative modeling.

In this paper, We propose a comprehensive model to accurately characterize the underlying

mechanisms of cell cycle regulation based on the study of: a) chromosome replication and

methylation; b) interactive pathways of five master regulatory proteins including DnaA,

GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs;

c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The

temporal dynamics of our simulation results are able to closely replicate an extensive set of

experimental observations and capture the main phenotype of seven mutant strains of Cau-

lobacter crescentus. Collectively, the proposed model can be used to predict phenotypes of

other mutant cases, especially for nonviable strains which are hard to cultivate and observe.

Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of pro-

teins with similar mechanisms.

Author summary

Timed cellular events in both eukaryotes and prokaryotes, such as chromosome replica-

tion, transcription, cell differentiation, cytokinesis, and cell division, are controlled by

remarkably complex genetic regulations and protein-protein interactions. In this work,

we investigate the cell cycle of Caulobacter crescentus, an alphaproteobacterium undergo-

ing asymmetric cell divisions, to understand mechanisms underlying temporal regulations

of complex cellular events. The asymmetric lifestyle makes Caulobacter crescentus easily

synchronized and tracked, which is the foundation of molecular data accumulation. Here,
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we utilize the mathematical modeling together with experimental information to system-

atically integrate the complex gene-protein and protein-protein interactions in cell cycle

progression. Using the mathematical model, we capture core features of cell cycle-depen-

dent methylation, transcription, and proteolysis. In mutant cases, we found the complex

and redundant regulatory network ensure the robustness of Caulobacter crescentus system

because the change of most molecules does not cause immediate mortality, although they

influence the time points of cell differentiation and division. The overall model and indi-

vidual modules such as simulating transcriptional regulations and protease complexes can

be further extended to the study of cell development in other bacterial species.

Introduction

Caulobacter crescentus (C. crescentus) is a model organism for exploring cell development and

cell cycle regulation in prokaryotes. C. crescentus undergoes an asymmetric cell division pro-

ducing two distinct progenies: a sessile stalked cell equipped with a stalk and a motile swarmer

cell equipped with a flagellum (Fig 1). While the stalked cell immediately initiates chromosome

replication and enters the next cell cycle, the swarmer cell searches for suitable environments

and differentiates into a stalked cell (sw-to-st transition) before entering the cell cycle replica-

tion [1]. The dimorphic lifestyle makes C. crescentus feasible to survive in oligotrophic waters.

The timed asymmetric cell progression of C. crescentus is highly regulated by a cell cycle-

dependent regulatory network including four master regulators–DnaA, GcrA, CtrA, and

CcrM [2, 3]. DnaA, GcrA, and CtrA are transcriptional factors that control over 200 cell cycle-

regulated genes in C. crescentus. These proteins form a loop to control each other. DnaA acti-

vates gcrA expression, GcrA regulates the expression of ctrA and dnaA, and CtrA in turn influ-

ences the transcription of dnaA [4–6]. Furthermore, DnaA is a conserved DNA replication

initiator, activating replication by binding directly with the chromosome origin (Cori) [7]. In

addition, there are five binding sites for CtrA on Cori, where replication initiation is sup-

pressed when being bound by the phosphorylated form of CtrA (CtrA*P) [4]. CcrM, a

Fig 1. The asymmetric cell cycle of C. crescentus including G1, S, and G2 phases. C. crescentus cell grows in G1, replicates

DNA in S phase, and prepares for cell division in G2 phase. The predivisional (PD) cell divides asymmetrically into two

different progenies: motile swarmer (SW) cell and non-motile stalked cell (ST). The dynamics of CtrA, GcrA, DnaA, CcrM,

SciP, RcdA, and CpdR is indicated by color during each stage of the cell cycle.

https://doi.org/10.1371/journal.pcbi.1009847.g001
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conserved methyltransferase, is turned on at the completion of DNA replication to fully meth-

ylate the motif GANTC, which is carried by promoters of ctrA, dnaA, and ccrM (see Fig 2) [8,

9]. The short window of CcrM allows the maintenance of hemimethylated chromosome dur-

ing replication, ensuring the robustness of cell cycle development. Moreover, CcrM has been

reported to influence the expressions of more than 10% genes [8, 10]. Among these CcrM-reg-

ulated genes, more than 100 genes are likely influenced by a GANTC motif-dependent path-

ways, while the mechanisms of the rest genes are not clear [8]. Here, we take the CcrM-

dependent methylation of GANTC motif into the regulatory network although it is dispens-

able for the replication control. Additionally, SciP is an antagonist of CtrA which is instrumen-

tal in cell cycle regulations but receives little attention. SciP spatiotemporally represses the

transcription of CtrA-induced genes because most of these genes contain a SciP binding site

upstream of a CtrA binding site in their promoters [2].

A wealth of experimental data for cell cycle-regulated genes and proteins in C. crescentus
have been accumulated in last decade [11, 12]. System biologists have proposed different quan-

titative models to analyze underlying mechanisms and pathways of cell cycle regulation. For

example, Li et al. [4, 13] quantitatively modeled the interactions between CtrA, DnaA, GcrA,

and CcrM and studied the simulated behaviors of some mutants. Murray et al. [10] proposed a

simplified model incorporating CtrA, CckA, and GcrA to capture the cell cycle features of C.
crescentus and predict the behaviors of ΔgcrA cells. However, the proteolysis of CtrA is not

explicitly modeled. Li et al. [4, 13] borrowed DivK while Murray et al. [10] used CckA to

describe the proteolysis of CtrA; but both DivK and CckA are indirect factors influencing the

proteolysis of CtrA through phosphorelay pathways [14]. There are a series of models working

on the spatial regulatory networks in C. crescentus. Li et al. investigated the spatial regulations

focusing on CtrA in a stochastic model [15], which preliminarily revealed roles of spatial

Fig 2. Methylation site locations of different genes on C. crescentus chromosome. The elliptical curve represents the

DNA fork in replication. Cori is the origin of DNA replication and Ter is the termination site. The CcrM methylation

site is located upstream of the dnaA, ccrM and ctrA genes, represented as rectangles.

https://doi.org/10.1371/journal.pcbi.1009847.g002
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phosphorylation on the asymmetric cell cycle in C. crescentus. Further, Chen et al. [16] and Xu

et al. [17] proposed spatial models for the scaffolding protein PopZ in C. crescentus, which

complemented Li et al.’s model [15] about the initial localization factors. Although previous

mathematical models revealed some mechanisms of Caulobacter system, a comprehensive

model for core regulators of the cell development, as well as a quantitative comparison

between simulations and observations, have yet been explicitly investigated. Previous models

didn’t consider the mRNA abundance and transcription process based on master regulators.

Additionally, there is no mathematical model describing the cyclic proteolysis of master regu-

lator CtrA, which plays important roles for cell development especially for the sw-to-st transi-

tion [18].

In this paper, we focus on five core components–DnaA, GcrA, CtrA, CcrM, and SciP that

control over 90% of cell cycle-regulated genes, and propose a mathematical model that consid-

ers the regulation of DNA replication and methylation, as well as the gene-protein and pro-

tein-protein interactions. Since CtrA is essential in the cell cycle regulation and its proteolysis

is distinctively and spatiotemporally regulated, we construct a hierarchical ClpXP complex

network for its proteolysis, which is then integrated into the entire model. The simulated

dynamics of mRNA and proteins are consistent with experimental observations. The ClpXP

complex model can be used as a quantitative analysis tool to simulate other cyclic proteolysis

in C. crescentus, such as the proteolysis of ShkA and TacA [19, 20].

Materials and methods

Model description

The regulatory network of bacterial cell cycle includes a series of complex mechanisms, such as

genetic regulations, degradations, phosphorylation, dephosphorylation, and so on. The details

of the complex regulatory network will be described in the following.

Module 1: The core regulatory network of cell cycle. The master regulatory network of

C. crescentus, as summarized in Fig 3, is composed of DnaA (dnaA), GcrA (gcrA), CtrA (ctrA),

CcrM (ccrM), and SciP (sciP). Specifically, DnaA promotes the expression of gcrA, while GcrA

inhibits DnaA and activates one of the promoters (P1) of CtrA [7]. Conversely, CtrA*P sup-

presses the initiation of DNA replication [21], activates the transcription of dnaA [4], inhibits

the activity of P1, and activates itself through another promoter (P2) [3]. The accumulation of

Fig 3. The master regulatory network of C. crescentus. Solid lines represent activation/inhibition influences of

master regulators (DnaA, GcrA, CcrM, CtrA, SciP) with arrow/bar, respectively. The dashed lines represent the

methylation effects on dnaA, ctrA, ccrM genes from CcrM.

https://doi.org/10.1371/journal.pcbi.1009847.g003
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CtrA promotes the expressions of ccrM and sciP, where CcrM controls the methylation state of

P1 of ctrA [22]. SciP downregulates CtrA and CcrM [2]. The regulatory network of the five

master proteins and mRNAs governs cell cycle-regulated genes, thereby driving the cell cycle

progression [11].

In normal cell cycle progression, active CtrA (phosphorylated form, blue color in Fig 1) is

cleared during the sw-to-st transition; CtrA concentrations are generally low in stalked cells

when the Z-ring is closed [23]. The activity of CtrA is controlled by synthesis, degradation,

and phosphorylation, the latter of which is driven by the CckA-dependent pathway [18, 24]

(Fig 3). As CckA*P is the only known phosphoryl donor of CtrA [14], we involve the CckA-

dependent phosphotransfer into our model. CtrA proteolysis depends on a particular protease

complex comprising the protease ClpXP and four additional adaptors–CpdR, RcdA, PopA,

and c-di-GMP (cdG) [18]. While the protease ClpXP presents throughout the entire cell cycle,

RcdA and CpdR co-localize at the stalked pole during sw-to-st transition and stay in the predi-

visional cell’s stalked compartment (gold and black circles in Fig 1) [25]. The phosphorylation

of CpdR is also regulated by CckA, thus CckA regulates the activity of CtrA through both

phosphorylation and proteolysis. Additionally, CtrA controls the expression of RcdA and

CpdR in C. crescentus.
Module 2: Cell cycle-dependent proteolysis of CtrA. The stability and activity of pro-

teins strictly regulate cell cycle processes. Accordingly, proteolysis plays a significant role in

cell development and response to internal/external stimuli [18, 26]. ClpXP, a highly conserved

protease, is responsible for the proteolysis of a wide range of proteins including CtrA in C. cres-
centus [18]. Many substrates of ClpXP are cell cycle-regulated. Although ClpXP levels do not

change significantly throughout the cell cycle, it requires additional cell cycle-dependent adap-

tors to cyclically degrade proteins [18]. Substrates of ClpXP-based proteolysis require different

classes of protease complex assemblies [27]. Substrates, such as PdeA, only require ClpXP

primed by unphosphorylated CpdR; we name this type of substrates as the first class substrate.

Similarly, the second class substrates require primed ClpXP additionally with RcdA assembled;

and the third class substrates, such as CtrA, require binding between PopA and c-di-GMP con-

nected with the second class protease complex (see Fig 4).

Fig 4. Hierarchical proteolysis of the first (eg. PdeA), second (eg. TacA), and third (eg. CtrA) substrate. The

degradation of different substrates is dependent on the degree of adaptor assembly. Priming of the protease ClpXP by

unphosphorylated CpdR results in PdeA decay, which recruits additional adaptor RcdA to degrade TacA. RcdA tethers

cdG-bound PopA with primed ClpXP, which is responsible for the proteolysis of CtrA.

https://doi.org/10.1371/journal.pcbi.1009847.g004
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To simulate the protease complex for CtrA degradation, we use ‘Complex 1’, ‘Complex 2’,

and ‘Complex 3’ to name the protease complexes that degrade the first, second, and third class

substrates, respectively (see Fig 5). Unphosphorylated CpdR primes ClpXP to function as the

first class protease complex (Complex 1) which degrades CpdR in turn [14]. (Table 1, Eq. 20).

Primed ClpXP (Complex 1) recruits RcdA (Complex 2) to deliver the second class substrates

to the protease ClpXP [27] (Table 1, Eq. 23). Additionally, the RcdA proteolysis has been

shown to be catalyzed by Complex 1 [20]. Besides CpdR and RcdA, the third class proteolysis

requires PopA bound with cdG, where cdG-bound PopA directly interacts with RcdA and

CtrA ensuring the specific degradation of CtrA [18]. The diguanylate cyclase PleD and phos-

phodiesterase PdeA are included in our system as the main synthetase and hydrolase of cdG,

respectively, where the expression of pleD and pdeA is controlled by CtrA*P [28]. PdeA is

proteolyzed by Complex 1, shown in Fig 5. As PopA bears a GGDEF domain and two receiver

domains akin to PleD, we assume PopA functions as a dimer; thus, PopA dimer binds with

two cdG molecules in the same way as PleD does [29, 30]. Since cdG levels in C. crescentus are

less than 0.3 μM [31], which is much lower than most protein levels, we use cdG to represent

the PopA:2c-di-GMP binding species in this model (Fig 5). Moreover, the phosphorylation of

CpdR is controlled by the kinase CckA, similarly with CtrA [14]. cdG binds to CckA to inhibit

its kinase activity [32], which means cdG participates in the degradation and dephosphoryla-

tion of CtrA. CckA and cdG connect the master regulators network and ClpXP-based proteol-

ysis system through CtrA (Fig 5).

Only phosphorylated form of PleD is active to catalyze the synthesis of cdG [32]. As the

phosphorylation of PleD is controlled by more than three enzymes, including PleC, DivJ,

CckN, and at least one unknown kinase [33, 34], it is complicated to thoroughly involve phos-

phorylation pathway of PleD. We initially assumed that phosphorylated PleD has a similar

trend over cell cycle with total PleD and used total PleD as the synthetase of cdG; but cdG sim-

ulation in predivisional cell was super high, inconsistent with experiments, although both

PleD and PdeA fit data well. We hypothesize PleD*P is relatively low in predivisional cell due

to the regulation of its main phosphatase PleC and kinase DivJ. To verify our hypothesis, we

quantify western blots of DivJ and PleC over cell cycle using ImageJ [35, 36] (Fig 6). Experi-

mental data indicates that DivJ almost does not change during the cell cycle and PleC is high

in predivisional cell. Therefore, it is reasonable that PleD*P decreases in predivisional cell

Fig 5. Hierarchical diagram of protease complexes. Solid lines with arrow denote metabolisms; solid lines with filled

circles denote binding processes; dashed lines with arrow denote activation effects. Complex 1 decays the first class of

substrates; Complex 2 degrades the second class of substrates; Complex 3 degrades the third class of substrates.

https://doi.org/10.1371/journal.pcbi.1009847.g005
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because of high phosphatase activity of PleC. We fit PleC data points with trigonometric func-

tions: 80.09 × sin(0.013t + 1.74) + 78.77 × sin(0.013t + 4.85) (Fig 6A). The function of PleC is

then introduced into our model to represent the PleC level regulating the phosphorylation of

PleD.

Table 1. Equations of replication and methylation, transcription, translation, and proteolysis.

Equations of DNA

(1)

dIni
dt ¼ ks;Ini �

½DnaA�
YDnaA

� �4

J4a;Iniþ
½CtrA�P�
YctrA

� �4

þ
½DnaA�
YDnaA

� �4 � 1þ 1

J4i;Iniþ
hCori
YCori

� �4

0

B
@

1

C
A

(2) dElong
dt ¼ kelong �

Elong4

Elong4þP4
elong

; ð3Þ dZring
dt ¼ ks;Zring

(4) dhCori
dt ¼ � km;Cori �

½CcrM�4

J4m;Coriþ½CcrM�
4 � hCori

(5) dhccrM
dt ¼ � km;ccrM �

½CcrM�4

J4m;ccrMþ½CcrM�
4 � hccrM

(6) dhctrA
dt ¼ � km;ctrA �

½CcrM�4

J4m;ctrAþ½CcrM�
4 � hctrA

Equations of mRNAs

(7) dIccrM
dt ¼ ks;IccrM �

½CtrA�P�2

J2a;ccrM� CtrAþ½CtrA�P�
2 �

J2i;ccrM� SciP

J2i;ccrM� SciPþ½SciP�
2

� �

� hccrM � kd;IccrM � IccrM

(8) dccrM
dt ¼ ks;ccrM � IccrM � kd;ccrM � ccrM

(9) ddnaA
dt ¼ ks;dnaA �

J2i;dnaA� GcrA
J2i;dnaA� GcrAþ½GcrA�

2

� �

� ð2 � hCoriÞ � kd;dnaA � dnaA

(10) dgcrA
dt ¼ ks;gcrA �

½DnaA�2

J2a;gcrA� DnaAþ½DnaA�
2 �

J2i;gcrA� CtrA
J2i;gcrA� CtrAþ½CtrA�P�

2

� �

� kd;gcrA � gcrA

(11) dsciP
dt ¼ ks;sciP �

½CtrA�P�2

J2a;sciP� CtrAþ½CtrA�P�
2 � kd;sciP � sciP

(12) dctrA
dt ¼ ks1;ctrA �

½GcrA�2

J2a;ctrA� GcrAþ½GcrA�
2 �

J4i;ctrA� CtrA
J4i;ctrA� CtrAþ½CtrA�P�

4 �
J4i;ctrA� SciP

J4i;ctrA� SciPþ½SciP�
4

� �

� hctrA þ ks2;ctrA �
½CtrA�P�2

J2a;ctrA� CtrAþ½CtrA�P�
2 � kd;ctrA � ctrA

Equations of regulatory proteins

(13) d½CcrM�
dt ¼ ks;CcrM � ccrM � kd;CcrM � ½CcrM�

(14) d½DnaA�
dt ¼ ks;DnaA � dnaA � kd;DnaA � ½DnaA�

(15) d½GcrA�
dt ¼ ks;GcrA � gcrA � kd;GcrA � ½GcrA�

(16) d½SciP�
dt ¼ ks;SciP � sciP � kd;SciP � ½SciP�

(17) d½CtrA�
dt ¼ ks;CtrA � ctrA � kd;CtrA þ

kd;CtrA� ClpXP �½Complex3�
2

J2d;CtrA� CplXPþ½Complex3�
2

� �

� ½CtrA� � kphoCtrA � ½CckA�P� � ½CtrA� þ kdephoCtrA � ½CtrA�P�

(18) d½CtrA�P�
dt ¼ � kd;CtrA þ

kd;CtrA� ClpXP �½Complex3�
2

J2d;CtrA� ClpXPþ½Complex3�
2

� �

� ½CtrA�P� þ kphoCtrA � ½CckA�P� � ½CtrA� � kdephoCtrA � ½CtrA�P�

Equations of protease complexes

(19) d½CckA�P�
dt ¼ kphoCckA � CckAT � CckA�P�½ Þ � kdephoCckA � 1þ acdG � ½cdG�ð Þ � ½CckA�P�

�

(20) d½Complex1�
dt ¼ kþ

1
� ½ClpXP� � ½CpdR� � k�

1
� ½Complex1� � kþ

2
� ½Complex1� � RcdA½ � þ k�

2
� ½Complex2�

(21) d½CpdR�
dt ¼ ks;CpdR �

½CtrA�P�2

J2a;CpdR� CtrAþ½CtrA�P�
2 � kd;CpdR � ½CpdR� �

½Complex1�
Jd;CpdRþ½Complex1�

þ k�
1
� ½Complex1� � kþ

1
� ½ClpXP� � ½CpdR� þ kdephos;CpdR � ½CpdR � P� � kphos;CpdR � ½CckA � P� � ½CpdR�

(22) d½CpdR�P�
dt ¼ � kd;CpdR � ½CpdR�P� �

½Complex1�
Jd;CpdRþ½Complex1�

þ kphos;CpdR � ½CckA�P� � ½CpdR� � kdephos;CpdR � ½CpdR�P�

(23) d½Complex2�
dt ¼ kþ

2
� ½Complex1� � RcdA½ � � k�

2
� ½Complex2� þ k�

3
� ½Complex3� � kþ

3
� ½c� di� GMP�2 � ½Complex2�

(24) d½RcdA�
dt ¼ ks;RcdA �

½CtrA�P�2

J2a;RcdA� CtrAþ½CtrA�P�
2 � kd;RcdA � ½RcdA� �

½Complex1�
Jd;RcdAþ½Complex1�

(25) d½Complex3�
dt ¼ kþ

3
� ½c� di� GMP�2 � ½Complex2� � k�

3
� ½Complex3�

(26) d½PleD�
dt ¼ ks;PleD �

½CtrA�P�2

J2a;PleD� CtrAþ½CtrA�P�
2 � kd;PleD � ½PleD� � kphosPleD � ½PleD� þ kdephoPleD � ½PleC� � ½PleD�P�

(27) d½PleD�P�
dt ¼ kphosPleD � ½PleD� � kdephoPleD � ½PleC� � ½PleD�P�

(28) d½PdeA�
dt ¼ ks;PdeA �

½CtrA�P�2

J2a;PdeA� CtrAþ½CtrA�P�
2 � kd;PdeA � ½PdeA� �

½Complex1�
Jd;PdeAþ½Complex1�

(29) d½cdG�
dt ¼ ks;cdG � 1þ aPleD � ½PleD�ð Þ �

J2i;cdG� cdG
J2i;cdG� cdGþ½cdG�

2 � kd;cdG � 1þ aPdeA � ½PdeA�ð Þ � ½cdG� þ k�
3
� ½Complex3� � kþ

3
� ½cdG� � ½Complex2�

https://doi.org/10.1371/journal.pcbi.1009847.t001

PLOS COMPUTATIONAL BIOLOGY Modeling the dynamics of master regulators and CtrA proteolysis in Caulobacter cell

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009847 January 28, 2022 7 / 25

https://doi.org/10.1371/journal.pcbi.1009847.t001
https://doi.org/10.1371/journal.pcbi.1009847


Module 3: Chromosome replication and methylation. We build the module for DNA

replication following the recognized principle in Li et al’s work [4], which consists of initiation,

elongation, and termination phases. During the sw-to-st transition, C. crescentus requires high

levels of DnaA and low levels of CtrA to initiate DNA replication [13]. As DNA synthesis pro-

ceeds, the fully methylated chromosome becomes hemimethylated due to the semiconservative

replication. Replication will not be initiated again until CcrM re-methylates Cori once more

[13]. Additionally, the master regulator genes ctrA, dnaA, and ccrM have CcrM-targeted

sequence GANTC in their promoters (see Fig 2). Therefore, the methylation state of these

genes are likely influenced by CcrM abundance and the progression of replication. Taken

together, the initiation of DNA replication occurs when CtrA concentration is low, DnaA con-

centration is high, and Cori is fully methylated. Once initiated, DNA replication continues in a

bidirectional manner along circular chromosomes and terminates in the late predivisional cell

[37]. Finally, the newly replicated chromosomes are separated into two daughter cells with the

Z-ring constriction.

We use variables Ini and Elong to model the initiation and elongation phase of DNA repli-

cation, respectively, where Elong was built by Li et al [4] (Table 1, Eqs. 1-2). Ini = Pelong signals

the end of initiation and the beginning of the elongation phase, where Pelong = 0.05 [13]. The

initial value of Elong is 0.1 (2 × Pelong) because the chromosome replication of C. crescentus is

bidirectional. DNA replication is terminated when Elong = 1 and we reset Elong = 0 once repli-

cation is terminated. h, indicating the probability of hemimethylation [4], is introduced in this

study to describe the methylation influences on transcript rate (see Table 1, Eqs. 7-12). As the

position of dnaA is very close to Cori (see Fig 2), ‘(2 − hCori)’ is used to represent the methyla-

tion effect of dnaA [4] and dnaA transcription rate reduces to half when it is hemimethylated

[5]. I is introduced for a time delay. The chromosomes are separated with Z-ring constriction;

however, the Z-ring event is not modeled in this study. Experiments indicate the S-phase

Fig 6. Quantification of experimental data of PleC from [35] and DivJ from [36]. (A) Black curve is fitted from experimental data by MATLAB. The

fitting function is 80.09 × sin(0.013t + 1.74) + 78.77 × sin(0.013t + 4.85). (B) Experimental data of DivJ indicates DivJ levels sharply drop during the sw-

to-st transition and then almost do not change.

https://doi.org/10.1371/journal.pcbi.1009847.g006
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period of Caulobacter is approximately 90 min. Here, we introduce a variable Zring to control

the timing of Z-ring constriction and cell division. The increase rate of Zring is set as a particu-

lar constant to control the time for Zring rising from 0 to 1; and we use the time event

Zring = 1 (Table 2) to signal the separation of chromosomes, where the count of chromosomes

goes from 2 to 1 [6]. Throughout the execution of our simulation, several events representing

cellular phenomena, including time points of replication initiation and chromosome segrega-

tion, can be triggered given particular conditions (summarized in Table 2).

Model derivation

Some proteins are not uniformly distributed in Caulobacter cells (see Fig 1). As we focus on

temporal dynamics of regulators and their contributions to cell development, we ignore the

non-uniform distributions and assume the whole cell is well-mixed at this stage. We use the

law of mass action to describe the general synthesis/degradation and binding/unbinding pro-

cesses, while protein effects–activation and inhibition–are described by Hill functions. To be

more specific,

x � !
ks;X X � !

kd;X
; ð1Þ

is converted as

d½X�
dt
¼ ks;X � x � kd;X � X½ � ð1Þ

where X represents protein, x is the mRNA of X, ks,X is the rate constant of synthesis, and kd,X

indicates the rate constant of degradation.

Aþ BÐ
kþðbindÞ

k� ðunbindÞ
C is converted as

d½C�
dt
¼ kþ � A½ � � B½ � � k� � C½ � ð2Þ

A binds to B to produce C, where k+ and k− represent binding and unbinding rates, respec-

tively. Activation and inhibition effects are described by Hill functions as follow:

HaðXÞ ¼
Xn

Jna;x þ X
n ; HiðXÞ ¼

Jni;x
Jni;x þ X

n ; ð3Þ

whereHa(X) indicates activation, andHi(X) indicates inhibition. Variables n, J represent the

corresponding Hill coefficient and the microscopic dissociation constant, respectively.

Table 2. Event list.

Event description Condition Change(s)

DNA replication initiates Ini = Pelong Ini = 0, Elong = 0.05, DNA = 1.05, ks,Zring = 0.011, hCori = 1

replication fork passes ccrM locus Elong = 0.2 hccrM = 1

replication fork passes ctrA locus Elong = 0.375 hctrA = 1

DNA elongation terminates Elong = 1 Elong = 0

Z-ring constriction Zring = 1 Zring = 0, ks,Zring = 0, DNA = 1

https://doi.org/10.1371/journal.pcbi.1009847.t002
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Model parameters

Experimental data. To compare our simulations with experimental observations from

different publications, we first normalize experimental data to [0, 1] as follows:

zi ¼
xi � minðxiÞ

maxðxiÞ � minðxiÞ
; ð4Þ

where xi indicates the original data point; zi is the scaled normalized value of experiments. Sec-

ond, considering the relative abundance of different species in experiments [38], we set differ-

ent targeted ranges for different species in the model. For example, the abundances of DnaA

and CcrM are relatively low while those of CtrA and SciP are relatively high in experiments

[38] and our simulations. For the figures in the Result section, the normalized experimental

data are scaled to the range of our simulations to evaluate the temporal dynamics.

Parameter description. All 86 parameters used in this study are summarized in Table 3.

Among them, seven parameters are obtained from previous experimental or modeling publi-

cations (see parameters marked with � in Table 3).

The rest of the parameters are split into two groups: 1) 47 parameters (summarized in

Table 4) that characterize major functionality of mRNAs and proteins, such as synthesis and

degradation, are chosen for optimization; 2) the remaining 32 parameters are set with fixed

values, including most dissociation constants.

Multiobjective optimization. Let w 2 Rp, p = 47 be the vector of parameters to be esti-

mated in the caulobactor cell cycle model. For this optimization problem, we focus on two

aspects: the quantitative difference between experimental data and simulated results, and the

cell cycle time, both for wild type cells. The reasoning behind the two objectives is that the

experimental data have inconsistent concentration levels between the beginning (t = 0 min)

and ending (t = 150 min) states of the cell cycle, whereas our model must be consistent to

ensure stable cell cycle regulation. This is also validated in our initial optimization test using a

single objective function, where we observe minimizing the difference in species concentration

results in high deviation in cell cycle time, and vice versa. Due to this conflict, we cannot use

the common scalarization scheme to sum up the two objectives using weights, i.e., F(χ) =

w1 f1(χ) + w2 f2(χ). Our parameter optimization is therefore defined as a multiobjective optimi-

zation problem (MOP). The two objective functions are:

f1ðwÞ ¼
1

nm

Xn

i

Xm

j

ðxi;j � yi;jÞ
2
; f2ðwÞ ¼ jTc � 150j; ð5Þ

where xi,j denotes the simulated concentration of species i at time j, yi,j denotes the experimen-

tal data of species i at time j, and Tc is the simulated cell cycle time. Here, we have the experi-

mental data for n = 15 species (see Table 5) and the number of data pointsm varies for

different species. Note that we only use available observations of C. crescentus wild type (WT)

cells for parameter fitting. The mutant cases of C. cell are used as our model validation. The

optimization problem to be solved is

min
½L;U�

f1ðwÞ; min
½L;U�

f2ðwÞ; ð6Þ

where [L, U] is a search box in Rp for model parameters. See the lower and upper bounds of

parameters in Table 4.

We apply two MOP algorithms to our optimization problem for comparison: one is the

widely used nondominated sorting genetic algorithm (NSGA-II) [39]; the other is the more

recent VTMOP [40] based on VTdirect [41] and QNSTOP [42, 43] that uses response surface
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and trust region methodologies, and an adaptive weighting scheme. Initial values in Table 6

are the levels of corresponding variables used as the beginning state of each simulated cell

cycle. Fig 7 shows the combined Pareto front from both methods after multiple runs with dif-

ferent optimization settings. Observe that the Pareto front is a nonconvex curve, showing that

the multiobjective optimization problem is very difficult. The best parameter estimates are

found by VTMOP and listed in Table 3, with f1 = 1.57 and f2 = 0.02. The sensitivity of parame-

ters is 18% for experimental data fitting (f1) and 72% for cell cycle time (f2) if we perturb the

parameters of three Pareto points (marked as black circle in Fig 7) by 10%. Note that the sensi-

tivity of the second objective is large when f2 is very close to zero, thus points near zero are not

Table 3. Parameter values. Parameters marked with � are obtained from publications.

Parameters of DNA

Rate constants, units = min-1

ks,Ini = 3.104e-4, k�elong ¼ 6:53e� 3 [4], Pelong� = 0.05 [4],

km,Cori = 1.5637, km,ccrM = 2.2763, km,ctrA = 1.4645

Binding constants (dimensionless)

Ja,Ini = 1, Ji,Ini = 1.4565, Jm,Cori = 0.95, Jm,ccrM = 0.95, Jm,ctrA = 0.95

Scaling variables (dimensionless)

ΘCtrA = 6.0, ΘDnaA = 0.5, ΘCori = 0.308

Parameters of mRNAs

Rate constants, units = min−1

ks;IccrM ¼ 0:1105, kd;IccrM ¼ 0:0696, ks,ccrM = 0.2557, kd,ccrM = 0.1005,

ks,dnaA = 0.199, kd,dnaA = 0.0693, ks,gcrA = 5.4235, kd,gcrA = 0.7342,

ks1,ctrA = 1.0035, ks2,ctrA = 0.0937, kd,ctrA = 0.0983, ks,sciP = 0.583, kd,sciP = 0.0523,

Binding constants (dimensionless)

Ja,ccrM-CtrA = 5, Ji,ccrM-SciP = 6, Ji,dnaA-GcrA = 3, Ja,gcrA-DnaA = 1.25, Ji,gcrA-CtrA = 5,

Ja,ctrA-CtrA = 5, Ja,ctrA-GcrA = 3, Ji,ctrA-CtrA = 8, Ji,ctrA-SciP = 8, Ja,sciP-CtrA = 5

Parameters of master regulators

Rate constants, units = min−1

ks,DnaA = 0.0787, k�d;DnaA ¼ 0:07 [54], ks,GcrA = 0.032, k�d;GcrA ¼ 0:022 [4],

ks,CcrM = 0.0834, k�d;CcrM ¼ 0:07 [55], ks,SciP = 0.1294, kd,SciP = 0.0673,

ks,CtrA = 0.0404, k�d;CtrA ¼ 0:002 [4], kd,CtrA-ClpXP = 0.053

Phosphorylation constant, units = min−1

kphos,CtrA = 4.2919, kdephos,CtrA = 0.113, kphos,CckA = 1.027, kdephos,CckA = 0.9242

Binding constants (dimensionless)

Jd,CtrA-ClpXP = 4

Parameters of protease complexes

Rate constants, units = min−1

kþ
1
¼ 0:6072, kþ

2
¼ 1:4375, kþ

3
¼ 170:4913, k�

1
¼ 3:3013, k�

2
¼ 0:8164, k�

3
¼ 2:3133,

kphos,PleD = 0.046, kdephos,PleD = 0.0414, ks,CpdR = 1.2227, kd,CpdR = 1.6152,

kpho,CpdR = 1.1239, kdepho,CpdR = 1.3854, ks,RcdA = 0.1642, kd,RcdA = 0.2323,

ks,cdG = 0.0099, kd,cdG = 0.9893,

ks,PleD = 0.0956, kd,PleD = 0.1314, ks,PdeA = 0.012, kd,PdeA = 0.5161

Binding constants (dimensionless)

Ja,CpdR-CtrA = 15, Jd,CpdR = 6, Ja,RcdA-CtrA = 15, Jd,RcdA = 2

Ja,PdeA-CtrA = 5, Jd,PdeA = 5, Ja,PleD-CtrA = 2.5, J�i;cdG� cdG ¼ 0:2 [51]

Constants (dimensionless)

CckAT = 0.3, [ClpXP] = 1, αPdeA = 7, αPleD = 1500, αcdG = 10

https://doi.org/10.1371/journal.pcbi.1009847.t003
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included in the analysis. The root mean square error (goodness of fit) is RMS(f1)� 1.51,

RMS(f2)� 0.84 for the three selected Pareto points.

Results

Integrating the hierarchical proteolysis (Fig 5) into the master regulatory network (Fig 3), we

propose a model to capture the temporal dynamics of cell cycle regulators and glean insights

about bacterial protein proteolysis systems. Non-uniform distributions of molecules in space

are ignored at this stage.

Table 4. Parameter optimization with lower and upper bounds and starting point.

Parameter [L,U] Starting Parameter [L,U] Starting

km,Cori [0.35, 5.6] 1.4 km,ccrM [0.35, 5.6] 1.4

km,ctrA [0.35, 5.6] 1.4 ks;IccrM [0.025 0.4] 0.1

kd;IccrM [0.016675, 0.2668] 0.0667 ks,ccrM [0.064, 1.024] 0.256

kd,ccrM [0.02, 0.32] 0.08 ks,dnaA [0.0605,0.968] 0.242

kd,dnaA [0.015, 0.24] 0.06 ks,gcrA [1.4, 22.4] 5.6

kd,gcrA [0.15, 2.4] 0.6 ks,sciP [0.125, 2] 0.5

kd,sciP [0.01, 0.16] 0.04 ks1,ctrA [0.2475, 3.96] 0.99

ks2,ctrA [0.0225, 0.36] 0.09 kd,ctrA [0.02075, 0.332] 0.083

ks,DnaA [0.01625, 0.26] 0.065 ks,GcrA [0.007, 0.112] 0.028

ks,CcrM [0.02125, 0.34] 0.085 ks,SciP [0.0295, 0.472] 0.1183

kd,SciP [0.015, 0.24] 0.06 ks,CtrA [0.0108, 0.1728] 0.0432

kd,CtrA-ClpXP [0.015, 0.24] 0.06 kþ
1

[0.15, 2.4] 0.6

k�
1

[0.75, 12] 3 ks,CpdR [0.175, 2.8] 0.7

kd,CpdR [0.375, 6] 1.5 kdephos,CpdR [0.25, 4] 1

kphos,CpdR [0.25, 4] 1 kþ
2

[0.275, 4.4] 1.1

k�
2

[0.25, 4] 1 ks,RcdA [0.0375, 0.6] 0.15

kd,RcdA [0.05, 0.8] 0.2 kþ
3

[35, 560] 140

k�
3

[0.5, 8] 2 ks,cdG [0.0025, 0.04] 0.01

kd,cdG [0.25, 4] 1 ks,PleD [0.025, 0.4] 0.1

kd,PleD [0.0375, 0.6] 0.15 kphosPleD [0.01, 0.16] 0.04

kdephosPleD [0.01, 0.16] 0.04 ks,PdeA [0.0025, 0.04] 0.01

kd,PdeA [0.125, 2] 0.5 kphoCtrA [1.25, 20] 5

kdephoCckA [0.25, 4] 1 kdephoCtrA [0.025, 0.4] 0.1

kphoCckA [0.25, 4] 1

https://doi.org/10.1371/journal.pcbi.1009847.t004

Table 5. Sources for experimental data used to evaluate our models.

Species Data source Species Data source

ccrM [12] CcrM [47, 48]

dnaA [12] DnaA [7, 47]

gcrA [12] GcrA [2, 7]

sciP [12] SciP [2]

ctrA [12] CtrA [47, 48]

CpdR [25] RcdA [44]

PleD [45] PdeA [45]

cdG [31]

https://doi.org/10.1371/journal.pcbi.1009847.t005
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Our model accurately describes gene transcription patterns and temporal

dynamics of key regulators during the replication cycle of Caulobacter wild

type cells

Chromosome replication and methylation. We follow the DNA replication process as

the rationale to formulate a set of ordinary differential equations (ODEs) modeling initiation,

elongation, and termination of DNA replication as well as methylation states, as shown in

Table 1 (Eqs. 1-6). The initiation of DNA replication requires a fully methylated state (both

strands methylated, h� = 0), while semiconservative replication creates two hemimethylated

copies of genes. As such, the variables h� in our model spike when the corresponding gene is

being replicated (Fig 8). Later in the cell cycle, the hemimethylated copies (h� = 1) are re-meth-

ylated by CcrM, returning to the fully methylated state. Therefore, h� then plunge as the newly

created, hemimethylated copies become fully methylated by CcrM. The CcrM-dependent

methylation in the control system ensures DNA replication initiates once per cell cycle.

The proteolysis of CtrA is controlled by hierarchical protease complexes. In addition

to replication and transcription, we investigate the proteolysis regulation of CtrA, the essential

component of cell cycle control system, and explore the contribution of the conserved proteol-

ysis module. Based on the hierarchical diagram of protease complexes (Fig 5), we use ODEs to

simulate the temporal dynamics of three classes of protease complexes (Eqs. 20-29 of Table 1).

Since there is no experimental data of protease complexes, we evaluate our simulations using

western blots of CpdR, RcdA, PleD, PdeA, and cdG [14, 44, 45] (see Table 5), where numerical

values are extracted by ImageJ or GetData, shown as the red circles in Fig 9. Those proteins are

essential components of ClpXP-dependent proteolysis system.

Our simulated CpdR, PleD and PdeA match well the experimental dynamics (see Fig 9).

The general trend of modeled RcdA and cdG agrees with experiments, whereas cdG peaks a

Table 6. Initial values of model variables.

DNA variables Initial values Master regulator vars. Initial values

Ini 0.0383 CcrM 0.435

Elong 0 DnaA 2.638

DNA 1 GcrA 3.841

Count 1 SciP 12.485

Zring 0 CtrA 1.973

hCori 0 CtrA*P 3.960

hccrM 0

hctrA 0

mRNA variables Initial values Protease complex vars. Initial values

ccrM 0.173 Complex 1 0.211

dnaA 3.154 CpdR 1.045

gcrA 4.525 CpdR*P 0.042

sciP 6.335 Complex 2 0.187

ctrA 0.658 RcdA 0.789

Complex 3 3.407

CckAP 0.042

cdG 0.511

PleD 0.526

PleD*P 0.663

PdeA 0.228

https://doi.org/10.1371/journal.pcbi.1009847.t006
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little bit late compared with experimental data. The discrepancy may derive from other regula-

tory enzymes of cdG or PleD which are not involved in our current model. As most proteins

involved in protease complexes are modeled reasonably, We use the hierarchical model to sim-

ulate the cyclic proteolysis of CtrA (Eq. 17 of Table 1). In addition to degradation regulation,

the hierarchical model influences the phosphorylation of CtrA via cdG and CckA, while phos-

phorylated CtrA in turn impacts the expression of components involved in degradation mod-

ule, including cpdR, rcdA, and pleD.

Temporal dynamics of mRNA and master regulators. We convert the regulatory net-

work diagram in Fig 3 into ODEs shown in Table 1 (Eqs. 7-18) to simulate the temporal

dynamics of five master regulators and their mRNA. The proposed hierarchical protease com-

plexes are applied to simulate the cyclic degradation of CtrA. Fig 10A–10E and 10F–10J exhibit

the comparisons between simulations (black curves) in our model and experimental data (red

circles and blue triangles) for mRNA (dnaA, gcrA, ctrA, ccrM, and sciP) and protein (DnaA,

GcrA, CtrA, CcrM, and SciP) levels, respectively. In general, our simulations fit the experimen-

tal observations well. As we capture the genetic information flowing from mRNA to proteins,

the protein concentration curves generally resemble the corresponding mRNA abundance

Fig 7. Pareto front returned by NSGA-II and VTMOP. f1(χ) and f1(χ) are the two objective function values. The red point is

selected as the best parameter set for our model.

https://doi.org/10.1371/journal.pcbi.1009847.g007
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curves. dnaA transcription is reduced by hemi-methylation state, which in part explains the

dip in our simulation of dnaA during DNA replication (t 2 [30, 110] min in Fig 10A). Addi-

tionally, the expression of dnaA is activated by CtrA [5] and inhibited by GcrA [46]. Thus, the

high levels of GcrA and low levels of CtrA during sw-to-stalk transition reinforce the decrease

of dnaA expression (Fig 10A, 10G and 10H). When the replication fork passes ccrM and ctrA
right before and after 50 min, hccrM and hctrA are switched from 0 to 1 (Fig 8), which explains

the increase of CcrM (ccrM) and CtrA (ctrA) at the corresponding time (Fig 10B, 10D, 10I and

10H). Meanwhile, the high levels of activator GcrA and low levels of inhibitor SciP amplify the

increase of ctrA. DnaA and CtrA collaborate to regulate the initiation of DNA replication: 1)

during sw-to-st transition, initiator DnaA is high and suppressor CtrA is low, allowing the cell

to initiate replication; 2) during DNA replication, DnaA keeps low and CtrA is high, avoiding

another initiation of replication in the same cycle. Under the combined functions of DnaA

and CtrA, the transcription of of gcrA increases in the beginning and decreases in the predivi-

sional stage, which agrees with the observation of gcrA transcription (see Fig 10B). sciP expres-

sion is activated by CtrA, which is observed in our simulation as well (Fig 10E). Fig 11A shows

the maximum levels of our simulated master regulators, in which the relative scales agree with

experiments [38]. We summarize the simulated and observed abundance of five master regula-

tors in a single cell cycle in a bar chart (Fig 11B), where our simulation shows similar transla-

tion patterns with experiments. Even though the experimental data comes from a variety of

sources and experimental techniques, visual inspection suggests fair agreement between the

timing of master regulator abundance in simulation and experimental data.

One objection worth noting is that some of our simulations deviate from the experimental

data at the beginning or the end of the cell cycle. For example in Fig 10C, at the end of the cell

cycle, the expression level of ctrA is considerably lower in our simulation than the experimen-

tal data suggest. Additionally, this type of discrepancy can be witnessed in the simulated GcrA,

where the simulated level is lower than experimental observations after t = 100 min (Fig 10G).

Fig 8. (A) Simulated chromosome/DNA replication and elongation process; (B) The probability of loci (Cori, ccrM, ctrA) being hemimethylated in a

single cell cycle.

https://doi.org/10.1371/journal.pcbi.1009847.g008
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This disagreement stems from a limitation that the simulated endpoint has to be equal to the

starting point (t = 0 min), because we do not model the asymmetrical heritage of two distinct

daughter cells after progenies are completely separated. Although there are several mismatches

between the simulation and experiments, our model fits most data points and captures key

trends during cell cycle, such as the dynamics of regulators during sw-to-st transition. Our

model exhibits that key regulators interact with each other through transcription, degradation,

and phosphorylation regulations to determine the timing of cell differentiation and

reproduction.

Hierarchical protease complexes contribute to the timed cell cycle

progression

Our modeled hierarchical cyclic proteolysis module performs well in the simulation of CtrA.

Here, we explore the contribution of this module for cell development. We replace the cyclic

proteolysis by a constant for CtrA, CpdR, and RcdA, separately, setting Jd,CtrA−ClpXP, Jd,CpdR, or

Jd,RcdA as 0. In the simulation of Jd,CtrA−ClpXP = 0, where the degradation rate of CtrA is con-

stant, the system still oscillates during cell cycles whereas the amplitude of CtrA and SciP

shows noteworthy reduces. The cycle time increases, resulting in delays of master regulators in

simulation, including CtrA and CcrM (Fig 12A). With a constant degradation of CpdR or

RcdA, simulations show severe defects, especially for the dynamics of CtrA. The oscillation of

Fig 9. (A-E) The dynamics of total CpdR, RcdA, cdG, PdeA, total PleD, and PleD*P in simulation with the corresponding experimental data. Experimental

data of CpdR is from Iniesta et al. [25], RcdA is from McGrath et al. [44], cdG is from Abel et al. [31], and PdeA as well as total PleD are from Abel et al. [45].

https://doi.org/10.1371/journal.pcbi.1009847.g009
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Fig 10. (A-E) Experimental mRNA concentration of dnaA, gcrA, ctrA, ccrM, sciP (curves) with corresponding simulated data (red circles,

from Schrader et al. [12]), and (F-J) simulated protein concentration of DnaA, GcrA, total CtrA (CtrA*P), CcrM, SciP (curves) with

experimental data (circles or triangles) over a single cell cycle. For the sources of experimental data, DnaA data is from Shen et al. [47] and

Collier et al. [7]; GcrA data is from Collier et al. [7] and Tan et al. [2]; CtrA data and CcrM data are both from Reisenauer et al. [48] and

Shen et al. [47]; and SciP data is from Tan et al. [2].

https://doi.org/10.1371/journal.pcbi.1009847.g010
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CtrA almost disappears and methylation states are abnormal under these conditions (Fig 12B

and 12C). In summary, the cyclic proteolysis deriving from the hierarchical protease com-

plexes shows significant impacts on the system. We further replace all cyclic complexes with

constants, setting Jd,CtrA−ClpXP, Jd,CpdR, and Jd,RcdA as 0 simultaneously. The corresponding

simulation is similar with the Jd,CtrA−ClpXP = 0 mutant, which shows delayed cell cycles and

reduced amplitudes of several species (Fig 12D). Simulations of these cyclic proteolysis

mutants suggest the cyclic proteolysis of CtrA is key to regulate the entire system, because both

deletion (Jd,CtrA−ClpXP = 0) and changes (Jd,CpdR = 0 and Jd,RcdA = 0) of CtrA cyclic degradation

would screw up the dynamics pattern of both master regulators and their mRNA. Moreover,

the system is more sensitive without the cyclic proteolysis module. We increased the degrada-

tion rate of CtrA to 5-fold for system with and without the cyclic proteolysis module; wild type

system still has an acceptable cell cycle while cyclic proteolysis mutant systems have severe

deficiencies. Taken together, our model suggests the hierarchical cyclic proteolysis module

contributes the timed cell cycle and robustness of the Caulobacter system.

Our model captures major phenotypes of mutant strains

To further test the validity of our model, we use the same equations and initial values to simu-

late seven different mutant strains (Fig 13). Among these mutant strains, cell cycle of ΔdnaA,

where dnaA is knocked out (ks,dnaA = 0), is arrested. The other six mutant strains are all viable.

Our mutant simulations correctly capture the viability of these seven mutant strains. To be

more specific:

ΔccrM: ccrM is verified to be dispensable for cell viability [10]. The doubling time is about 162

±9 min, longer than that for WT. Our simulated ΔccrM (ks,ccrM = 0) has a 164 min cycle

Fig 11. (A) Relative maximum concentrations of master regulators across one swarmer cell cycle. (B) Abundance of five master regulators (CcrM, CtrA,

DnaA, GcrA, and SciP) from simulated results and experimental data. Horizontal bars represent the time periods of protein abundance across the swarmer

cell cycle. Blue bars indicate the time frame where simulated protein levels are above the mid-range concentrations and red bars are the corresponding

experimental data from [24].

https://doi.org/10.1371/journal.pcbi.1009847.g011
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time, which fits the experimental observation well (Fig 13A). In our simulation, all h can

not be returned to 0 because there is no CcrM re-methylating the chromosome. Addition-

ally, experiments have suggested the cell cycle is also regulated by CcrM independent with

GANTC motif. This study does not include the GANTC motif independent influence of

CcrM, so the simulation of ΔccrM only shows the potential of deleting methylation of

GANTC motif by CcrM.

Fig 12. (A-D) Simulated results of mutating the cyclic proteolysis of CtrA, CpdR, or/and RcdA. (A). Jd,CtrA−ClpXP = 0 indicates the cyclic proteolysis of CtrA

is replaced by a constant. (B). Jd,CpdR = 0 indicates the cyclic proteolysis of CpdR is replaced by a constant. (C). Jd,RcdA = 0 indicates the cyclic proteolysis of

RcdA is replaced by a constant. (D). The cyclic proteolysis of CtrA, CpdR, and RcdA are all mutated as constant degradation.

https://doi.org/10.1371/journal.pcbi.1009847.g012
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ΔgcrA: In gcrA knocked out strain, the doubling time is 40% longer than for the WT [10]. Our

simulated gcrAmutant (ks,gcrA = 0) has approximately 10 min longer cell cycle compared

with the WT simulation (Fig 13B), which less than then the experimental observation. The

gap is likely derived from the forced modeling of Z-ring constriction process, which is not

explicitly modeled in this study.

Fig 13. (A-G) Simulated results of mutant strains:ΔccrM, ΔgcrA, ΔdnaA, ctrAΔ3O, cdG0, ΔpdeA, and ΔpleD. In knock out mutant simulations, we set ks,i =

0, where i indicates corresponding species including ccrM, gcrA, dnaA, cdG, PdeA, and PleD. In the simulation of ctrAΔ3O, the cyclic proteolysis rate of

CtrA is reduced to 10%.

https://doi.org/10.1371/journal.pcbi.1009847.g013
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ctrAΔO3: ctrAΔO3 contains modifications to the C-terminal amino acids of ctrA, resulting in a

non-proteolizable CtrA allele [49]. Here, we decreases kd,CtrA-ClpXP to 10% of WT in simula-

tion. In Fig 13D, The average CtrA levels increase in simulation with less fluctuation

because of the non-proteolizable CtrA allele. Our simulation suggests the proteolysis of

CtrA is important for its cell cycle-dependent regulation. h in simulated ctrAΔO3 can not

decrease to 0, suggesting the levels of CcrM in ctrAΔO3 are not sufficient to completely re-

methylate chromosome, while the lower levels of CcrM is caused by higher levels of the

inhibitor CtrA.

cdG related mutant strains. cdG0 mutant strain has been verified to be viable, although

it shows morphology defects [32]. In Fig 13E, our simulation of cdG0 strain (ks,cdG = 0) is via-

ble and shows a horizontal shift which may result in morphology defects. The CtrA levels

increase with less fluctuation which is caused by the deletion of cdG. pleD knocked out mutant

(ks,PleD = 0) results in a lower cdG levels (Fig 13G), which shows a similar phenotype with the

simulation of cdG0. pdeAmutant increases cdG levels in simulation (Fig 13F, ks,PdeA = 0). Both

ΔpleD and ΔpdeA are viable in simulation, consistent with observations [32, 45]. Oscillations

exist but shifts little bit in the simulations of these three cdG regulated mutants, as shown in

Fig 13E–13G.

Discussion

The five major regulators–DnaA, GcrA, CcrM, CtrA, and SciP–work in tandem to drive the

cell cycle progression of C. crescentus. Here, we investigated the interactions among master

regulators to study the underlying mechanisms of DNA replication, methylation, transcrip-

tion, and proteolysis of cyclic regulators. We applied the central dogma of molecular biology

to simulate the temporal dynamics of mRNAs and proteins. Furthermore, we mathematically

built a hierarchical model to simulate protease complexes and apply this model to CtrA degra-

dation. Two MOP approaches (NSGA-II and VTMOP) have been applied to estimate parame-

ters in this complicated system.

In C. crescentus, the protease ClpXP primed by one assistant adaptor recruits additional

adaptors in sequence [27]. The hierarchical adaptor assembly determines the time and location

of the proteolysis of hierarchical substrates. Our hierarchical model correctly captures the key

dynamics of CpdR, PleD, and PdeA; it shows fair agreement with the trend of RcdA and cdG.

Additionally, the protease model performs well in modeling the proteolysis of CtrA. Deleting

the hierarchical protease module causes defects of cell cycle development and protein oscilla-

tions. Considering the fast formation of the protease Complex 3 (ClpXP bound with CpdR,

RcdA, PopA, and cdG), we test quasi-steady-state assumption (QSSA) for Complex 3. QSSA

shows similar simulated results in both wild type cells and mutant cases, suggesting QSSA

might be a good approach in reducing model complexity of biological systems. As a wide

range of proteins is degraded by ClpXP protease complex, our model provides a good quanti-

tative tool to analyze the proteolysis of these proteins in C. crescentus, such as TacA and ShkA.

As most components of the hierarchic protease complexes are conserved in bacterial species,

our model has the potential for a wide range of applications. Moreover, cdG is a significant

component of Complex 3 and participates in several essential pathways of cell cycle regulation

in C. crescentus. For example, cdG binds to CckA and ShkA to induce phosphatase and kinase

activity, respectively. While CckA controls the phosphorylation/dephosphorylation of several

proteins, such as CtrA and CpdR, ShkA:cdG regulates the phosphorylation of TacA, which

downregulates the stalked pole muramidase homolog SpmX and the stalk length regulator

StaR [50]. Additionally, cdG has been verified to participate in the stress response, contribut-

ing to the survival of Caulobacter in oligotrophic environments [51]. Due to the importance of
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cdG, our protease complex model is potentially a valuable tool for understanding the regula-

tory network of C. crescentus.
With the advances in experimental technologies, mRNA and protein abundance of master

regulators have been monitored and measured throughout the cell cycle. However, there is a

limited comparison between experiments and simulations. Our results align very well with the

experimental data. Satisfactory simulation results of our model, as indicated by visual inspec-

tion, suggest that the proposed regulatory network appropriately characterizes the Caulobacter
cell cycle progression. This study also suggests the cell cycle dependent proteolysis of CtrA is

significant for the cell cycle regulations and robustness. Our model can capture major features

of seven mutant strains, which has the potential to predict phenotypes of nonviable mutant

strains and functions of involved proteins. As most molecules involved in our model (CtrA,

CcrM, GcrA, DnaA, etc.) are conserved among proteobacteria [18, 52, 53], this framework

could be applied to the study of other proteobacteria. Last but not least, this work is a success-

ful application of multiobjective optimization problem, showing that MOP is a promising

approach for handling conflicting objectives in biological modeling.
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