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Abstract

Statins are widely prescribed for reducing LDL-cholesterol (C) and risk for cardiovascular disease (CVD), but there is
considerable variation in therapeutic response. We used a gas chromatography-time-of-flight mass-spectrometry-based
metabolomics platform to evaluate global effects of simvastatin on intermediary metabolism. Analyses were conducted in
148 participants in the Cholesterol and Pharmacogenetics study who were profiled pre and six weeks post treatment with
40 mg/day simvastatin: 100 randomly selected from the full range of the LDL-C response distribution and 24 each from the
top and bottom 10% of this distribution (‘‘good’’ and ‘‘poor’’ responders, respectively). The metabolic signature of drug
exposure in the full range of responders included essential amino acids, lauric acid (p,0.0055, q,0.055), and alpha-
tocopherol (p,0.0003, q,0.017). Using the HumanCyc database and pathway enrichment analysis, we observed that the
metabolites of drug exposure were enriched for the pathway class amino acid degradation (p,0.0032). Metabolites whose
change correlated with LDL-C lowering response to simvastatin in the full range responders included cystine, urea cycle
intermediates, and the dibasic amino acids ornithine, citrulline and lysine. These dibasic amino acids share plasma
membrane transporters with arginine, the rate-limiting substrate for nitric oxide synthase (NOS), a critical mediator of
cardiovascular health. Baseline metabolic profiles of the good and poor responders were analyzed by orthogonal partial
least square discriminant analysis so as to determine the metabolites that best separated the two response groups and
could be predictive of LDL-C response. Among these were xanthine, 2-hydroxyvaleric acid, succinic acid, stearic acid, and
fructose. Together, the findings from this study indicate that clusters of metabolites involved in multiple pathways not
directly connected with cholesterol metabolism may play a role in modulating the response to simvastatin treatment.
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¤ Current address: Umeå University, Department of Pharmacology and Clinical Neuroscience, Umeå, Sweden

Introduction

Statins are HMG-CoA reductase inhibitors that are used to

reduce LDL-cholesterol (LDL-C) and, thereby, to reduce CVD

risk [1]. However, this class of drugs exhibits a broad spectrum of

biological effects that may impact on CVD risk, including

improvement of endothelial function by upregulation of endothe-

lial NO synthase (eNOS), decrease in proliferation of vascular

smooth muscle cells and macrophages, reduction of platelet

activity, stabilization of atherosclerotic plaques, and antioxidant,

anti-inflammatory and immunomodulatory effects [2]. In addition

several clinically significant side effects have been documented,

including myopathy and increased risk for developing Type II

diabetes mellitus [3].

Multiple intervention trials with statin drugs have demonstrated

a reduction in relative risk for both CVD and stroke. Nevertheless,

residual CVD risk remains high and LDL-C response varies

greatly. Variation in response to statins can be affected by genetic

and environmental influences. Several genetic polymorphisms that

contribute to variability in the LDL-C response to statins have
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been identified [4], but only a small proportion of the variance has

been explained by these factors. Additional variables affecting

response to statins include diet [5], level of immune response [6],

environmental conditions, and drug interactions [7]. Simvastatin is

administered as an inactive precursor drug that is activated by

endogenous biotransformation pathways. There is increasing

interest in the role of gut bacteria in the metabolism of drugs

[8], and recent data suggest that secondary bile acids produced by

gut microbiome contribute to variation of LDL lowering response

to simvastatin [9].

Inter-individual variation in response to statins, and the fact that

LDL cholesterol and other biomarkers are not sufficient to predict

clinical benefit or side effects, suggest that more reliable

biomarkers are needed for identifying the sub-populations that

may achieve the most benefit from statin use and those that might

be at risk for developing side effects. Metabolomics provides

powerful tools for mapping pathways implicated in disease and in

response to drug treatment [10,11]. Sophisticated metabolomic

analytical platforms and informatics tools have been developed

that have made it possible to define initial signatures for several

diseases [12,13,14,15,16,17]. Metabolomic ‘‘signatures’’ present in

patients who do and do not respond to drug therapy, i.e.,

signatures that reflect the drug response phenotype, could lead to

mechanistic hypotheses that would provide insight into the

underlying basis for individual variation in response to drugs such

as antidepressants and statins [18,19,20].

Previously, using a targeted lipidomics platform, we found that

baseline cholesterol ester and phospholipid metabolites were

correlated with LDL-C response to treatment in individuals

selected from the upper and lower tails of the LDL-C response

distribution in the Cholesterol and Pharmacogenetics (CAP) study

[21]. C-reactive protein (CRP) response to therapy correlated with

baseline plasmalogens, lipids that are involved in inflammation,

indicating that distinct metabolic changes are correlated with

LDL-C and CRP response to statins. Using a second targeted

metabolomics platform in participants from this study, secondary

bile acids produced by the gut microbiome were found to be

implicated in response to simvastatin [9].

In the present study, we used a non-targeted, broad spectrum

pathway agnostic GC-TOF mass spectrometry platform to

measure 160 metabolites in 148 CAP study participants and

considered the following questions:

1. What is the metabolic signature of exposure to simvastatin?

2. Which elements of the drug signature correlate with LDL-C

response?

3. What metabolites at baseline define distinct metabolic profiles

(metabotypes) that can distinguish between good and poor

response to simvastatin?

Results

Analyses in Individuals Sampled From the Full Range of
LDL-C Response to Simvastatin

Metabolic signature of exposure to simvastatin. An

untargeted, broad range GC-TOF metabolomics platform was

used to profile plasma from 100 participants from across the full

range of the distribution of LDL-C response in the CAP study

(Table S1). Samples were analyzed before and after six weeks

treatment with simvastatin 40 mg/d and Wilcoxon signed rank

test was used to define metabolites that significantly changed

during treatment (Table 1). Correlations among these metabolites

are shown in Figure 1.

Following simvastatin treatment, a significant decrease was found

in plasma levels of cholesterol (p,0.0027, q,0.055), alpha-

tocopherol (p,0.0003, q,0.017), and gamma-tocopherol

(p,0.037, q,0.13), (vitamin E), and lauric acid (p,0.0055,

q,0.055) (Table 1). Changes in levels of these three metabolites

were significantly correlated with each other in samples from

individuals across the full range of simvastatin response (Figure 1).

Changes in cholesterol and lauric acid levels were positively

correlated with changes in levels of 2-hydroxyvaleric acid

(p,0.0039, q,0.055) (Figure 1). Plasma levels of threonine

(p,0.0060, q,0.055), alanine (p,0.010, q,0.069), and phenylal-

anine (p,0.011, q,0.069), were increased following simvastatin

treatment (Table 1). These increases in amino acids were all

correlated with reduction in free cholesterol (Figure 1), and were all

highly correlated with each other. A pattern of higher levels of

essential amino acids appears when considering that 2-ketoisoca-

proic acid (p,0.027, q,0.12) and 2-aminoadipic acid (p,0.039,

q,0.13), intermediates in the degradation of leucine and lysine

respectively, were both increased by simvastatin treatment (Table 1).

Using the HumanCyc database and the pathway enrichment

analysis component of Pathway Tools software, we observed that

the metabolites in Table 1 were enriched for the pathway class

amino acid degradation with a p-value ,0.0032 (data not shown).

Changes in metabolites that correlate with LDL-C

response to simvastatin. Analysis of the metabolite changes

that correlated with LDL-C response in the full range group

identified urea cycle intermediates and a group of dibasic amino

acids related by shared transporters (Table 2). Specifically,

increases in cystine (p,0.0012, q,0.10), ornithine (p,0.0068,

q,0.26), lysine (p,0.0100, q,0.26), and citrulline (p,0.0160,

q,0.26) were all observed to correlate with the LDL-C lowering

Table 1. Metabolites significantly altered by simvastatin in
full range participants.

Compound
Direction of
Change p-value q-value

a-tocopherol decrease 0.0003 0.017

cholesterol decrease 0.0027 0.055

glycerol increase 0.0035 0.055

2-hydroxyvaleric acid decrease 0.0039 0.055

lauric acid decrease 0.0055 0.055

threonine increase 0.0060 0.055

oxalic acid decrease 0.0090 0.069

alanine increase 0.0100 0.069

phenylalanine increase 0.0110 0.069

proline increase 0.0180 0.1

uridine decrease 0.0200 0.1

2-ketoisocaproic acid increase 0.0270 0.12

palmitoleic acid increase 0.0290 0.12

epsilon-caprolactam increase 0.0300 0.12

hydroxycarbamateN decrease 0.0350 0.13

c-tocopherol decrease 0.0370 0.13

2-aminoadipic acid increase 0.0390 0.13

beta-alanine decrease 0.0440 0.13

creatinine increase 0.0450 0.13

N(superscript): indicates a compound identified by spectral matching to the
NIST spectral library.
doi:10.1371/journal.pone.0038386.t001

Amino Acids: Variation in Simvastatin Treatment
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effects of simvastatin with significant p-values (,0.05), but high q-

values. Individually, these metabolites are not considered statisti-

cally significant, but considering the close structural and functional

similarities between the first six metabolites correlated to response

to simvastatin–we consider this finding compelling from a

discovery perspective. Cystine, ornithine, and lysine, the three

most significantly correlated metabolites, are all substrates for the

cystinuria-related transporter rBAT/B (0, +) AT (SLC3A1/

SLC7A9), which mediates uptake of dibasic amino acids at the

intestinal and renal membranes. Citrulline and ornithine are also

both intermediates in the catabolism of amino acids by the urea

cycle and their strong correlation (Figure 2), suggests an increased

flux through the urea cycle and amino acid catabolism.

Pre-treatment levels of metabolites correlated with

response to simvastatin. We next sought to identify metab-

olites whose baseline levels were predictive of LDL-C response to

simvastatin in the full range group (Table S2). A test of Spearman’s

correlation coefficients between post-treatment level of LDL-C

and metabolites at baseline adjusting for pre-treatment level of

LDL-C showed that greater LDL-C lowering was correlated with

lower levels of uridine (p,0.0410, q,0.68) and higher levels of

pseudouridine (p,0.0140, q,0.60). While correction for multiple

hypothesis testing indicates that these changes are not statistically

significant, we report the entire dataset since these metabolites are

connected by the enzymatic reaction of pseudouridine synthase.

Analyses in Good and Poor Responders to Simvastatin
Changes in metabolite levels in good and poor responders

upon treatment with simvastatin. In good responders we

found a decrease in cholesterol (p,0.0022, q,0.18) and an

increase in shikimic acid (p,0.0096, q,0.38) (Table S3).

Shikimate is an indole precursor of phenylalanine, tyrosine and

tryptophan, produced by plants and bacteria, but not animals,

suggesting increased synthesis by the gut microbiome and/or

increased transport of shikimic acid across intestinal membranes.

While below the level of statistical significance, we observed

increases in fructose and the sugar acids pentonic acid and hexaric

acid that correlated with change in LDL-C in the good responder

group (data not shown) and were opposite to the effects seen for

these metabolites in poor responders (Table 3).

While metabolomics measurements detected no reduction in

plasma cholesterol levels in poor responders (an independent

verification of clinical measurements) several metabolites did

change significantly in the poor responder group upon treatment

with simvastatin (Table 3). In poor responders, simvastatin

induced a reduction in plasma levels of the sugars fructose

(p,0.0012, q,0.039) and glucose (p,0.0020, q,0.039)–the latter

strongly correlated with reductions in alpha-mannosylglycerate

(0.809, p,0.0001) and pseudouridine (0.704, p,0.0001) (data not

shown). Glycolic acid decreased significantly (p,0.0005,

q,0.039), and this decrease was correlated in the full range

group with a decrease in hydroxylamine (0.598, p,.002)(not

shown). Together, these clusters of metabolites may provide a

more robust biomarker for simvastatin non-response than a single

changed metabolite.

Baseline metabolites that are significantly different

between good and poor responders. We detected several

metabolites with highly significant correlations between pre-

Figure 1. Correlation matrix of metabolites altered by simvastatin in full range participants. Correlations among metabolites in Table 1
were obtained by deriving a Spearman’s correlation coefficient between each pair of metabolites. The color scheme corresponds to correlation
strength as shown by the color bar. Red: Better response, more reduction of the metabolite. Blue: Better response, less reduction or increase of the
metabolite. The metabolites have been rescaled (divided by the largest absolute value of them) to be clearer on the map. Abbreviations: NIST,
National Institute of Standards and Technology.
doi:10.1371/journal.pone.0038386.g001
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treatment levels and LDL-C response to simvastatin in the good

responder group (Table 4). Lower baseline levels of xanthine

(p,0.0001, q,0.00068), 2-hydroxyvaleric acid (p,0.0001,

q,0.0013), succinic acid (p,0.0009, q,0.017) and stearic acid

(p,0.0039, q,0.037) were all significantly correlated with greater

LDL-C response. Conversely, higher pretreatment level of

galactaric acid (hexaric acid) (p,0.0034, q,0.037) was correlated

with increased responsiveness to simvastatin.

Multivariate analysis of metabolomic profiles of good and

poor responders at baseline. Orthogonal partial least square

discriminant analysis (OPLSDA) was used to compare baseline

levels of metabolites in good and poor responders (Figure 3). The

results shown in Figure 3A are for a three-component model with

2 orthogonals that was built on all the good and poor responders.

The model yielded a R2 of 0.87 and a Q2 of 0.31. Furthermore, 7-

fold cross validation was then used to better evaluate the

prediction of drug response. Specifically, in each round of cross

validation, about 6/7 of the subjects were used to build a three

component OPLSDA model, which was then used to predict the

drug response for the remaining 1/7 of the subjects. It was found

that on average the OPLSDA models achieved a prediction

accuracy of 74% with 70% sensitivity and 79% specificity. The

ROC curve of true positive rate vs false positive rate yields an area

under the curve (AUC) of 0.84 (Figure 3B). In general, diagnostic

testing indicates that modeling of these metabolites yields a robust

predictive tool for distinguishing between good and poor

responders. Metabolites that contribute to their separation are

shown in Figure 3C, with variable importance scores (VIP) and

cross validation standard errors (cvSE). Top metabolites that

correlate with separation of the groups include xanthine (VIP: 3.5,

cvSE: 0.69), 2-hydroxyvaleric acid (VIP: 3.0, cvSE: 0.44), succinic

acid (VIP: 2.5, cvSE: 0.78), stearic acid (VIP: 2.3, cvSE: 0.55) and

fructose (VIP: 2.0, cvSE: 0.87). Additional metabolites of unknown

identity also contributed to the model separating good and poor

responders classes (data not shown). This modeling supports the

hypothesis that individuals in the tails of the response distribution

in the CAP study comprise metabolically distinct subgroups and

that their metabolic profiles (metabotypes) might contribute to

their differing responses.

Discussion

In this study a mass spectrometry-based metabolomics platform

(GC-TOF) that detects small molecules below 550 Da in a broad

spectrum of chemical classes and metabolic pathways was used to

map global metabolic effects of simvastatin. An untargeted

metabolomics approach can yield many unrelated findings; but

the dataset reported here has some striking patterns. In broadly

sampled full range responders, we have detected an increase in

amino acids, specifically essential amino acids and their degrada-

tion products. An increase in dibasic amino acids was correlated

with response to simvastatin, again not a random set of amino

acids, but specifically those transported by the cystinuria and

arginine transporters. In poor responders we detected a decrease

in plasma fructose, glucose and sugar acids that was not seen in

good responders. This combination of findings may suggest a

distinct pattern of energy usage between poor responders and the

broader spectrum of response phenotypes. Poor responders could

also be separated from good responders using an OPLS-DA model

of baseline metabolites. Together these findings suggest that

metabolomics analysis might be developed for defining a

population unlikely to benefit from statin use sufficient to warrant

risk of the spectrum of side-effects.

A more detailed analysis of the GC-TOF data reveals changes

in a diverse set of compounds, some anticipated and some

unexpected. The expected changes included decreased free

cholesterol in individuals selected from both the full range of

LDL-C response (Table 1) and those selected from the 10% tail of

good responders (Table S2), but not from the poor response tail

(Table 3). The very strong correlation of cholesterol with alpha

and gamma tocopherol (vitamin E) may reflect the close

relationship between tocopherols and cholesterol metabolism. In

addition to their antioxidant effects, alpha tocopherol modulates

LDL receptor concentrations, and reduces CD36 receptor and

ABC1 transporter expression [22,23,24,25]. Simvastatin has been

shown previously to reduce alpha-tocopherol levels in plasma

following both short-term [26] and long-term exposure [27]. In

studies where simvastatin treatment was augmented with alpha-

tocopherol, increased lowering of total and LDL cholesterol was

observed [28], indicating that lower alpha-tocopherol levels are

not mediating the LDL-C reductions. It has been reported that

simvastatin treatment increases the capacity of LDL particles to

transport lipid soluble antioxidants [27] and oxygenated and

hydrocarbon carotenoids [29], suggesting that the statin-induced

reductions in total plasma levels of tocopherol which we observed

are accompanied by increased tocopherol content of LDL

particles, and hence the net result may contribute to greater

resistance of these particles to oxidative stress, and hence to

reduced atherogenic potential. Additional pleiotropic effects of

simvastatin might include an up regulation of triacylglycerol lipase

activity (EC# 3.1.1.3, LIPC) [30]. This might explain the increase

in plasma levels of glycerol that we detect in our analysis (Table 1).

The increase in creatinine and modulation of several amino

acids with simvastatin treatment (Table 1) was associated with

strong correlations among those metabolites (Figure 1) suggesting

that a common metabolic pathway was affected. We have also

observed that levels of shikimic acid, an enterobacteria-derived

precursor of aromatic- and indole-containing amino acids, are also

altered by statin treatment in the good responders (Table S2).

Pseudouridine, the C-glycoside isomer of the RNA nucleotide

uridine, is present in essentially all ribosomal RNAs and seems to

be affected by simvastatin. In humans pseudouridine synthase

converts uridine to pseudouridine, which is a dead-end metabolite

and generally excreted in urine. An increased level of pseudouri-

dine suggests a decrease in the rate of excretion, but together with

a reduced level of uridine, a more likely scenario is an increase in

the activity of pseudouridine synthase.

The inter-correlated changes in several amino acids and their

degradation products and the correlation between changes in these

amino acids and LDL-C change (Figure 2) point to possibly

important functions of amino acids in simvastatin mechanism of

action. Our data indicate a statin-induced change in amino acid

Table 2. Metabolite changes significantly correlated with
response to simvastatin treatment in full range participants.

Compound
Association with
Response p-value q-value

cystine positive 0.0012 0.10

ornithine positive 0.0068 0.26

lysine positive 0.0100 0.26

kynurenine positive 0.0150 0.26

citrulline positive 0.0160 0.26

glutamine positive 0.0270 0.37

doi:10.1371/journal.pone.0038386.t002
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degradation or transport. Our pathway analysis indicates that

metabolites that changed in the full range participants in response

to simvastatin (Table 1) were enriched for the pathway class amino

acid degradation. In the full range participants, metabolites that

correlate with LDL-C response to simvastatin (Table 2) included

dibasic amino acids that are substrates for the cystinuria-related

transporter, potentially indicating changes in transport. In

addition, the changes in citrulline and ornithine suggest an

increased flux through the urea cycle (Figure 2, Table 2) again

pointing to a change in amino acid degradation. Since simvastatin

treatment either has no effect or can improve kidney function

[31,32,33] it is unlikely that the changes in amino acids were due

to renal dysfunction.

The previously published identification of amino acid metab-

olism as a marker of changes in cholesterol metabolism is

consistent with the development of peptide biomarkers of

cardiovascular disease [34]. In addition, amino acids have been

identified as predictors of the risk of developing diabetes and

possibly contributing to changes in insulin sensitivity [16,35].

The metabolite most significantly different between good and

poor responders at baseline was the purine metabolite xanthine,

which is implicated in oxidative stress cascades (Table 4). Xanthine

is the final breakdown product of purine nucleotides and the

immediate precursor of uric acid. Xanthine is the substrate of

xanthine oxidase, which produces hydrogen peroxide and hence is

implicated in mechanisms of oxidative stress. Since free radicals

Figure 2. Correlation matrix illustrating two clusters of compounds correlated with simvastatin response in full range participants.
The two clusters were identified in a clustering analysis for the change of all metabolites (results not shown) according to their pairwise correlations
using the MMC algorithm [14]). Correlations of metabolites to drug response in LDLC were given in the first row and column, and are rescaled
(divided by the largest absolute value of them) to be clearer in the map. The color scheme corresponds to correlation strength as shown by the color
bar. Red: Better response, more reduction of the metabolite. Blue: Better response, less reduction or increase of the metabolite. Abbreviations: LDLC,
Low-Density Lipoprotein Cholesterol; NIST, National Institute of Standards and Technology.
doi:10.1371/journal.pone.0038386.g002
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are known to decouple NOS enzymatic activity, a lower basal level

of xanthine and purine degradation may yield an environment for

more robust NOS signaling. Xanthine oxidase inhibitors are an

emerging treatment for cardiac ischemia [36,37] and xanthine

oxidase has been considered as a therapeutic target for cardio-

vascular disease [38]. Together, these results suggest that we have

identified a metabolite related to oxidative stress that is robustly

correlated to LDL response to simvastatin. Furthermore, recent

results indicate that hyperuricemia resulting from increased purine

degradation attenuates NO production by inhibiting arginine

transport at the NOS associated CAT-1 transporter [39]. It has

not escaped our attention that statin effects on arginine transport

function may contribute to therapeutic effects on endothelial

function by increasing NOS activity.

Recent studies employing ex vivo cultures of intestinal bacteria to

metabolize simvastatin have revealed a degradation of drug,

producing a series of metabolites including and similar to 2-

hydroxyvaleric acid (2-hydroxypentanoic acid) [40]. We detected

2-hydroxyvaleric acid as a significantly decreased metabolite

following in vivo treatment with simvastatin (Table 1). Since this

metabolite is present in simvastatin naı̈ve samples and is decreased

by simvastatin treatment, it is possible that simvastatin, or a

metabolite of simvastatin, inhibits an enzyme that produces 2-

hydroxyvaleric acid. Conversely, low basal levels of 2-hydroxyva-

leric acid exhibit a highly significant correlation to LDL-C

reduction in good and poor responders (Table 4). This suggests

lower activity of a promiscuous enzyme that produces 2-

hydroxyvaleric acid, and perhaps metabolizes simvastatin, might

also result in lower rates of simvastatin degradation and differential

pharmacokinetics. This observation, as well as those described for

shikimic acid above, suggests that variation in gut microbiome

activity can contribute to mechanism of variation in response to

simvastatin (Table S2). An influence of gut micoflora on

simvastatin response was also suggested by our recent finding that

several secondary bile acids derived from microbial metabolism

are predictive of LDL-C response to simvastatin in the CAP study

[9]. This suggests that genetic, gut microbiome and environmental

interactions might all contribute to mechanism of variation of

response to simvastatin.

While we consider this study a discovery project to validate the

experimental paradigm and elucidate pleiotropic features, the

sample size is commensurate with other metabolomics studies.

However, larger studies will be necessary to validate clinical

utility–which will ideally define pre-treatment metabolic signatures

that are predictive of efficacy of simvastatin as well as other statins

in reducing clinical cardiovascular events, as well as those that can

identify individuals most likely to experience adverse effects of

treatment. Further, by assessing such markers, the design of future

clinical trials can be improved by excluding individuals who are

least likely to derive clinical benefit. The observation that people

selected from the ends (best and worst responders) are biochem-

ically distinct suggests that metabolomics might be a powerful tool

for sub classification of individuals as an important step in

streamlining clinical trials and personalizing treatment. Finally, the

application of both mass spectrometry and lipidomics platforms in

the CAP study has demonstrated the value of this approach in

mapping global metabolic effects of simvastatin and in highlighting

the pathways that may modulate variation in its clinical efficacy

and in its multiple biological effects. We have undertaken this

systems biology approach to define pharmacometabolomic

changes to generate hypotheses of pleiotropic mechanisms

mediating simvastatin effects. These results suggest that functional

studies are warranted into the interaction of simvastatin with

endogenous and enterobiome metabolites at bile and amino acid

transporters.

Materials and Methods

Clinical Samples
Plasma samples were analyzed from participants in the

Cholesterol and Pharmacogenetics (CAP) study, a trial in which

944 Caucasian and African-American men and women with total

cholesterol levels of 160–400 mg/dL were treated with simvastatin

Table 3. Metabolites significantly altered by simvastatin in
poor responders.

Compound
Direction of
Change p-value q-value

glycolic acid decrease 0.0005 0.039

fructose decrease 0.0012 0.039

glucose decrease 0.0020 0.039

pentonic acid* decrease 0.0020 0.039

ethanolamine decrease 0.0072 0.11

1-hexadecanol decrease 0.0130 0.16

hydroxylamine decrease 0.0180 0.2

threonic acid decrease 0.0250 0.24

pseudo uridine decrease 0.0310 0.24

pelargonic acid decrease 0.0340 0.24

pentonic acid* decrease 0.0370 0.24

succinic acid decrease 0.0390 0.24

hexaric acid* decrease 0.0420 0.24

a-mannosylglycerate decrease 0.0420 0.24

uric acid decrease 0.0460 0.24

*indicates a partially identified compound: pentonic acid is an aldonic acid with
five carbons and hexaric acid is an aldonic acid with six carbons.
doi:10.1371/journal.pone.0038386.t003

Table 4. Metabolites with baseline levels significantly
different between good and poor responders among extreme
range participants.

Compound
Association with
Response p-value q-value

xanthine negative ,0.0001 0.00068

2-hydroxyvaleric acid negative ,0.0001 0.0013

succinic acid negative 0.0009 0.017

stearic acid negative 0.0032 0.037

hexaric acid* positive 0.0034 0.037

heptadecanoic acid negative 0.0260 0.19

pelargonic acid negative 0.0300 0.19

4-hydroxyproline negative 0.0300 0.19

capric acid negative 0.0320 0.19

oxoproline negative 0.0360 0.19

pentonic acid* negative 0.0410 0.21

fructose negative 0.0460 0.21

*indicates a partially identified compound: pentonic acid is an aldonic acid with
five carbons and hexaric acid is an aldonic acid with six carbons.
doi:10.1371/journal.pone.0038386.t004
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at 40 mg per day for six weeks (Table S1). Information about the

participants selected for this study has been published previously.

Briefly, this study was designed to examine genetic and non-

genetic factors affecting the response to simvastatin therapy in

healthy, drug-naı̈ve patients [21]. Participants were followed for a

total of 6 weeks on simvastatin therapy (40 mg at bedtime) and

were seen at clinic visits conducted at two-week intervals. Blood

specimens from each participant were obtained after an overnight

fast at the screening visit, after a 2-week placebo run-in

(enrollment visit), and following 4 and 6 weeks of simvastatin

administration. Samples used in this study were collected at

baseline and at 6 weeks of therapy. Medication compliance was

assessed by pill count every two weeks and averaged over 95%.

Overall, treatment with simvastatin lowered low-density lipopro-

tein (LDL) cholesterol by 54 mg/dl and increased high-density

lipoprotein (HDL) cholesterol by 2 mg/dl. The magnitude of the

lipid and lipoprotein responses, however, differed among partic-

ipants according to a number of phenotypic and demographic

characteristics [23]. Data on dietary intake was not collected, but

subjects were instructed not to change their diet. No minors took

part in this study. Approval for this study of the analyses of

determinants of simvastatin response in the CAP study was

granted by the Children’s Hospital and Research Center

Institutional Review Board, University of California San Francisco

Committee on Human Research, and University of California Los

Angeles Office of the Human Research Protection Program and

written informed consent was obtained from all participants. The

research was conducted in accordance with the Declaration of

Helsinki.

Two subgroups of participants were selected: the first from the

extreme range of response, ‘good and poor responders’, consisted

of 24 individuals selected from the top 10% of the LDL-C

response distribution who were matched for body mass index,

race, and gender to 24 individuals in the lowest 10% of

responders, with response to therapy defined as the percentage

change in LDL cholesterol from baseline. The second set ‘full

range’ was 100 individuals randomly selected from the entire CAP

study, excluding participants who had been selected for the

extreme range group. These full range participants are represen-

tative of the population for age, race, gender, and BMI. On the

Figure 3. OPLSDA of baseline metabolites classifies good and poor responders. (A) Orthogonal partial least square discriminant analysis
was used to classify good and poor responders based on log-transformed baseline concentration of metabolites (R2 = 0.87, Q2 = 0.31). Good
responders are shown in black and poor responders in red. Baseline metabolites were log-transformed and normalized (described in methods).
Performance evaluation by 7-fold cross validation yielded the following statistics: prediction accuracy: 74%; sensitivity: 70%; specificity: 79% (not
shown). (B) ROC curve of true positive rate (x-axis) versus false positive rate (y-axis) yields an area under the curve (AUC) of 0.84. (C) Baseline
metabolites ranked by importance in classifying good and poor responders in the OPLS model. *indicates a partially identified compound: pentonic
acid is an aldonic acid with five carbons and hexaric acid is an aldonic acid with six carbons. Abbreviations: VIP, variable importance score; cvSE,
standard error derived from cross validation.
doi:10.1371/journal.pone.0038386.g003
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other hand, the extreme range subset provides a means to explore

the differences in metabolite profiles and predictors of the highest

and lowest responses to drug therapy. Metabolomic analyses of

statin-induced changes in bile acids in both groups [9] and the

major lipid classes in the full range participants have been reported

recently [19].

GC-TOF Mass Spectrometry Analysis
Plasma samples (30 ml) were extracted and derivatized as

reported previously [41]. Briefly, 15 ml aliquots were extracted

by 1 ml of degassed acetonitrile:isopropanol:water (3:3:2) at –

20uC, centrifuged and decanted with subsequent evaporation of

the solvent to complete dryness. A clean-up step with acetonitrile/

water (1:1) removed membrane lipids and triglycerides and

the supernatant was dried down again. Internal standards C8–

C30 fatty acid methyl esters (FAMEs) were added and the sample

was derivatized by methoxyamine hydrochloride in pyridine

and subsequently by N-methyl-trimethylsilyltrifluoroacetamide

(MSTFA) (1 ml bottles, Sigma-Aldrich) for trimethylsilylation of

acidic protons.

A Gerstel MPS2 automatic liner exchange system was used to

inject 1 ml of sample at 50uC (ramped to 250uC) in splitless mode

with 25 s splitless time. An Agilent 6890 gas chromatograph

(Santa Clara CA) was used with a 30 m long, 0.25 mm i.d.

Rtx5Sil-MS column with 0.25 mm 5% diphenyl film and

additional 10 m integrated guard column was used (Restek,

Bellefonte PA). Chromatography was performed at constant flow

of 1 ml/min ramping the oven temperature from 50uC for to

330uC with 22 min total run time. Mass spectrometry was done by

a Leco Pegasus IV time of flight mass spectrometer with 280uC
transfer line temperature, electron ionization at 270 V and an ion

source temperature of 250uC. Mass spectra were acquired from

m/z 85–500 at 20 spectra s-1 and 1750 V detector voltage. Result

files were exported to our servers and further processed by our

metabolomics BinBase database [42]. All database entries in

BinBase [41] were matched against the Fiehn mass spectral library

of 1,200 authentic metabolite spectra using retention index and

mass spectrum information or the NIST05 commercial library.

Identified metabolites were reported if present with at least 50% of

the samples per study design group (as defined in the SetupX

database) [43]. Quantitative data were normalized to the sum

intensities of all known metabolites and used for statistical

investigation.

Statistical Analyses
The Wilcoxon signed rank test was used to evaluate lipid

changes in metabolites pre and post treatment. For relationships

between changes in metabolite and statin response of LDL-C,

metabolite changes were defined as post-treatment level minus

pre-treatment level. For the 100 randomly selected full range

participants, metabolite changes were correlated with statin

response of LDL-C by calculating their Spearman’s correlation

coefficients with post-treatment level LDL-C, adjusting for pre-

treatment level of LDL-C. The adjusted Spearman’s correlation is

equivalent to the Pearson’s correlation between the residuals of the

linear regression of the ranks of post-treatment level of LDL-C and

the metabolite change on the ranks of pre-treatment level of LDL-

C. To associate metabolite changes with statin response of LDL-C

using good and poor responder data, the difference of metabolite

changes between good responders and poor responders using the

Wilcoxon rank sum test was tested. Those significant metabolites

are the compounds whose change is associated with statin response

of LDL-C.

For predicting response of LDL-C to simvastatin, baseline

metabolite levels were correlated with statin response of LDL-C by

calculating their Spearman’s correlation coefficients with post-

treatment level of LDL-C, adjusting for pre-treatment level of

LDL-C using the same aforementioned method. In order to

associate metabolites at baseline to statin response in LDL-C using

extreme subjects’ data, the difference in metabolites at baseline

between good responders and poor responders was tested using

the Wilcoxon rank sum test. For all the above univariate tests, q-

values [44] were calculated for controlling multiple testing false

discovery rate.

Correlations among metabolites were obtained by deriving

Spearman’s correlation coefficient between each pair of metab-

olites. Correlation matrixes were used to visualize the correlation

between metabolites and drug responses. The modulated

modularity clustering algorithm is used to cluster metabolites

based on their pairwise Spearman’s correlation coefficients

[45].

Orthogonal partial least square discriminate analysis (OPLSDA)

was used to classify good and poor responders. OPLSDA is built

on OPLS [46], a modification of the widely used PLS method.

Compared to PLS, OPLS is able to separate variation in

metabolomics data into two parts that are related or unrelated

to the drug response phenotype, which facilitates the interpretation

of results with preserved prediction ability [46]. The OPLSDA

model was built on log-transformed and then normalized baseline

concentration of metabolites. Normalization was performed by

subtracting each metabolite by its sample mean and dividing that

by its standard error. The software SIMCA-P+ version 12.0 was

used to perform the analysis. Two orthogonal components were

included in the model. A variable importance (VIP) score is used to

rank metabolites’ contribution in separating the two response

groups. Prediction diagnostics were derived from 7-fold cross

validation. Each fold contains balanced numbers of good and poor

responders.

Supporting Information

Table S1 Demographics of CAP patients included in
the current GC-TOF metabolomics study. The table lists

the comparison of the full-range, good and poor responder

subgroups used in this study based on age, gender, race, BMI,

change in LDL-C and basal levels of LDL-, HDL- and total

cholesterol.

(DOC)

Table S2 Metabolites for which baseline levels were
significantly correlated with response to simvastatin in
full range participants. The table shows the association of pre-

treatment levels of gluconic acid, pseudouridine, maltose, leucine

and uridine to the amount of change in LDL-C after simvastatin

administration. Metabolites listed are significantly correlated to

response to simvastatin based on p-values, but not following

correction for false-discovery rate (q-values).

(DOC)

Table S3 Metabolites significantly altered by simvasta-
tin in good responders among extreme range partici-
pants. The table shows the direction of change in cholesterol,

shikimic acid and ethanolamine following simvastatin administra-

tion. Metabolites listed are significantly altered by simvastatin

based on p-values, but not following correction for false-discovery

rate (q-values).

(DOC)
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