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Non-periodic outbreaks of 
recurrent epidemics and its 
network modelling
Muhua Zheng1, Chaoqing Wang1, Jie Zhou1, Ming Zhao2, Shuguang Guan1, Yong Zou1 & 
Zonghua Liu1

The study of recurrent epidemic outbreaks has been attracting great attention for decades, but its 
underlying mechanism is still under debate. Based on a large number of real data from different 
cities, we find that besides the seasonal periodic outbreaks of influenza, there are also non-periodic 
outbreaks, i.e. non-seasonal or non-annual behaviors. To understand how the non-periodicity shows 
up, we present a network model of SIRS epidemic with both time-dependent infection rate and a 
small possibility of persistent epidemic seeds, representing the influences from the larger annual 
variation of environment and the infection generated spontaneously in nature, respectively. Our 
numerical simulations reveal that the model can reproduce the non-periodic outbreaks of recurrent 
epidemics with the main features of real influenza data. Further, we find that the recurrent outbreaks 
of epidemic depend not only on the infection rate but also on the density of susceptible agents, 
indicating that they are both the necessary conditions for the recurrent epidemic patterns with non-
periodicity. A theoretical analysis based on Markov dynamics is presented to explain the numerical 
results. This finding may be of significance to the control of recurrent epidemics.

Epidemic spreading has been a challenging problem for a long time and become very hot again in the 
recent decade, mainly because of the fast growing of network science. It is revealed that the network 
structure plays a key role in this process, especially in the aspect of epidemic threshold1–8. So far, the 
studying of epidemic in complex networks has undergone three stages. In the first stage, the attention 
was focused on the static networks where each node represents an immobile agent and the contagion 
occurs only between the neighboring nodes through links. It was interestingly revealed that for scale-free 
networks, the epidemic threshold will be vanishingly small in the thermodynamic limit1,2. In the second 
stage, the attention was moved to the reaction-diffusion model where agents can move to their neigh-
boring nodes with a possibility9–12. In this framework, the contagious process takes place only within 
the agents at the same node and the links are used only for diffusion. In the third stage, the research 
interest concentrated on how the concrete factors influence the epidemic spreading, such as the objective 
traveling of human being13–15, the interplay between epidemic spreading and network structure16,17, the 
traffic-driven epidemic spreading18–21, and the case of multilayer networks and temporal networks22–34 
etc. These models significantly increase our understanding on epidemic spreading and are very useful for 
public health authorities to assess situations quickly, make informed decisions, and optimize vaccination 
and drug delivery plans etc.

All the above studies are focused on the case of a single outbreak of epidemic and its dependence on 
parameters such as the network topology, received information and diffusion mode etc. However, there 
is another parallel line on recurrent outbreaks of epidemic although it is not hot so far. Its study is 
undoubtedly significant for preventing the recurrence of the new emergent viruses such as SARS (Severe 
Acute Respiratory Syndrome), H1N1 (Swine Influenza), H5H1 (Avian Influenza), Ebola, and MERS 
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(Middle East Respiratory Syndrome) etc. The previous studies in this line are mainly focused on the 
recurrence of seasonal influenza which recurs annually in most temperate climatic zones of the world35–42.  
Typically, serious epidemics occur in winter or spring followed by fade-out periods during the warmer 
months. The seasonal influenza is also a source of considerable human mortality, reaching some 250,000 
to 500,000 deaths per year globally. Even today in the United States, a widespread flu over 46 states caused 
26 children dead in January, 201543. To understand the mechanism of the recurrence of seasonal influ-
enza, Ref. 35 examined the spatial-temporal dynamics of DHF (Dengue Hemorrhagic Fever) incidence 
in a data set describing 850,000 infections occurring in 72 provinces of Thailand during the period 1983 
to 1997. Ref. 36 simulated the recurrence of epidemic by considering the infection rate β ( )t  as a sinusoi-
dal function. Refs 38,40 analyzed the daily influenza-like illness cases reported in Israel. Ref. 39 studied 
the spatio-temporal patterns of influenza owing to the presence of nonstationarity and nonlinearity in 
incidence data. Although these progresses are significant, there is still controversy in identifying the sea-
sonal drivers that generate annual influenza oscillations. Especially, little attention has been paid to the 
influence of network topology.

To take a further step to identify the drivers of seasonal influenza and to study the influence of net-
work topology on the recurrence of epidemic, we recently collect the influenza data from Hong Kong44. 
Very interestingly, we find that the outbreak of influenza is not always seasonal and there is even no 
outbreak in some years, in contrast to the annual outbreaks studied in the past35–40. We have also found 
this unexpected phenomenon in other cities such as in Baltimore and New York etc45, indicating that the 
irregular outbreak is generic. This irregularity hampers us to make long-term predictions of infectious 
diseases and thus motivates us to study its underlying mechanism. In this paper, we present a network 
model of SIRS epidemic with both time-dependent infection rate and a small possibility of persistent 
epidemic seeds, representing the influences from the larger annual variation of environment and the 
infection generated spontaneously in nature, respectively. Our numerical simulations reveal that the 
model can show the main features of real influenza data. Further, we find that the recurrent outbreak of 
epidemic depends not only on the infection rate but also on the density of susceptible agents, indicating 
that they are both the necessary conditions for the recurrent epidemic patterns with non-periodicity. A 
theoretical analysis based on Markov dynamics is presented to explain the numerical results. This finding 
may be of significance to the long-term prediction and control of recurrent epidemics.

Results
Non-periodicity of recurrent influenza data.  Figure  1(a,b) show the weekly consultation rates 
of influenza-like illness (per 1000 consultations) collected from the sentinel points involving General 
Practitioners (GP) (Fig.  1(a)) and General Out-Patient Clinics (GOPC) (Fig.  1(b)) under the sentinel 
surveillance system in Hong Kong44, where the data from 2009/6/13 to 2010/5/23 in (a) was not collected 
by the Centre. The value of C in (b) is from 0 to 150. These two sets of data are highly correlated, see 
Fig. 1 in SI. It means that the weekly consultation rates of influenza-like illness can well reflect the overall 
influenza-like illness activity. However, limited by the records, the data in Fig. 1(a,b) did not distinguish 
the types of influenza viruses. Fortunately, the Department of Health of Hong Kong made a classification 
of the influenza viruses in recent years. The Table-I in SI shows the components of influenza viruses in 

Figure 1.  Time series of number of influenza viruses detected. (a,b) represent the weekly consultation 
rates of influenza-like illness (per 1000 consultations) in Hong Kong from the General Out-Patient Clinics 
(GOPC) and the General Practitioners (GP), respectively, where the data from 2009/6/13 to 2010/5/23 in (a) 
are not available. The value of C in (b) is from 0 to 150. (c,d) represent the time series of reported measles 
infective cases I in New York and Baltimore, respectively. The variable I in (c) is from 0 to ×3 104 and that 
in (d) is from 0 to ×8 103.
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the years from 2010 to 2013, where the tested specimen obtained from GOPCs, GPs, public and private 
hospitals. From this Table we see that they are mainly concentrated on three kinds of typical viruses, 
indicating that the influenza data in Fig. 1(a,b) can represent the features of a typical influenza virus.

From Fig. 1(a,b) we interestingly find that the peak of the weekly consultation rates of influenza-like 
illness fails to appear in some years and the intervals between two consecutive peaks are not very regular, 
in contrast to the regularity of annual outbreaks reported in refs 35–41. To make it clear, we select the 
maximum weekly consultation rates in each year from Fig. 1(a,b) and plot them in Fig. 2(a,b), respec-
tively. From Fig. 2(a,b) one can easily find that the points are not distributed only in the weeks of winter 
or spring but distributed in most of the 52 weeks of a year, indicating the feature of non-periodicity. 
Is this a specific phenomenon only in Hong Kong? To figure out the answer, we have checked a large 
number of other recurrent influenza data and found that such phenomenon also shows up in other cities. 
Figure 1(c,d) show two such examples of measles infective cases I in New York and Baltimore, respec-
tively. It is easy to see that their outbreaks are also non-periodic, indicating that this non-periodicity is 
generic in recurrent influenza data. On the other hand, we find that the average of Fig. 1(a,b) over the 
whole 16 years is an oscillatory behavior but not an unimodal distribution, see Fig. 2 in SI, supporting 
the feature of non-periodicity again.

A network model to reproduce the non-periodic epidemic patterns.  Epidemic spreading is 
usually studied by the classic epidemic models46 such as the susceptible-infected-susceptible (SIS) model 
and the susceptible-infected-refractory (SIR) model. In an isolated SIS model, a susceptible node may be 
infected by an infected neighbor at rate β. In the meantime, each infected node will become susceptible 
again at rate μ at each time step. After the transient process, the system reaches a stationary state with a 
constant infected density I, i.e. having no decreasing process and thus no oscillatory behavior. Thus, the 
SIS model cannot be used to describe the recurrent epidemic patterns. Similarly, in an isolated SIR 
model, a susceptible node may be infected by an infected neighbor at rate β. At the same time, the 
infected node will decay into a refractory one with probability μ at each time step. The infection process 
will be over when there is no infected I, implying that the refractory density R monotonously increases 
but never drops down. Thus, the SIR model cannot be used to describe the recurrence of influenza data. 
To successfully reproduce the recurrent outbreaks, ref. 36 considered a specific SIR model with a 
time-dependent infected rate β ( )t , i.e. a sinusoidal function of time t, where both the birth rate and 
mortality rate are included. As the mortality rate will make the refractory R decrease and the birth rate 
will make the susceptible S increase, thus this SIR model is in fact equivalent to the 
susceptible-infected-refractory-susceptible (SIRS) model47. This work is significant in revealing the reg-
ular outbreak of epidemic, but it fails to explain the non-periodicity observed in Figs 1 and 2.

To understand the mechanism of the non-periodicity in the recurrent influenza data, we here propose 
a SIRS model to reproduce the epidemic patterns with non-periodicity. Figure  3 shows its schematic 
figure. In this model, we have included two characteristic features: one is the time-dependent infected 
rate β ( )t  from one year to another, i.e. piecewise constants (see Methods for details), and the other is a 
small natural infection rate p0. The former comes from the observation in Table-I in SI that the compo-
nents of viruses are different from one year to another. It is well known that different viruses have dif-
ferent infection rates. If we use a single infection rate β to represent the comprehensive effect of all the 
components of viruses in one year, the value of β will be thus different from one year to another, indi-
cating that β depends on time t and can be taken as different constants in different years. This is different 
from the sinusoidal function in ref. 36. The latter comes from the fact that there is always a small fraction 

Figure 2.  The maximum weekly consultation rates in each year corresponding to Fig. 1(a,b), 
respectively.
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of naturally infected people in our society, which may come from the environment. That is, there is a 
small probability p0 to generate infected seeds at each time step, in contrast to the previous models with 
only initial seeds.

We let the network be the uncorrelated configuration model (UCM) with a power-law degree distri-
bution ( ) −~p k k 3, size =N 1000, and average degree = .k 6 548, see Methods for details. The dynamics 
equation of SIRS model is also given in the section of Methods. Numerical simulations of this model 
show that the recurrent behaviors of non-periodic epidemic patterns can be reproduced only when we 
take a time-dependent β ( )t  and a nonzero p0. Let β  represent the average of β ( )t  and σ be its standard 
deviation. Figure  4(a,b) shows the results of constant infection rate with =p 00  and σ = 0 where we 
have β = .0 1 in (a) and β = .0 2 in (b). Figure 4(c,d) shows the results of time-dependent infection rate 
with σ = .0 1 and β = .0 1 where (c) and (d) represent the cases of =p 00  and 0.01, respectively. 
Comparing Fig. 4(a) with (b) we find that the infected density ρ I  cannot be sustained in (a) but can be 
sustained in (b), indicating that the threshold for the case of constant β is in between . , .[0 1 0 2], i.e. 
β. < < .0 1 0 2c . From Fig. 4(c) we see that ρ I  decays to zero much faster than that in Fig. 4(a) with the same 

β . This point can be understood as follows. Because of the fluctuation of σ = .0 1, β ( )t  in Fig. 4(c) will 
be changed around β . Once it is located in the range , .[0 0 1], ρ I  will decay faster than the case of 
β = .0 1 in Fig.  4(a), resulting in the fast decaying observed in Fig.  4(c). However, Fig.  4(d) shows a 
totally different picture where the recurrent behaviors of non-periodic epidemic patterns can be regen-
erated by a small but nonzero = .p 0 010 , indicating that the time-dependent β ( )t  and the nonzero p0 
are both the necessary conditions to guarantee the recurrent outbreaks. More detailed dependence on 
these parameters is shown in Figs 3–5 in SI.

Figure 3.  Schematic figure of our SIRS model. The symbols S, I and R represent the susceptible, infectious, 
and refractory states, respectively. The parameters β, μ and δ represent the infection, refractory and recovery 
rates, respectively. p0 represents the probability for a susceptible person to be naturally infected by the 
environment and other factors. When β is small, the infection probability of a susceptible person is 
proportional to both the infected neighbors I and the infection rate β. Thus, the total probability for a 
susceptible person to be infected is approximately β+p I0 . At the same time, an infectious person will have 
a probability μ to become refractory and a refractory person will have a probability δ to recover to the 
susceptible.

Figure 4.  Evolution of infected density ρI for different sets of parameters. (a) Case of constant infection 
rate with σ= , =p 0 00 , and β = .0 1; (b) Case of constant infection rate with σ= , =p 0 00 , and β = .0 2; 
(c) Case of time-dependent infection rate with σ= , = .p 0 0 10 , and β = .0 1; (d) Case of both time-
dependent infection rate and nonzero p0 with σ= . , = .p 0 01 0 10 , and β = .0 1.
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Mechanism of non-periodicity in recurrent epidemic patterns.  To reveal the mechanism of the 
recurrent outbreaks in our network model, we show the corresponding relationship between β ( )t  and 
the susceptible, infected, refractory densities in Fig. 5 where the parameters are taken as β σ= . , = .0 1 0 1 
and = .p 0 010 . Very interestingly, we find that the largest infection rate β does not always induce the 
epidemic outbreak. Instead, the outbreak in Fig. 5(c) usually occurs at those relatively larger β, see the 
red dashed lines in Fig. 5. From Fig. 5(a,b,d) we notice that all the red dashed lines correspond to those 
points with both a larger β and a larger ρS (or a smaller ρ )R . This is reasonable as a larger ρS will provide 
enough population source for the epidemic to grow up and a larger β satisfies the condition of β β( ) >t c. 
Therefore, a larger infection rate and a larger susceptible density are both the necessary conditions for 
the recurrent epidemic patterns with non-periodicity. Its theoretical explanation will be given in the 
section of Methods.

Influence of network structure.  One more key question is how the network topology influences the 
recurrent outbreaks of epidemic. To answer this question, we first consider the influence of the average 
degree k . Figure 6(a,b) show the numerical results of two typical cases, i.e. approximately half average 
degree of Fig. 4 in (a) and approximately double average degree of Fig. 4 in (b). Comparing them with 
Fig. 4(d), it is easy to see that there is much less outbreaks in Fig. 6(a) but more outbreaks in Fig. 6(b), 
indicating that larger k  is in favor of the recurrent outbreaks.

Secondly, we consider the influence of degree distribution, i.e. replacing the UCM network with a 
power-law degree distribution by an Erdös-Rényi (ER) networks with a Poisson distribution49. We let the 
constructed ER network have the same size =N 1000 and the same average degree = .k 6 5 as in Fig. 4. 
Fig. 6 in SI shows the result. Comparing it with Fig. 4(d), we see that they are similar, except that the 

Figure 5.  Corresponding relationship between β(t) and the susceptible, infected, refractory densities 
with the parameters 〈β〉 = 0.1, σ = 0.1 and p0 = 0.01. (a) β versus t; (b) ρS versus t; (c) ρI versus t; (d) ρR 
versus t. The green solid lines in (b–d) represent the theoretical results from Eq. (3). The red dashed lines 
denote some typical positions for epidemic to outbreak.

Figure 6.  Evolution of ρI for different network structures. (a,b) represent the case of UCM network with 
=k 3 and 14, respectively. (c,d) represent the case of ER network with =k 3 and 14, respectively.
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recurrent outbreak in UCM network is slightly easier to be observed than in ER network. Furthermore, 
we have also checked the influence of k  on ER network. Figure 6(c) and (d) show the numerical results, 
corresponding to Fig. 6(a,b). Comparing Fig. 6(a,b) with (c) and (d), respectively, we see that both (a) 
and (c) have only a few outbreaks while both (b) and (d) have frequent outbreaks, indicating the robust-
ness to network topologies.

Discussion
The epidemic spreading on networks is a very hot topic in the field of complex network in recent years, 
which focuses mainly on the epidemic threshold and how the spreading is influenced by the network 
structure and other parameters, but to our knowledge, it does not deal with the topic of the recurrent 
outbreaks of epidemic in complex networks so far. At the same time, the recurrence of influenza has been 
also paid some attention in a parallel line, which mainly focuses on the mechanism of periodic outbreaks, 
but it does not deal with the influence of network structures. We here combine these two parallel lines 
together by presenting a SIRS network model to describe the recurrent epidemic patterns. This work is 
mainly focused on the non-periodicity observed from the Hong Kong influenza data and other data, in 
contrast to the previous focus on the periodicity of recurrent epidemic patterns. This understanding to 
non-periodicity will be useful in a global effort to reduce the impact of a realistic influenza pandemic.

By this network model we reveal that the recurrent outbreaks of epidemic is closely related to three 
parameters, i.e. the fluctuation of β ( )t , the small infection probability p0 in nature and the average degree 
k  of network. For the first one, a fluctuated β ( )t  means that it is possible for a smaller β ( )t  to be fol-

lowed by a larger β ( )t . In the time period of the smaller β ( )t , the infected density will be small and thus 
the susceptible density will be large, which provides enough susceptible source. In the coming period of 
the larger β ( )t , we have β β( ) >t c and thus the sufficient susceptible people will guarantee an outbreak. 
When this condition is satisfied from time to time, we will have the recurrent outbreaks. For the second 
one, previous studies did not consider p0 but just initial infected seeds. When the network has an epi-
demic outbreak, it will come to a decay period until no infected ones in the system, and thus no possi-
bility for a further outbreak. In this sense, a persistent p0 is necessary to ignite another outbreak and is 
also consistent with practical cases where there is always a small possibility for infected seeds to be 
generated naturally. For the third one, a smaller average degree means that an infected seed does not 
have enough neighbors to be infected and thus cannot induce an outbreak. While a larger average degree 
can provide sufficient neighbors to be infected and thus can induce an outbreak. In sum, these three 
parameters work together to generate the recurrent outbreaks of epidemic. After understanding this 
point, we expect that an effective way to control the recurrent outbreaks can be also found by considering 
these three factors. For example, we can reduce ρS to a small quantity by increasing ρR as large as possible 
by vaccinating more and more people.

Methods
Epidemic spreading on the network model of recurrent epidemic patterns.  We take the 
uncorrelated configuration model (UCM) as an example. We first construct the UCM network with a 
power-law degree distribution ( ) −~p k k 3 by following ref. 48. We let its size be =N 1000, average 
degree be = .k 6 5, and let k be limited in the range ∈ ( , )k N4 . Then, we consider the case that each 
node of the UCM network is occupied by a person and take the SIRS model for the epidemic spreading, 
see the schematic plot in Fig.  3. We let a susceptible person have two ways to be infected. One is the 
infection by a small probability p0, representing the natural infection from environment or unknown 
reasons. The other is the infection by a contagious rate β, representing the infection from contacting with 
an infected person. When a susceptible node has kinf  infected neighbors, it will become infected with 
probability β− ( − )1 1 kinf . At the same time, the infected node will decay into a refractory one with 
probability μ. For the process from refractory to susceptible state, ref. 47 assumed that a person will stay 
at the refractory state for a constant time τ and then go back to the susceptible state. However, in reality, 
individuals may have different habitus and thus may need different τ to recover. To overcome this defect, 
instead of the fixed τ, we here let each refractory person have a small probability δ to recover from the 
refractory to susceptible state. In numerical simulations, we fix µ = .0 2 and δ = .0 02.

We choose the dependence of β ( )t  on time by the following way: we divide the time t into T intervals 
with equal length and let T =  52, corresponding to the 52 weeks in one year. We let β ( )t  be a constant 
in each interval and different constants in different intervals. The value of the constant is randomly cho-
sen from the Gaussian distribution with average β  and standard deviation σ. Once a negative β ( )t  is 
chosen, we discard it and then choose a new one.

A theoretical analysis based on Markov dynamics.  Let ( )P ti
S , ( )P ti

I , and ( )P ti
R  be the probability 

for person i to be in the state of S, I and R at time t, respectively. Then we have 
ρ ρ ρ( ) = ∑ ( ), ( ) = ∑ ( ), ( ) = ∑ ( ),= = =t P t t P t t P tS N i

N
i
S

I N i
N

i
I

R N i
N

i
R1

1
1

1
1

1  where ρ ρ( ), ( )t tS I  and ρ ( )tR  rep-
resent the densities of susceptible, infected, and refractory agents at time t, respectively. Let ( ), ( ), ,q t q ti

S I
i
I R  
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and ( ),q ti
R S  be the transition probability from the state S to I, I to R and R to S, respectively. By the 

Markov chain approach5,50 we have

∏ β
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δ

( ) = − ( − ) − ( ) ( ) ,

( ) = ,

( ) = , ( )
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where Λi represents the neighbors of node i. The term ( − )p1 0  in Eq. (1) represents the probability that 
node i is not infected by the environment. While the term β∏ − ( ) ( )Λ∈ t P t[1 ]l l

I
i

 is the probability that 
node i is not infected by the infected neighbors. Thus, β( − ) ∏ − ( ) ( )Λ∈p t P t1 [1 ]l l

I
0 i

 is the probability 
for node i to be in susceptible state. Based on this analysis, we formulate the following difference equa-
tion model to help gain insights into the network model’s dynamics
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The first term on the right-hand side of the first equation of Eq. (2) is the probability that node i is 
remained as susceptible state. The second term stands for the probability that node i is changed from the 
refractory to susceptible state. Similarly, we have the same explanation for the second and third equations 
of Eq. (2). Substituting Eq. (1) into Eq. (2) we obtain
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Instead of getting the analytic solution of Eq. (3), we solve Eq. (3) by numerical integration. To con-
veniently compare with the model in section Results, we use the same set of time-dependent β ( )t  to both 
the model and Eq. (3). In this way, we can obtain the corresponding theoretical results. The green solid 
lines in Fig.  5(b–d) show the theoretical results from Eq. (3). Comparing them with the experimental 
results “circles” there, we see that they are consistent with each other very well, indicating that Eq. (3) 
can completely explain the numerical results.
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