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Abstract 
Background: The purpose of this study was to analyze the expression level of 

CRISP2, CATSPER1, PATE1 and SEMG1 genes in the sperm of men with astheno-

zoospermia (AZS). AZS is a cause of infertility in men in which the motility of the 

sperm is reduced. So far, a few genes have been associated with AZS; however, in 

most of the cases, its molecular etiology is unclear.  

Methods: A total of 35 subjects with idiopathic AZS and 35 fertile and healthy men 

as control were included. In study after total RNA extraction and cDNA synthesis, 

relative quantification was performed. B2M was used as the normalizer gene and 

fold change was calculated by 2−ΔΔCtmethod. Mann-Whitney test was used to com-

pare the expression levels between the case and control groups with significance lev-

el of p<0.05. 

Results: Our results showed that CRISP2 (p=0.03) and SEMG1 (p=0.03) were sig-

nificantly down- and up-regulated in AZS men respectively compared to the con-

trols. But CATSPER1 and PATE1 did not show significant changes.  

Conclusion: Down-regulation of CRISP2 and up-regulation of SEMG1 were associ-

ated with AZS, which could be suggested as the potential candidate genes for the de-

velopment of a diagnostic marker or potentially for more studies for treatment of 

AZS. 
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Introduction 
nfertility of men accounts for ~50% of all in-

fertile cases, and genetic causes are responsi-

ble for 15-30% of all male infertility (1). 
 

Asthenozoospermia (AZS) as a cause of infertility 

in men is defined by absent or decreasing forward 

sperm motility (Progressive motility <32%) (2-8). 

AZS could be seen as a pure isolated condition or 

could be coupled with additional sperm abnormal-

ities. Isolated form of AZS is considered as one of 

the causes of infertility in men, approximately ac-

counts for 20% of infertile men and in more than 

60% of cases this condition is associated with de-

creased number of sperm (Oligoasthenozoosperm-

ia) and/or abnormal sperm morphologies (Oligo- 

 

 

 

 

asthenoterato- and asthenoteratozoospermia) (9, 

10). 

A few studies have been reported to find the eti-

ology of AZS (11). Differentially expressed genes 

including CATSPER1 (Cation Channel Sperm As-

sociated 1) in mouse sperm (12), and PATE1 

(Prostate and Testis Expressed 1), SEMG1 (Se-

menogelin 1), and CRISP2 (Cysteine-Rich Secre-

tory Protein 2), in the human study are apparently 

related to AZS (13-15). CRISP2 is the only mem-

ber of CRISP family which is expressed in the 

testis (16, 17) in an androgen-independent manner 

(18). CRISP2 protein is located in the acrosome 

and the outer dense fibers of the sperm tail (19-
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23). This protein may be secreted from the acro-

some during the acrosome reaction (24) or be im-

plicated in sperm-egg fusion (26) and it may 

modulate sperm flagellar motility (25). 

CATSPER1 is a voltage-gated Ca2+-permeable 

channel specifically expressed in the sperm flagel-

lum especially on the plasma membrane of sperm 

tail (27). In a murine model of AZS, up-regulation 

of CATSPER1 increased the sperm intracellular 

Ca2+ concentration, sperm concentration, and per-

centages of sperm activity and overall sperm mo-

tility (12). It seems that CATSPER1is essential 

for sperm motility and hyperactivation through 

regulation of calcium concentration (28). PATE1 

was associated with the age-related functions of 

testis and epididymis. Comparison of aged men 

and young asthenozoospermic men showed a sim-

ilar expression level of PATE1. Previous studies 

on antibody blocking of PATE1 showed that it 

involved in sperm motility and sperm-egg pene-

tration (14). SEMG1 as another candidate gene 

for AZS is expressed in seminal vesicles (29, 30) 

and has been associated with the spermatogenesis 

process (31). In a study by Yu et al. (2014), 

SEMG1 was six-fold up-regulated in AZS in 

comparison to fertile men (15). It appears that 

SEMG1 as a major structural protein of semen 

coagulum is involved in the semen coagulation 

and spermatozoa immobilization to inhibit human 

sperm capacitation (32). By a literature review of 

the previous studies in the sperm of men with 

AZS and healthy individuals, four candidate genes 

including CRISP2, CATSP-ER1, PATE1 and 

SEMG1 were selected to evaluate the expression 

levels of these genes in our population.  
 

Methods 
Subjects: A total of 35 subjects with idiopathic 

AZS were included. The semen samples were col-

lected between May 2017 and October 2017 from 

Avicenna Fertility Center, Tehran, Iran. Infertile 

men with alcohol, drug, tobacco and substance 

abuse were also excluded. The subjects with known 

diseases such as cryptorchidism, varicocele, orchi-

tis, epididymitis, endocrine hypogonadism, obstruc-

tion of the vas deferens, microdeletions of the Y 

chromosome and karyotype anomalies were ex-

cluded from the study as well. The control group 

involved 35 age-matched fertile healthy men 

whose semen analysis showed normal results 

based on WHO criteria, and had fathered at least 

one child. The study was approved by the Ethical 

Committee of the Avicenna Research Institute. 

All subjects were informed about the purpose of 

sample collection and informed written consents 

were obtained. 

The semen samples were obtained by masturba-

tion after 3-7 days of sexual abstinence. Semen 

analyses were performed according to the World 

Health Organization (WHO) recommendations (2). 

The inclusion criteria were asthenozoospermic 

men with the concentration of >20×106 sperm/ml 

in the asthenozoospermic group and rapid forward 

progressive motile sperm (Grade A) of <25%, and 

total progressive motile sperm (Grade A+B) of 

<50% (2). 
 

Total RNA extraction and cDNA synthesis: Total 

RNA was extracted from sperm pellets using RN 

easy mini kit (Qiagen, Germany) following the 

manufacturer's instructions. The quality and con-

centration of total RNA were determined by 

spectrophotometry using Nanodrop 2000 (Thermo 

Scientific, USA). The extracted RNA samples 

were stored at -80°C. The cDNA was synthesized 

from 0.5 μg of total RNA using PrimeScript RT 

reagent kit according to the manufacturer's in-

structions (TakaraBIO, Shiga, Japan).  
 

Quantitative real-time PCR: Real-time PCR was 

performed using SYBR Premix DimerEraser kit 

gene according to the manufacturer's instructions 

(Takara, Shiga, Japan). All the reactions were car-

ried out on a Rotor-Gene Q real-time PCR in-

strument (Qiagen Inc., Germany) according to the 

manufacturers` instructions. Briefly, 5 µl of SYBR 

Premix, 5 pmol of each primer and 50 ng of cDNA 

as template were used in a final volume of 10 µl. 

The amplification reactions were thermally cycled 

as follows: denaturation at 95°C for 30 s, followed 

by 40 cycles of denaturation at 95°C for 30 s, an-

nealing at 60°C for 10 s, and extension at 72°C for 

15 s. Human beta-2-microglobulin (B2M) (33) was 

selected as a normalization standard and fold 

change in expression of each target mRNA rela-

tive to B2M was calculated based on 2−ΔΔCt rela-

tive expression formula. The primer sets were de-

signed in exon-junction or between two adjacent 

exons separated by a large intron to ensure the 

amplification of RNA and not genomic DNA. The 

primers used for detecting the expression of genes 

are listed in table 1. 
 

Statistical analysis: Data are expressed as mean± 

standard deviation and median, 10–90 percentiles. 

Shapiro-Wilk normality test was used to analyze 

the distribution of the values for each variable in 

each group. 
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The differences of mRNAs expression in the 

ejaculated sperm between astheno- and normo-

zoospermic men were determined by a Mann-

Whitney test. The p<0.05 were considered signifi-

cant. To assess relevant sensitivity and specificity 

of expression assay, the receiver Operating char-

acteristic (ROC) curve analysis, and area under 

the curve (AUC) were used.  The analyses were 

performed by SPSS software version 23.0 (Chica-

go, IL, USA). 

 

Results 
Descriptive analysis of samples showed that the 

mean ages in the AZS and control groups were 

37±6 and 35±4 years, respectively. The mean 

sperm count in the AZS men and control group 

were 33.8±12 and 43.2±16 million sperm/ml, re-

spectively. 

The mRNA expression levels of CRISP2, CAT-

SPER1, PATE1, and SEMG1 gene were exam-

ined by qRT-PCR in the ejaculated sperm samples 

from the AZS and control groups. Our results 

showed that no significant differences in CATSP-

ER1, and PATE1 mRNA expression were found 

between the two groups. On the other hand, 

CRISP2 (p=0.03) and SEMG1 (p=0.03) were sig-

nificantly down- and up-regulated respectively in 

the semen samples from asthenozoospermic men 

compared to normozoospermic controls (Table 2).  

ROC curve analysis of two differently expressed 

genes (SEMG1 and CRISP2), alone or combined 

is displayed in figure 1. SEMG1 and CRISP2 ex-

pression, alone or combined, showed a poor sensi-

tivity and specificity for identification of AZS 

phenotype between case and control groups.  

 

Discussion 
AZS, a cause of infertility in men, could be caus-

ed by dysfunction of energy metabolism or struc-

tural defects in the sperm-tail proteins and the 

sperm motility proteins. Despite the advances in 

etiology of male infertility, the molecular mecha-

nisms that impair sperm motility in most cases are 

unclear (34). The mRNA expression analysis of 

four candidate genes including CRISP2, CATS-

PER1, SEMG1 and PATE1 in the sperm of men 

with AZS and control groups showed that down-

regulation of CRISP2 (p=0.036) and up-regulation 

of SEMG1 (p= 0.03) were associated with AZS. 

Zhou et al. demonstrated that miR-27b and miR-

27a negatively regulate CRISP2 protein expres-

sion in AZS and asthenoteratozoospermia, respec-

tively (13, 35). Accordingly, high miR-27b and 

miR-27a expression or low CRISP2 protein ex-

Table 1. Primer sequences and their related PCR product sizes used for real-time RT-PCR 
 

Gene Forward primer (5’--->3’) Reverse primer(5’--->3’) Size (bp) 

CRISP2 TGCCATTATTGTCCTGCTGGT CATGTTCACAGCCAGTTGTATTCT 187 

CATSPER1 AAGGGCAATTTCAGAAACGCA TCAAAGGCCAAGGATTGGGTTA 157 

PATE1 TCTGCTGCTTTAGGGCGTTAT GGTGGCACATCCTACACTGA 120 

SEMG1 CCAGACACCAACATGGATCTCA TGAGGTCAACTGACACCTTGATA 179 

B2M CGAGATGTCTTGCTCCGTG TCCATTCTCTGCTGGATGAGG 118 

 

Table 2. Expression levels (Fold change) of CATSPER1, 

PATE1, CRISP2, and SEMG1 mRNAs in sperm of asthe-

nozoospermia men and control groups 
 

Genes p-value 
Patients 

Mean±SD 

Controls 

Mean±SD 

SEMG1 0.03 6.89±8.53 4.00±5.77 

CATSPER1 0.58 1.88±2.52 2.24±2.43 

CRISP2 0.03 3.72±2.01 4.81±2.24 

PATE1 0.67 2.65±2.99 1.96±2.06 

 

Figure 1. ROC curve analysis of expression data. ROC curve comparing sensitivity and specificity of expression data for detection 

of AZS patients. ROC curve analyses suggest that expression of SEMG1 and CRISP2 have poor diagnostic value for AZS detection 
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pression was significantly associated with low 

sperm motility, abnormal morphology, and infer-

tility in asthenoteratozoospermic men (13, 35, 36). 

Consistent with these studies, CRISP2 expression 

was downregulated in AZS samples, but this de-

regulation was found in mRNA. Similar to our 

finding, Jing et al. reported downregulation of 

CRISP2 mRNA (37) and protein (38)  or both (39, 

40)  in AZS. CRISP2 protein that has been local-

ized in the acrosome and sperm tail and involved 

in sperm-egg fusion, is a candidate gene in men 

infertility; however, analysis of CRISP2 varia-

tions in asthenozoo- and/or teratozoospermia fail-

ed to find a significant association (41). It is excit-

ing that Agarwal et al. found CRISP2 is uniquely 

expressed in the spermatozoa of infertile men with 

unilateral varicocele and it is absent in fertile men 

(42). These findings suggest the involvement of 

CRISP2 in the infertility may be the result of im-

pairing sperm motility and development of vari-

cocele. Varicocele is a risk factor for sperm motil-

ity and it can significantly affect it although the 

pathophysiologic mechanisms are not yet com-

pletely known.  

Consistent to our finding, previous studies in 

AZS samples have shown SEMG1 levels increase 

and remain bound to spermatozoa (15, 43, 44), 

and their mRNA is overexpressed in spermatozoa 

(15). Legare et al. found over-expression of SEMG1 

in infertile men and men who failed to fertilize 

eggs during IVF procedures (45). The high ex-

pression of SEMG1 in AZS patients could cause 

the accumulation of Sg1, and this might increase 

the concentration of Sg1 and decrease the motility 

of sperm in AZS men (15). The Sg1, the predomi-

nant secreted protein in semen, is contributed in 

the formation of a gel matrix which encases the 

ejaculated spermatozoa. After ejaculation, Sg1 is 

broken down into smaller peptides by PSA. This 

process liquefies the semen coagulum and allows 

the sperm to be more motile (15, 46). Interesting-

ly, some SEMG1 variations (Such as p.Tyr315His 

and p.Gly400Asp) are most likely affecting mo-

lecular interactions or protein activity and possi-

bly leading to hyperviscosity and AZS (47). 

In contrast to previous reports, no association 

was found between the differential expression of 

CATSPER1 and PATE1 with the AZS which 

might be related to sample size. CATSPER1 pro-

tein is a calcium channel which particularly acts 

in the plasma membrane of the sperm tail (27). 

Low, lack of or mislocalized expression of CAT-

SPER1 protein in spermatozoa may be involved in 

developing asthenozoospermic phenotype and low 

hyperactivated motility (48-50). This low or ab-

sent expression of CATSPER1 was seen in mRNA 

level (49, 50). Also, some polymorphisms and 

mutations of CATSPER1 are associated with AZS 

(49, 51, 52). PATE1 protein in sperm seems to 

mediate sperm-egg interactions. According to a 

previous report, a defect in sperm PATE1 protein 

was revealed in both aged and young AZS men. 

The antibody of PATE1 blocking can decrease the 

motility of human sperm and zona-free hamster 

oocyte penetration (14). Recently, it was shown 

that PATE1 variant (A1423G) was possibly one 

of the genetic risk factors for idiopathic AZS (53). 
 

Conclusion 
In conclusion, although our samples were lim-

ited, our finding suggested that down- and up-

regulation of the CRISP2 and SEMG1 respective-

ly was associated with the idiopathic AZS infertile 

men. 
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