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The unambiguous assignment of tandem mass spectra
(MS/MS) to peptide sequences remains a key unsolved
problem in proteomics. Spectral library search strategies
have emerged as a promising alternative for peptide iden-
tification, in which MS/MS spectra are directly compared
against a reference library of confidently assigned spec-
tra. Two problems relate to library size. First, reference
spectral libraries are limited to rediscovery of previously
identified peptides and are not applicable to new pep-
tides, because of their incomplete coverage of the human
proteome. Second, problems arise when searching a
spectral library the size of the entire human proteome. We
observed that traditional dot product scoring methods do
not scale well with spectral library size, showing reduc-
tion in sensitivity when library size is increased. We show
that this problem can be addressed by optimizing scor-
ing metrics for spectrum-to-spectrum searches with
large spectral libraries. MS/MS spectra for the 1.3 mil-
lion predicted tryptic peptides in the human proteome
are simulated using a kinetic fragmentation model
(MassAnalyzer version2.1) to create a proteome-wide
simulated spectral library. Searches of the simulated
library increase MS/MS assignments by 24% compared
with Mascot, when using probabilistic and rank based
scoring methods. The proteome-wide coverage of the
simulated library leads to 11% increase in unique pep-
tide assignments, compared with parallel searches of a
reference spectral library. Further improvement is at-
tained when reference spectra and simulated spectra
are combined into a hybrid spectral library, yielding 52%
increased MS/MS assignments compared with Mascot
searches. Our study demonstrates the advantages of
using probabilistic and rank based scores to improve
performance of spectrum-to-spectrum search strate-
gies. Molecular & Cellular Proteomics 10: 10.1074/
mcp.M111.007666, 1–15, 2011.

High-resolution hybrid mass spectrometers and improved
methods for sample preparation and chromatography have
enabled routine quantitative profiling of thousands of proteins

in a single sample. Typically, profiling of complex biological
samples is performed by “bottom up” proteomics, where
proteins are proteolyzed and peptides separated by one or
more dimensions of chromatography before mass spectro-
metry analysis. Peptide ions are isolated and dissociated in
the gas phase to yield tandem mass spectra (MS/MS)1, which
are interpreted by algorithms to identify the fragmented pep-
tides present in the sample. “Spectrum-to-sequence” or se-
quence-based approaches are commonly employed for
MS/MS identification, for example using database search al-
gorithms that match MS/MS spectra to sequences in a protein
database, by first generating theoretical fragmentation spec-
tra for different peptide sequences, and then scoring overlap
between model and experimental spectra. In general, the
models for generating theoretical MS/MS spectra use simple
fragmentation rules that consider all backbone fragmentation
events as equally likely. This ignores well-known residue-
specific effects on backbone cleavage, which contribute to
the variable fragment intensities characteristic of different
peptide sequences (1). Consequently, the scoring functions
used by many search algorithms show poor discrimination in
separating valid peptide sequences from incorrect or false
positive assignments. Previous studies showed that discrim-
ination of sequence-based approaches is improved by using
a kinetic fragmentation model to evaluate the chemical plau-
sibility of MS/MS assignments (2–4). “Spectrum-to-spec-
trum” or spectral library searching, is an alternative to se-
quenced based approaches, where experimental MS/MS are
directly matched against a library of previously identified ref-
erence spectra, assembled from MS/MS assigned to peptides
with high confidence (5, 6). Spectral library searching has two
advantages over sequence-based approaches. First, because
the number of spectra in reference libraries normally em-
ployed is small compared with the number of database pep-
tide sequences, search times are significantly reduced. Sec-
ond, true peptide MS/MS assignments are more easily
distinguished from false positive assignments with the added
fragment intensity information. Most spectral library search
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algorithms use a dot product score to measure the similarity
in fragment intensity patterns between the candidate MS/MS
and library spectra (5, 7). This is because dot product scores
have shown better performance compared with other scores
for searching small molecule spectral libraries (8). In contrast,
scores used in spectrum-to-sequence search tools, such as
Mascot (9), OMSSA (10), and MyriMatch (11), are often based
on probabilistic functions that match fragment ion masses,
largely ignoring fragment intensity information in observed
MS/MS. By matching peak intensities, spectrum-to-spectrum
methods fully exploit the intensity patterns unique to different
peptides, including those of noncanonical fragment ions that
are not predicted by simple fragmentation models often used
in sequence-based searching. As a result, spectral library
searching can show increased score discrimination and sen-
sitivity over sequence-based methods (7).

The compact sizes of reference libraries, although providing
advantages of search speed and discrimination, are far from
comprehensive in their coverage over human proteins. In
many human tissues and cancers, much of the proteome and
its associated complement of modifications remain undiscov-
ered; consequently, they are incompletely represented in ref-
erence libraries. For example, the “Human IT Library” from the
National Institute of Standards and Technology (NIST) covers
only 21% of amino acids in the human proteome (12). Ac-
cordingly, spectrum-to-spectrum search methods are limited
to rediscovery of previously identified sequences, such as in
targeted proteomics applications. For this reason, database
search algorithms remain the primary peptide identification
tool employed for new protein discovery.

We recently reported a method for addressing the limited
coverage of reference libraries, which uses a kinetic gas
phase peptide fragmentation model (3) to create a library of
simulated MS/MS spectra for all predicted peptides in the
human proteome (13). In this way, a “proteome-wide library”
can be searched using spectrum-to-spectrum search soft-
ware in the same manner used for smaller reference libraries,
maintaining the advantages of direct intensity comparisons,
but extending the search to larger numbers of peptides typi-
cally covered only by database search algorithms. However,
we observed lower performances of spectrum-to-spectrum
searching against proteome-wide libraries compared with
conventional sequence-based tools such as Mascot.

Here we present a new strategy for searching proteome-
wide spectral libraries, comprised of kinetically simulated
MS/MS spectra, and incorporated into an efficient search
application, Spec2spec. We evaluate the contributions of in-
creased search space, proteome coverage and the quality or
accuracy of spectral intensity predictions on discrimination
performance in spectral library searching. We show that cur-
rent limitations in spectral library search tools include the
scoring functions, which are not optimized for proteome-
wide libraries, because of larger search spaces representing
more than 20-fold the number of peptides contained in refer-

ence libraries, and the quality of simulated spectra used to
increase proteome coverage. Thus, although the high pro-
teome coverage in simulated proteome-wide libraries in-
creases the number of unique peptide identifications com-
pared with reference libraries, the increased library size
degrades performance of dot product and similarity scoring.
To address this limitation, we present new scoring metrics,
including probabilistic scores based on a hypergeometric
model of random peak matching in library spectra, and dot
product scores based on peak intensity rankings. The new
scores enable proteome-wide library searching with more
discriminatory power, outperforming sequence-based
searching with Mascot. Furthermore, we evaluate the use of
target-decoy search methods for estimating false discovery
rates (FDR) in spectrum-to-spectrum searching. We identify
score-dependent biases which lead to underestimated FDR
with smaller reference libraries, compared with proteome-
wide simulated libraries. These findings demonstrate the
potential for replacing traditional spectrum-to-sequence
searching with spectrum-to-spectrum searching against pro-
teome-wide simulated libraries in discovery proteomics.

EXPERIMENTAL PROCEDURES

Data Collection—Liquid chromatography (LC)-LC-MS/MS was per-
formed using a LTQ-Orbitrap mass spectrometer (Thermo Scientific)
interfaced with a nanoAcquity ultra performance liquid chromatogra-
phy (UPLC) (Waters, Milford, MA), operated in two-domensional frac-
tionation mode. Peptide mixtures (5 �l, 0.2–20 �g) were first sepa-
rated on a Xbridge BEH C18 column (5 cm � 300 �m i.d, 5 �m bead
diameter with 150 Å pore size, Waters) using a step gradient of 2% for
each fraction from 97% buffer A (20 mM ammonium formate, pH 10)
to 21% buffer B (100% acetonitrile). Steps were loaded onto a trap
column (Waters C18 Symmetry, 20 mm � 180 �m i.d., 5 �m bead),
washed and placed in line with a second dimension BEH C18 re-
versed-phase column (25 cm � 75 �m i.d., 1.7 �m bead, 100 Å pore
size, Waters) before elution with a linear gradient from 95% buffer A
(0.1% formic acid) to 40% buffer B (0.1% formic acid, 80% CH3CN)
in 120 min at a flow rate of 300 nL/min.

MS/MS were collected on the 10 most intense precursor ions,
enabling monoisotopic precursor and charge selection settings, and
excluding ions with unassigned charge state. Dynamic exclusion
settings were: 30 s repeat duration, 180 s exclusion duration, 20 ppm
exclusion width, and repeat count of 1. The maximum injection time
for Orbitrap parent scans was 500 ms, allowing one microscan and
AGC of 1 � 106. The maximal injection time for the LTQ MS/MS was
250 ms, with one microscan and automatic gain control (AGC) of 1 �
104. The normalized collision energy was 35%, with activation Q �
0.25 for 30 ms, and isolation width 2.0 Da.

Data Sets—The Sigma universal protein standard (UPS1, Sigma
Aldrich) containing 48 purified human recombinant proteins present in
equimolar ratios (14) was used as the defined protein mixture. Pro-
teins were reduced with dithiothreitol and alkylated with iodoacet-
amide before overnight digestion with modified trypsin (Promega) at a
1:20 (w/w) trypsin to protein ratio. One picomole of this mixture was
analyzed by two-dimensional-UPLC-MS/MS. Raw files were then
extracted with extract_msn.exe (distributed with Bioworks 3.2), using
the parameters -M1.4 -B85 -T4500 -S5 -G1 -I35 -C0.

For the purpose of evaluating bias and score distributions of target
and decoy library searches, an E. coli consensus library (ver.
2009_05_21) was downloaded from the NIST website and converted
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into MGF format (12). Spectra were filtered by the following criteria:
not common to IPI human protein database version 3.27, cysteines
modified with carbamidomethyl, charge state up to three, and pep-
tides with nine or more amino acids. After filtering, 36,368 spectra
remained.

Spec2spec: Software for Searching Proteome-wide Spectral Li-
braries—Spectrum-to-spectrum search applications typically consist
of three main components: a spectral preprocessor, which includes
ion filtering and intensity scaling, a spectral library and the scoring
method (Fig. 1). Current software, such as X!Hunter (15), BiblioSpec
(16), or SpectraST (7), do not allow optimization of each of these
components independently. For example, X!Hunter can efficiently
search large libraries, but at the expense of reduced ion representa-
tion in library MS/MS spectra. To address this need, we designed a
cross-platform spectral library search application, Spec2spec, written
in Java with a flexible object-oriented architecture to allow indepen-
dent optimization of each component. In this architecture, spectral
filters and scoring methods are predefined as abstract classes, which
simplify the development and testing of new filters and scoring meth-
ods. To enable efficient searches of large simulated libraries, we
prefiltered and partitioned the libraries by m/z and charge, and
searched the partitions in multiple threads. This sacrificed the flexi-

bility to customize filtering methods, but significantly reduced the
loading time to an average of 1 min per library partition (13). The
search times for Spec2spec were on the same order as those for
sequence algorithm searching; searches of the UPS1 database re-
quired 26 min. on average whereas Mascot required 21 min. The
overall workflow for spectral library generation and spectrum-to-
spectrum searching is shown in Fig. 1.

Construction and Filtering of Spectral Libraries—A human simu-
lated proteome-wide library (“TargetSS”) was constructed as de-
scribed previously (13) (Fig. 1A, Table I). Peptide sequences were
generated by in silico tryptic digest of the IPI human protein database
version 3.27 (17), including peptides with up to two missed cleavages,
parent masses between 900–4500 Da and nine or more amino acids.
Peptides corresponding to unlikely missed cleavage products were
removed (18). A dynamic-link library version of MassAnalyzer (version
2.1) was used to simulate spectra in batch mode for those peptides
with up to three charge states, using the parameters: instrument LTQ,
collision energy 35%, activation time 30 ms, isolation window 2 Da,
and resolution 800 at 400 m/z. A simulated decoy library (“DecoySS”)
was generated following the same methods, except that protein
sequences were reversed before in silico proteolysis (Table I). An
in-house application was then used to gather forward and reversed

FIG. 1. Spectrum-to-spectrum searching workflow. A, Spectral library generation. Our in-house application takes a FASTA database and
generates peptide sequences by in-silico digestion. These sequences are then simulated by MassAnalyzer, and the results are stored in an
in-house text format. The approach allows generation of a large library covering most of the human proteome and a decoy library. Alternatively,
the source of a library can be the text formatted NIST or X!Hunter library. An application converts these into our in-house text format.
B, Spectrum-to-spectrum searching. The abstract view of a spectrum-to-spectrum searching application, which takes 3 major inputs: the
experimental spectra in MGF format, a spectral library, and a set of search parameters. These are all taken into account in the scoring process.

TABLE I
Spectral libraries used in this study

Unfiltered NIST NISTa TargetSSb DecoySSc

Version 2/4/2009 � IPI v3.27 IPI v3.27
Total spectra 249,896 154,612 4,050,732 3,963,009

UPS1 spectrad 12,041 4420 15,060 �
Unique sequences 155,218 110,960 1,343,602 1,314,334

UPS1 sequencese 6555 2442 4999 �
% UPS1 coveragef 59.5% 49.7% 70.7% �

a Spectra are limited to those peptide ions represented in the TargetSS library.
b MassAnalyzer (v. 2.1) simulated spectra for peptides derived from in silico trypsin digest of the IPI human protein database version 3.27,

with masses between 900 to 4,500 Da and peptide length at least nine amino acids. Charge states up to �3 are simulated.
c Simulated spectra for peptides derived from in silico trypsin digest of a reversed version of the IPI 3.27 sequence database. The same

criteria as (b) are used to filter peptide sequences.
d Spectra corresponding to peptides from one of the 48 Sigma UPS1 standard proteins � known contaminants (22).
e Unique sequences matching to proteins in the UPS1 mixture, as in (d).
f The coverage is calculated by counting the number of covered amino acids in the whole protein database.
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simulated MS/MS into spectral libraries using a custom text format. In
addition, an in-house application was written to convert between
NIST-MSP, X!Hunter and our own text formats.

The NIST ion trap human reference library, build Feb 4, 2009 (12),
was downloaded and filtered to remove spectra of nontryptic pep-
tides, peptides less than nine amino acids, and charge state greater
than three (Table I). To normalize comparisons between the NIST and
other libraries, spectra corresponding to modified peptides, except-
ing carbamidomethylated cysteine containing peptides, were re-
moved. Two spectra from this version of the NIST reference library
corresponded to “standard protein peptides” (proteins in the Sigma
UPS1 sample), but were found to be misannotated. Therefore, iden-
tifications assigned to these two spectra were labeled as true hits
(Supplementary Methods).

To test the effects of search space, proteome coverage, and spec-
tral quality, three more libraries were constructed by concatenating or
merging libraries described above in different combinations (illus-
trated in supplemental Fig. S6). A “NIST�DecoySS” library was con-
structed by concatenating NIST and DecoySS libraries. A
“SSNIST�DecoySS” library was constructed by simulating MS/MS
for peptides in the NIST reference library, and concatenating these
spectra with the DecoySS library. A “Hybrid” library was generated by
merging TargetSS and NIST libraries, and replacing TargetSS spectra
with corresponding reference spectra from the NIST reference library.
Therefore, the Hybrid library is exactly the same size as the TargetSS
library.

Scoring Methods

Dot Product Scoring Metrics—The dot product (DP) score treats
each spectrum as a vector of the ordered peak intensities and mea-
sures the cosine of the angle between the spectra (8). Ions in two
spectra are aligned and matched with a specified fragment ion toler-
ance. When multiple candidate ions are within the tolerance range,
the peak with the highest value of the observed intensity divided by
the difference between observed and predicted m/z is chosen for
matching.

DP �
�Iobs � Isim

��Iobs
2 � �Isim

2
(Eq. 1)

In Equation 1, Iobs and Isim are the intensities of observed and simu-
lated spectra, respectively. The similarity score (SIM) is related to DP
but places greater weight on lower intensity ions (3):

SIM �
��Iobs � Isim

��Iobs � �Isim

(Eq. 2)

Calculating DP for two spectra with square root transformed intensi-
ties is mathematically equivalent to SIM. The square-root transforma-
tion used by SIM has been shown to provide higher discrimination in
reference library searches (5, 8).

Ranked DP and SIM—We developed new scores based on DP and
SIM, which use peak intensity ranks in place of actual intensities. In
these equations, rank one is assigned to the peak with least intensity
whereas the highest rank is assigned to the peak with most intensity.
When a peak in the first spectrum does not have a corresponding
peak with matched m/z in the second spectrum, it is matched to a
peak with rank zero in the second spectrum. The resulting ranked DP
and SIM scores are:

RDP �
�Robs � Rsim

��Robs
2 � �Rsim

2
(Eq. 3)

RSIM �
��Robs � Rsim

��Robs � �Rsim

(Eq. 4)

where Robs and Rsim are the intensity-based ranks of fragment ions in
the observed and simulated spectra, respectively.

Hypergeometric Probability Scores—We also developed probabi-
listic scores using a hypergeometric distribution to model the fre-
quency of random matching of fragment ions between experimental
and library spectra. In spectrum-to-sequence searching, a hypergeo-
metric probability distribution closely approximates the frequency of
randomly matching MS/MS fragments to those predicted from a
sequence database (19), and scoring functions based on this model
have shown higher performance than other probabilistic methods in
database searching (19, 20). Probabilistic scores typically consider
only the m/z for fragment ion matches and ignore peak intensity.
Therefore, we developed a scoring function where peaks from the
library and experimental spectra are prefiltered by intensity, before
matching and probability calculations.

The hypergeometric probability score by multi-candidate consid-
eration (MHP) uses a hypergeometric distribution to model the fre-
quency of random matches between fragment ions in an experimental
spectrum and the set of all fragment ions found in library spectra
within a certain precursor mass tolerance:

MHP � � ln��
K
K1
�� N � K

N1 � K1
�

� N
N1

� � (Eq. 5)

The terms in parentheses are binomial coefficients. N represents the
number of all fragment ions from library spectra with precursor
masses that fall within tolerance of the precursor mass of the exper-
imental spectrum, i.e. from all candidate library spectra. K represents
the number of N peaks that match ions in the experimental spectrum
within tolerance. N1 is the number of fragment ions in a candidate
library spectrum, and K1 is the number of N1 peaks that match ions in
the experimental MS/MS. Natural logarithms of the binomial coeffi-
cients are used to simplify the calculation of the final score (11).

MHP is adapted from a hypergeometric score described by Sady-
gov et al. (19), which was used to model random matching to pre-
dicted fragment ions in a sequence database, rather than a spectral
library. By considering random matches to the global background of
all candidate fragment ions in a spectral library, MHP should correct
for mass and size dependent biases that arise with other scores, such
as Sequest’s XCorr (21). Consistently, the hypergeometric score de-
scribed for spectrum-to-sequence searching was shown to be largely
independent of peptide charge state and thus peptide mass (19).

The SHP score considers matches between experimental and can-
didate library spectra, without considering background matches
within the library.

SHP � � ln��
m
k ��N � m

n � k �
�N

n � � (Eq. 6)

The experimental spectrum is first divided into 1-m/z bins. In this
equation, N represents the total number of these bins between the
lowest m/z peak and the highest m/z peak, m represents the number
of ions in the experimental spectrum, k represents the number of ions
in the experimental spectrum which match the library spectrum, and
n represents the number of ions in the library spectrum. The hy-
pergeometric probability score by single-candidate consideration
(SHP) was adapted from a hypergeometric score described by Tabb
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et al. (11), except that SHP uses a univariate, rather than a multivar-
iate, hypergeometric distribution and library spectra are used in place
of predicted fragment m/z ladders from a protein sequence database.

Performance Assessment—To evaluate and compare search dis-
crimination using different scores and libraries, we used a sample of
known composition (Sigma UPS1) containing 48 purified and 103
contaminating proteins (22). MS/MS assignments to peptides from
known proteins were assumed true, while assignments to other pro-
teins were assumed false. This allowed the FDR for searches to be
calculated as (# of accepted false assignments) � (# of all accepted
assignments). We refer to this method of FDR calculation as the
“protein standard FDR.”

FDR can alternatively be estimated using a target-decoy library
search, where a library of decoy spectra are generated by simulations
based on a kinetic fragmentation model (13, 23). In concatenated
library searches, the target library was concatenated with a decoy
version of the target library. Decoy assignments were considered
false and the FDR calculated as 2 � (# of accepted decoy library
assignments) � (# of all accepted assignments) (24). In separated
searches, the target and decoy libraries were searched indepen-
dently, with FDR � (# of accepted decoy library assignments) � (# of
accepted target library assignments). False discovery rates shown in
receiver operating characteristic (ROC) curves and tables were cal-
culated as q-values to avoid complications when multiple score
thresholds yielded the same FDR, especially within the low FDR range
(25, 26).

Filtering and Search Criteria—Ions in the experimental and library
spectra were filtered before searching, using the following procedure.
First, ions representing neutral loss events within the range of �50 to
�5 m/z around the parent ion were removed. Second, each spectrum
was divided into windows 100 m/z wide and the six most intense
peaks from each window were selected (all other peaks were re-
moved). The parent mass tolerance for searches was �1.2 Da and the
fragment ion tolerance was �0.5 m/z.

RESULTS

Spectrum-to-spectrum search algorithms evaluate MS/MS
assignments using scoring functions, whose discriminatory
power is measured by the ability to distinguish true from false
identifications. In a previous study, we showed that although
the dot product scores (DP and SIM) yielded good discrimi-
nation when used for searching against libraries of previously
observed spectra, their performance degraded when the
search space was expanded by 10-fold to include 1.3 million
tryptic peptides in the human proteome (13), simulating
MS/MS spectra using a kinetic fragmentation model (3). The
poor performance of DP and SIM scores motivated the de-
velopment of metrics with higher discrimination for searching
simulated proteome-wide libraries. To gain insight into the
factors important for discrimination, and to provide a baseline
against which to compare the performances of scores devel-
oped in this study, we first evaluated the performance of DP
and SIM when used to search a smaller library comprised of
observed reference spectra.

Dot Product Scores Show Poor Discrimination—DP and
SIM were evaluated in searches of a NIST human reference
library (Table I), which contains consensus reference MS/MS
covering 17% of amino acids in the human proteome. MS/MS
spectra collected by LC-MS/MS on proteins of known com-

position (Sigma UPS1 standard) were searched against the
NIST reference library, and performance was evaluated using
ROC plots using the protein standard FDR calculation (Fig. 2).
Also shown are ROC plots for the spectrum-to-sequence

FIG. 2. New scoring methods show improved discrimination
over Mascot and dot product scores. The UPS1 standard protein
dataset was searched against the NIST reference spectral library to
evaluate search discrimination for (A) DP and SIM, (B) RDP and RSIM,
and (C) SHP and MHP. Performance of the Mascot ions score (black
line) is shown using a peptide sequence database corresponding to
those peptides represented in the NIST reference library. The correct
hits are MS/MS spectra whose assignments match the peptides for
protein in the Sigma UPS1 protein mixture (see Experimental
Procedures).
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search algorithm, Mascot, searched against a database with
number of peptides equivalent to those in the NIST reference
library. The dot product scores yielded poor discrimination,
with DP showing �fivefold lower sensitivity than SIM over a
wide range of FDR, and Mascot identifying more true posi-
tives (TPs) than SIM at FDR � 1% (Fig. 2A). SIM and DP are
closely related, because SIM is mathematically equivalent to
DP calculated with peak intensities that have been square
root transformed. The square root transformation used in SIM
places greater weight on lower intensity peaks, allowing po-
tentially informative backbone fragment ions to be included
(5, 8, 27). This can be important for MS/MS spectra domi-
nated by a few intense fragment ions. For example, peptides
with strong N-terminal proline cleavages often generate other
backbone fragment ions, which have low intensities but are
important for assignments.

We sampled a number of high-scoring false assignments
from a search of the NIST reference library using DP, and
found numerous cases where false assignments were
dominated by a few very intense ions in the spectra
(supplemental Fig. S1). In each case, the DP score was ele-
vated primarily by a small number of matches to high intensity
fragments. We hypothesized that by placing more weight on
matched peaks with lower intensity, SIM more effectively
penalizes this class of false positive assignments, and that the
dramatic difference in sensitivity between DP and SIM was
because of their different scaling of peak intensity measure-
ments. Based on these observations, we developed four new
scoring metrics, which emphasize matching of lower intensity
fragment ions and thus increase discrimination in proteome-
wide library searches.

Rank-based Scores Improve Discrimination in Reference
Library Searching—An alternative method to increase the rel-
ative weights for lower intensity peaks is to ignore intensity
measurements and instead score based on intensity rankings
of fragment ions. We thus modified DP and SIM to replace
intensities with ranks assigned after sorting peaks in each
spectrum by increasing intensity, resulting in calculations for
ranked DP (RDP) and ranked SIM (RSIM) (Experimental Pro-
cedures). These rank based scores significantly improved
sensitivity when searching against the NIST reference library,
compared with DP and SIM (Figs. 2A, 2B). The performances
of RDP and RSIM were comparable, and both outperformed
Mascot with �35% higher sensitivity at FDR � 2%.

Discrimination increases when search score distributions
for true and false assignments are more completely sepa-
rated. Consequently, increased discrimination occurs when
(1) scores for false assignments are suppressed, and/or (2)
scores for true assignments are increased. We compared true
versus false score distributions using DP and RDP to deter-
mine whether the increase in discrimination with RDP was due
to suppression of false assignments or enhancement of true
assignments. Although scores for both true and false assign-
ments decreased with RDP compared with DP, RDP scores

for false assignments were suppressed to a greater degree
than scores for true assignments (data not shown). Thus,
RDP increases discrimination primarily by penalizing false
matches.

Interestingly, at low FDR (� 0.8%), the Mascot ions score
yielded higher sensitivity than either RDP or RSIM (Fig. 2B). To
investigate this further, we manually examined spectra for the
10 highest scoring false positive matches from the RDP
search, which account for approximately half of the false
positives below 0.8% FDR. In 9 of the 10 cases, the experi-
mental and library spectra showed a high degree of similarity,
i.e. the spectra in each matched pair likely corresponded to
the same peptide and the spectral match was valid. We
hypothesized that these cases were labeled as false positives
because of: (1) their correspondence to unknown protein con-
taminants in the Sigma UPS1 protein mixture, and/or (2) pep-
tide sequence annotations for some NIST reference library
spectra were incorrect (discussed in supplementary
Methods). Thus, the lower sensitivity for RDP and RSIM at low
FDR may be artifactual, because true spectral matches were
counted as false. Nevertheless, the effect was complicated by
the small number of cases with high scores. Above FDR �

1%, error estimates were more precise, and the rank-based
scores showed significantly increased sensitivity over se-
quence-based Mascot ion scores.

Probabilistic Scores Perform as well as Rank-based Metrics
for Reference Library Searching—Probability based scores
are widely used in sequence-based searching (9, 10), but
most algorithms score peaks matched by m/z without con-
sidering intensities. Spectral library searching, on the other
hand, evaluates spectral matches primarily by intensity,
placing less emphasis on peak matching in the m/z dimen-
sion. We extended probability based scoring to spectral
library searching, in a way that evaluates matches in both
m/z and intensity dimensions, potentially improving score
discrimination. Two probability-based scores were devel-
oped, SHP and MHP, which used a hypergeometric prob-
ability distribution to model the random chance of matching
observed to library fragment ions. Although peak intensities
are not explicitly used in the probability calculation, they are
used to select peaks for matching and scoring from both the
experimental and candidate library spectrum. In this way,
peaks of higher intensity are more likely to be selected from
library spectra for matching and scoring against peaks se-
lected from experimental spectra. We determined empiri-
cally the optimal number of peaks to select within each 100
Da window. For DP and SIM, the standard protein data set
was searched against TargetSS with parent tolerance 1.2
Da, fragment tolerance 0.5 Da and selecting 3 to 25 peaks
per 100 Da window in both experimental and library spectra,
and the number of correct assignments at 5% FDR was
compared (data not shown). We found that selecting the six
most intense ions per 100 Da window gave the best dis-
crimination. Peaks selected from the two spectra were

Proteome-wide Spectrum-to-Spectrum Searching

10.1074/mcp.M111.007666–6 Molecular & Cellular Proteomics 10.7

http://www.mcponline.org/cgi/content/full/M111.007666/DC1
http://www.mcponline.org/cgi/content/full/M111.007666/DC1
http://www.mcponline.org/cgi/content/full/M111.007666/DC1


matched based on an m/z tolerance, and the numbers of
matching and nonmatching peaks were used to calculate
SHP and MHP (Experimental Procedures). SHP considers
only the experimental MS/MS and the library spectrum be-
ing scored, and is thus library independent. In contrast,
MHP incorporates a term for background matching of can-
didates in the library spectra, and is thus library dependent.

Performances of SHP and MHP were evaluated by search-
ing the UPS1 data set against the NIST reference library,
compared with Mascot searches of an equivalent search
space (Fig. 2C). Both scores showed higher sensitivity than
Mascot over a broad range of FDR (Fig. 2C). Moreover, MHP
showed slight but consistently higher sensitivity than SHP,
particularily at low FDR. In contrast, the two ranked scores
showed greater discrimination than the probability scores
above 1% FDR, which may reflect greater weighting of peak
intensities by RDP and RSIM. Overall, each new score re-
sulted in significantly higher discrimination compared with the
dot product scores, DP and SIM, under all conditions, as well
as improvement over Mascot above 1% FDR (Figs. 2B, 2C).
Consistent with trends for RDP and RSIM, SHP and MHP
histograms showed increased separation between true and
false assignments compared with DP and SIM, primarily by
lowering scores for false assignments (data not shown). These
results demonstrated that rank- and probability-based scores
provide a significant advantage over traditional dot product
metrics for searching small reference libraries such as NIST,
as well as significant improvements over the sequence-based
probabilistic scoring algorithm used by Mascot.

Proteome-wide Library Searching with New Scores Im-
proves Discrimination Over Mascot—We next tested the per-
formance of rank- and probability-based scores in searching
a simulated spectral library covering the human proteome.
This addresses a limitation of spectrum-to-spectrum search
methods, in which the size of the reference libraries restricts
peptide assignments because of their low coverage of pep-
tides in human proteins. We hypothesized that the increased
coverage over human proteins in a proteome-wide library
would increase the number of unique peptide identifications,
and that the new scoring metrics would have increased dis-
criminatory power over DP and SIM.

MassAnalyzer is based on an empirical kinetic model of
gas-phase peptide fragmentation during collision-induced
dissociation (CID) in quadrupole ion trap mass spectrometers,
and predicts MS/MS spectra with reasonable accuracy for
doubly and triply charged peptides up to 5000 Da (3, 4). This
application (version 2.1) was used to generate a library of
simulated MS/MS spectra corresponding to tryptic peptides
in the human proteome filtered for mass, charge state, and
sequence as described under “Experimental Procedures”. We
constructed a “TargetSS” library, covering 	99% of proteins
and 79% of amino acids in the International Protein Index
human protein database (Table I). MS/MS spectra from the
UPS1 dataset were searched against the TargetSS library,

and the performances for each score as well as a Mascot
search of the equivalent peptide database were compared by
ROC analysis (Fig. 3).

As seen in NIST reference library searches, DP and SIM
performed poorly in searches of the TargetSS library; below
10% FDR, DP identified only seven true positives and SIM

FIG. 3. Proteome-wide simulated library searched using differ-
ent scores. (A) DP and SIM, (B) RDP and RSIM, and (C) SHP and
MHP. The UPS1 standard protein dataset was searched with seven
scoring methods against the TargetSS library, consisting of simulated
spectra based on in silico digest of the human IPI 3.27 database.
Performance is also shown for the Mascot ions score (black line)
search against an equivalent peptide sequence database.

Proteome-wide Spectrum-to-Spectrum Searching

Molecular & Cellular Proteomics 10.7 10.1074/mcp.M111.007666–7



identified fewer than 500 true positives (Fig. 3A). RDP and
RSIM improved significantly over DP and SIM, and yielded
higher sensitivity than Mascot above 2% FDR (Fig. 3B). SHP
and MHP yielded the greatest discrimination in TargetSS
searches, outperforming Mascot and the other scoring meth-
ods consistently over a wide range of FDR values. MHP
showed 8% greater sensitivity over SHP (3% FDR, Fig. 3C),
suggesting an advantage in considering library dependent
variations for fragment ion matching. The increased discrim-
ination observed with SHP and MHP over Mascot reflects the
advantage of using intensity information contained within
the simulated spectra. Indeed, when simulated spectra in the
TargetSS library were manipulated to remove the relative
intensity information, sensitivity decreased by fivefold with
MHP and 1.6-fold with SHP at 3% FDR (supplemental Fig.2 ),
both reduced below the sensitivity of Mascot in Fig. 3. Thus,
the relative intensity information in simulated spectra signifi-
cantly increased discrimination, and was manifested best us-
ing the probability scores, SHP and MHP.

Proteome-wide Library Searching Identifies More Unique
Sequences but Fewer MS/MS—Searches of the TargetSS
library yielded lower numbers of MS/MS assignments, com-
pared with NIST reference library searches, using every score
(compare Figs. 2 and 3). However, a different trend emerged
when unique peptides were compared, where every score
yielded more unique peptides in TargetSS library searches
over NIST library searches. This is seen in Table II, where MHP
assigned 16% fewer MS/MS (4557 versus 5451) but 11%
more unique sequences (732 versus 657) in TargetSS versus
NIST library searches. Similarly, RSIM assigned 29% fewer
MS/MS (3859 versus 5434), but 4% more unique sequences
(678 versus 651) in TargetSS versus NIST reference library
searches. We hypothesized that the reason more unique pep-
tides were identified despite lower sensitivity in proteome-
wide TargetSS library searches was the higher coverage of

tryptic peptides, allowing MS/MS assignments to peptides
not represented in the NIST reference library. Indeed, 93% of
the unique sequences identified only by the TargetSS library
searches (3% FDR) were absent in the NIST reference library
(supplemental Fig. S4). Thus, the increased coverage of the
simulated library enables matching to peptide sequences not
present in the NIST reference library, resulting in increased
numbers of unique peptide identifications.

We next examined why TargetSS library searches were less
sensitive than NIST library searches, with respect to numbers
of MS/MS assignments. RDP and RSIM showed a more dra-
matic reduction in sensitivity for TargetSS versus NIST library
searches, compared with SHP and MHP. The greater weight
on peak intensities with RDP and RSIM suggests that the
accuracy or quality of relative intensities in the simulated
spectra might underlie decreased performance. The fragmen-
tation of certain peptides might be modeled poorly by Mass-
Analyzer because of missing chemical mechanisms and over-
simplifying assumptions, resulting in inaccurate relative
intensities in simulated MS/MS spectra (28). Another impor-
tant difference is the increased search space of the TargetSS
library, which contains 26-fold more spectra than the NIST
reference library. A larger search space might increase op-
portunities for false positive matches by random chance,
requiring higher score thresholds and thus fewer accepted
assignments. Similarly, sequence-based scoring algorithms
show reduced discrimination when the search space is ex-
panded (29). Thus, important differences between the NIST
and TargetSS libraries that may affect discrimination include
proteome coverage, search space size, and quality of simu-
lated spectra (i.e. the accuracy of peak intensity simulations
by MassAnalyzer). We next examined the contribution of each
these parameters on score discrimination.

Searching Larger Spectral Libraries Reduces Discrimina-
tion—To assess the effect of increased search space on score

TABLE II
The number of identified MS/MS and unique sequences comparing four different spectral libraries using different scoring metrics. The Sigma
UPS1 dataset was searched against each library using RDP, RSIM, SHP, and MHP scores. Thresholds correspond to 3% FDR, where FDR is
calculated as the proportion of accepted assignments that fail to match known proteins in the UPS1 sample. Mascot was searched using

peptide databases equivalent to each library, using the ions score for FDR threshold determination

Correct MS/MS and unique sequence assignments at 3% FDRa

Library RSIM RDP SHP MHP Mascot

NISTb 5434 (651) 5457 (651) 5363 (647) 5451 (657) 4055 (617)
TargetSSc 3859 (678) 3867 (675) 4223 (715) 4557 (732) 3661 (656)
NIST�DecoySSd 4494 (611) 4628 (618) 4415 (614) 4626 (623) 3111 (545)
SSNIST�DecoySSe 2970 (534) 3033 (538) 3306 (561) 3425 (552) 3111 (545)
Hybridf 5281 (743) 5387 (744) 5247 (753) 5583 (769) 3661 (656)

a The number of accepted MS/MS assignments in a search of the Sigma UPS1 standard, using a score threshold corresponding to 3% FDR.
The number of unique sequences identified is indicated in parentheses.

b Filtered NIST human LTQ reference library, build Feb 4, 2009 (see Table I).
c TargetSS library (see Table I).
d Filtered NIST reference library concatenated with DecoySS library (see Table I).
e Spectra were simulated for peptides in NIST reference library (SSNIST) and concatenated with DecoySS library.
f The Hybrid library is the union of the NIST reference library and the TargetSS library, where simulated spectra in TargetSS library are

replaced with NIST reference spectra only for peptide ions represented in both libraries. Library size is equal to that of TargetSS library.
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discrimination in spectral library searching, we artificially ex-
panded the size of the NIST reference library by 26-fold.
MassAnalyzer was used to generate 3.96 million “decoy spec-
tra” from reversed protein sequences in the human database
(Experimental Procedures; Table I). These were concatenated
with the NIST reference library to form a “NIST�DecoySS”
library. In this way, the NIST reference library could be com-
pared with a library with increased search space, while main-
taining the characteristics of the NIST spectra. The UPS1
dataset was searched against the NIST and NIST�DecoySS
libraries, and discrimination was compared using ROC anal-
ysis (Fig. 4). The protein standard FDR calculation was used to
estimate specificity, where assignments to peptides from
known proteins in the UPS1 sample were considered true and
all other assignments, including those to decoy spectra, were
considered false.

DP showed the worst performance, with sensitivity that
precluded evaluation below 10% FDR, and SIM showed the
largest performance decrease as a result of the increased
search space introduced by decoy spectra (Figs. 4A, 4B). The
new scoring methods showed less pronounced reductions in
sensitivity with increased search space; MHP showed the
smallest reduction (15.1%) and SHP showed the largest re-
duction (17.7%).

Further examination of RDP score distributions for true
and false assignments from NIST versus NIST�DecoySS
searches suggested two effects contributing to reduced dis-
crimination with the larger library. First, the number of
matches to false candidates made by random chance might
be expected to increase with the larger spectral library.
Second, MS/MS spectra might be correctly assigned in the
NIST search, but assigned to higher scoring false spectra in
the NIST�DecoySS search (29, 30); this effect, termed “dis-
traction,” both reduce the number of correct assignments
while increasing the incorrect assignments. Both effects
could raise score thresholds needed to maintain low FDR,
thus reducing sensitivity. Random chance assignments
were evident from the score distribution for false assign-
ments from the NIST�DecoySS library search, which was
dramatically shifted toward higher scores relative to false
assignments for the NIST library search (supplemental
Fig. S3). However, we found only three true assignments in
the NIST search that were “distracted” to favor false assign-
ments in the NIST�DecoySS search (above 3% FDR). Thus,
the reduced sensitivity was mainly caused by increased
false assignments with higher scores made by random
chance, rather than the depletion of true assignments by
distraction.

FIG. 4. Rank- and probability-based
scores are more resistant to effects of
increased search space. ROC plots for
searches of the UPS1 dataset against
the NIST human reference library and
the same library concatenated with a hu-
man DecoySS library (see Table I). Per-
formance for (A) DP, (B) SIM, (C) RDP,
(D) RSIM, (E) SHP, and (F) MHP are
shown. Increasing the search space with
decoy spectra lowers discrimination per-
formance, with DP and SIM showing the
greatest effect.
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However, because the search space was artificially ex-
panded with simulated spectra and not observed reference
spectra, we cannot rule out that the “quality” of the simulated
spectra comprising the appended decoy library contributed to
the reduced sensitivity. A 26-fold expansion in search space
using observed spectra would require nearly 4 million vali-
dated MS/MS spectra, which is clearly well beyond the size of
any current reference library. To accommodate a smaller pool
of reference spectra, while still allowing for a significant ex-
pansion in search space, we created a small target library by
appending the NIST UPS1 reference library, containing 3,542
consensus reference spectra assembled from analyses of
the UPS1 sample, and the NIST Mouse library, containing
156,075 spectra from Mus musculus samples. This target
library was appended with either reference spectra from the
NIST Drosophila melanogaster library, or corresponding sim-
ulated spectra. The resulting libraries allowed us to test the
effect of a 70% increase in search space using observed and
simulated decoy spectra (Suppl. Table I). At 5% FDR, sensitiv-
ity for SIM decreased 19% from 5,220 to 4,220 when the
search space was expanded with observed spectra. When
simulated spectra were used to increase the search space,
we observed a 12% decrease in sensitivity. Thus, the in-
creased search space resulted in reduced discrimination with
either real or simulated spectra, with simulated decoy spectra
showing a less pronounced effect.

Effects of Spectral Quality of Simulated Spectra on Search
Discrimination—To examine the contribution of simulated
spectral quality to performance, we constructed a library
where the NIST reference spectra in the NIST�DecoySS li-
brary were replaced with spectra simulated by MassAnalyzer,
corresponding to the same peptides (“SSNIST�DecoySS”
library). The UPS1 data set was searched against both librar-
ies, and the numbers of true assignments at 3% FDR were
compared (Table II). Sensitivity was significantly lower for the
SSNIST�DecoySS library, using any score. The greatest re-
duction in sensitivity was observed using RDP, which as-
signed 35% fewer MS/MS spectra in the SSNIST�DecoySS
search compared with the NIST�DecoySS search (3033 ver-
sus 4628). Corresponding reductions in sensitivity were 34%,
25% and 26% respectively, for RSIM, SHP, and MHP.

ROC analyses for RDP and MHP searches revealed re-
duced sensitivity with SSNIST�Decoy compared with
NIST�Decoy searches over a range of FDR values (Figs. 5A,
5B). The rank-based scores showed larger reductions in sen-
sitivity than probability-based scores, when reference spectra
were replaced by their simulated counterparts (Figs. 5A, 5B,
compare solid and dashed green curves). Because RDP and
RSIM place more emphasis on peak intensity differences than
SHP and MHP, they might be expected to show more sensi-
tivity to inaccurate predictions of relative intensities in simu-
lated spectra. The same trend was seen when comparing
searches using the TargetSS versus NIST libraries, where
rank scores showed larger reductions in sensitivity for

TargetSS searches than SHP and MHP. Score distributions for
searches against NIST�DecoySS and SSNIST�DecoySS li-
braries were also compared with interrogate effects on
scoring of true versus false assignments. Indeed, the distri-
butions of true MS/MS assignments in the SSNIST�DecoySS
search were shifted toward lower scores compared with the
corresponding distribution for the NIST�DecoySS search
(Figs. 5C, 5E and Figs. 5D, 5F), indicating that the experimen-
tal MS/MS spectra score lower against simulated spectra and
are therefore not as well matched, compared with high-con-
fidence reference spectra.

Increased Proteome Coverage Improves Discrimina-
tion—We next assessed the effect of increased proteome
coverage on discrimination in spectral library searching. The
SSNIST�DecoySS library, which concatenates the simulated
NIST library and the DecoySS library, includes only 8.3% of
peptide sequences contained within the simulated proteome-
wide library, TargetSS. Because the two libraries have ap-
proximately equal numbers of spectra, the effect of coverage
on discrimination can be measured while holding search
space constant. The UPS1 dataset was searched against
each library, and sensitivity was compared at 3% FDR (Table
II, SSNIST�DecoySS versus TargetSS). Using each score, the
sensitivity increased in searches against the TargetSS library
compared with SSNIST�DecoySS, with respect to both
MS/MS assignments and unique peptides. MHP showed the
greatest increase in MS/MS assignments (from 3425 to 4557;
�33%), similar to the increased numbers of unique peptides
(from 552 to 732; �32.6%). In each case, the increased
MS/MS and unique peptide assignments in TargetSS
searches were the result of matches to peptides not present
in the SSNIST�DecoySS library, indicating that the sensitivity
gains were a direct result of increased proteome coverage.
Discrimination was also compared by ROC analysis for RDP
and MHP searches of the two libraries (Figs. 5A, 5B, TargetSS
versus SSNIST�Decoy). MHP showed a greater increase in
discrimination compared with RDP (Figs. 5A, 5B), a difference
likely due to greater sensitivity of the rank-based scores to
imperfect spectral simulations. Mascot searches of equivalent
peptide databases showed smaller increases in MS/MS as-
signments (18%) or unique peptides (20%) than any of the
spectral library searches, revealing that sequence-based
search methods gain less from increased proteome coverage
than simulated spectral library methods.

Hybrid Library Searching: Combining Reference and Simu-
lated Spectra—The findings above showed that although the
number of peptide identifications are increased using a pro-
teome-wide library, the simulated spectra used to generate
this library nevertheless match experimental spectra less well
than spectra from reference libraries. We hypothesized that
proteome-wide library searching might be optimized by com-
bining simulated and reference spectra together in one library
(“Hybrid library”), replacing 154,612 simulated spectra in the
TargetSS library with their counterpart spectra from the NIST
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reference library. In this way, we might gain the advantage of
high coverage provided by simulated spectra, while maintain-
ing the benefits of high quality observed spectra available
from reference libraries.

Spectra from the UPS1 data set were searched against a
Hybrid library and compared with searches against the Tar-
getSS library, measuring sensitivity at 3% FDR (Table II), with
ROC analyses shown for RDP and MHP (Figs. 5A, 5B). The

Hybrid library searches showed high performance over a wide
FDR range, comparable or better than the NIST reference
library (Figs. 5A, 5B). Although the numbers of MS/MS as-
signed to the Hybrid library were comparable to NIST
searches, the Hybrid library consistently identified more
unique sequences using every score (Table II, Hybrid versus
NIST). For example, using RDP, 1.3% fewer MS/MS spectra
were assigned in searches of Hybrid versus NIST libraries

FIG. 5. The effect of proteome cov-
erage, spectral quality, and search
space on discrimination performance.
Search performances for five libraries
were compared with assess the contri-
bution of proteome coverage, differ-
ences in spectral quality between refer-
ence and simulated spectra, and search
space. Only the results of (A) RDP and
(B) MHP are shown. Panels C, E, and G
show RDP score distributions and pan-
els D, F, and H show MHP score distri-
butions for searches of NIST�DecoySS
(C, D), SSNIST�DecoySS (E, F), and Hy-
brid (G, H) spectral libraries. The
SSNIST�DecoySS library was gener-
ated by replacing reference spectra in
the NIST�DecoySS with simulated
counterparts to assess to effect of sim-
ulated versus reference intensities on
discrimination.
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(5387 versus 5457 at 3% FDR), but 14% more unique se-
quences (744 versus 651) were identified. Using MHP, Hybrid
searches increased both the number of MS/MS assignments
(2.4%, from 5451 to 5583) and the number of unique se-
quences (17% from 657 to 769). Searches performed using
every score resulted in increased amino acid coverage of
identified proteins with searches of the Hybrid library com-
pared with the NIST reference library (supplemental Fig. S5).
Overall, Hybrid library searching with MHP identified the most
MS/MS spectra and unique sequences compared with any
other score and library combination, illustrating the higher
performance when combining simulated and reference spec-
tra in a single high coverage library. Thus, despite the advan-
tages of the small search space of the NIST reference library,
the Hybrid library consistently identified more unique se-
quences, because of increased proteome coverage afforded
by simulated spectra.

The performance of the Hybrid library also exceeded that of
the simulated library. This was seen when comparing
searches against Hybrid versus TargetSS libraries using RDP
and MHP (Figs. 5A, 5B), and measuring sensitivity at 3% FDR
for all scores (Table II). Searches of the Hybrid library yielded
significantly more MS/MS assignments and unique peptides,
compared with the TargetSS library (Table II). For example,
using RDP, the sensitivity of MS/MS assignments using Hy-
brid searches increased by 39% (from 3867 to 5387 at 3%
FDR), and unique peptide identifications increased by 10%
(from 675 to 744). MHP yielded the highest sensitivity im-
provement in Hybrid over TargetSS searches, which in-
creased by 23% MS/MS assignments (from 4557 to 5583),
and by 5% unique peptides (from 732 to 769). Rank-based
scores showed greater increases in sensitivity (RDP: �28%,
RSIM: �27%) than probability-based scores (SHP: �20%,
MHP: �18%).

Interestingly, the differences in sensitivity between Hybrid
and TargetSS library searches were comparable to the differ-
ences between NIST�DecoySS and SSNIST�DecoySS
searches. This was seen by comparing the differences in ROC
curves between Hybrid versus TargetSS searches (Figs. 5A,
5B, red versus yellow dashed curves), to the differences be-
tween NIST�DecoySS versus SSNIST�DecoySS searches
(Figs. 5A, 5B, solid green versus dashed green curves). Both
comparisons showed higher performances of libraries con-
taining spectra of higher quality or simulation accuracy. Thus,
replacing simulated spectra with reference spectra improved
discrimination to a similar extent in two different library back-
grounds, one containing simulated target spectra and the
other containing simulated decoy spectra.

In summary, by systematically examining the effects of
search space size, proteome coverage, and spectral quality,
we conclude that using simulated spectra to construct pro-
teome-wide libraries has effect of reducing sensitivity by ex-
panding the search space, while increasing sensitivity by pro-
viding increased coverage. The simulated spectra perform

less well than reference library spectra because of poorer
spectral quality, but constructing a Hybrid library, which sub-
stitutes high-confidence spectra in place of simulated spec-
tra, fully compensates for penalties incurred by the large
search space and imperfections in the kinetic simulations
while conferring the advantage of proteome-wide coverage.
The Hybrid library outperforms a widely used sequence-
based algorithm, while allowing FDR statistics to be estimated
from parallel searches of decoy spectral libraries.

Estimating FDR for Spectrum-to-Spectrum Searches Using
Target-Decoy Strategies—A major advantage of using simu-
lated spectral libraries is the ability to estimate false discovery
rates, which is essential when analyzing complex biological
samples of unknown composition. The target-decoy search
strategy is widely used in sequence-based approaches,
where searches against a database of decoy sequences are
used to estimate the proportion of false assignments among
all assignments accepted above a given score threshold.
Commonly, the decoy database contains a set of reversed
protein sequences generated from the target database. One
of the assumptions in estimating the FDR by this method is
that the probabilities of random matches to target and decoy
sequences are equal (23, 24). If instead there are biases for or
against the decoy sequences, such biases must be incorpo-
rated into the FDR (31, 32).

Previously, we described the use of the kinetic fragmenta-
tion model to generate decoy spectral libraries, enabling the
application of target-decoy methodology to spectral library
searching (13). The idea was further explored by Lam et al.
(23) who reported a significant bias against matches to decoy
spectra generated by MassAnalyzer. Therefore, to assess the
degree of bias against the DecoySS library, MS/MS spectra
from an NIST spectral library of E. coli peptides were
searched against the human TargetSS library concatenated
with the DecoySS library. Because assignments to both
TargetSS and DecoySS spectra are necessarily false, biases
for or against decoy spectra would be reflected by any devi-
ation from unity in the ratio of target:decoy matches. Each
score was used to assess target-decoy bias in searches of the
NIST, TargetSS and Hybrid libraries, each concatenated with
corresponding decoy spectra generated using MassAnalyzer
(Fig. 6).

The frequency of random matches to decoy spectra ranged
between 48.5–49.3% for all scores using the concatenated
TargetSS�DecoySS library, indicating a small but systematic
bias against decoy spectra (Fig. 6A, supplemental Fig. S7).
This bias was greatest using the NIST target-decoy library,
ranging between 44.8–50.5% (Fig. 6B), and ranging between
47.1–48.9% for the Hybrid target-decoy library (Fig. 6C). No-
tably, the bias against simulated decoy spectra reported here
for the NIST target-decoy library was much smaller than re-
ported previously using a simulated library 3.2-fold smaller
than ours (23). The results suggest that larger concatenated
decoy libraries show lower bias against decoy spectra. With-
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out large numbers of candidates considered for each MS/MS
match, potential biases may be amplified using smaller librar-
ies, leading to underestimates of false positives that may not
be accounted for in calculations of FDR.

Separated versus Concatenated Target-Decoy Strategies—
Finally, we compared performances of separated versus con-
catenated target-decoy searches, where MS/MS were either
searched against a target and decoy databases in two sepa-
rate parallel searches, or searched against a single concate-
nated target-decoy database. In sequence-based searching,
the separated approach tends to be more conservative, over-
estimating the FDR (25). Conversely, the concatenated ap-
proach may underestimate the FDR if biases for or against
decoy matches are not accounted for in the FDR calculation
(31). We examined whether the two target-decoy strategies
showed score-specific biases in spectral library searches, by
searching the UPS1 dataset against the TargetSS and
DecoySS libraries separately, or against the two libraries con-

catenated together. For the separated search, the number of
false matches (FP) was reported as the number of accepted
decoy matches, and for the concatenated search, we re-
ported 2 � FP (24). The estimates of FDR derived from target-
decoy measurements were compared with the measured
FDR, calculated by the protein standard FDR method, where
true and false matches were taken as the number of matches
to standard and nonstandard peptides, respectively (from the
target library) (Fig. 7).

The results showed that FDR estimated using separated
target-decoy searches was overly conservative using all
scores (RDP, RSIM, SHP, MHP), and overestimated the
measured FDR (Fig. 7A). The Mascot ions score showed the
closest concordance to the measured FDR, whereas SHP and
MHP were the most conservative, resulting in 1.5- to 2-fold

FIG. 6. Large simulated libraries show reduced bias against
decoy spectra compared with the NIST reference library. Spectra
from the NIST E. coli reference library were searched against concat-
enated versions of (A) NIST, (B) TargetSS, and (C) Hybrid libraries,
using MassAnalyzer to simulate MS/MS for reversed library peptides.
The fraction of total assignments matched to target and decoy spec-
tra is shown for each score.

FIG. 7. Separated and concatenated target-decoy methods
show score-specific biases in FDR estimates. For each scoring
method, the UPS1 data set was searched against either separate
TargetSS and DecoySS libraries, or a concatenated Target-DecoySS
library, comparing measured FDR to estimated FDR. FDR levels were
estimated by measurements from (A) separated target-decoy
searches, or (B) the concatenated target-decoy searches, and com-
pared with the measured FDR at varying score thresholds (Supple-
mentary Procedures).
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overestimation of the number of false matches. Conversely,
the concatenated method was less stringent than the sepa-
rated approach but showed lowest systematic bias, where
FDR was underestimated by Mascot, RDP, and RSIM, and
slightly overestimated by SHP and MHP. These trends for
spectral library target-decoy searches were consistent with
those observed by others using sequence-based target-de-
coy methods, where the separated method (e.g. for SEQUEST
XCorr) showed a threefold higher estimates of FDR compared
with the concatenated method, and likely overestimated the
true FDR (33). This is because in separated searches, all
spectra are scored for both decoy and target libraries,
whereas in concatenated searches only the highest scored
match to target or decoy candidates is reported (competition).
High scoring decoy matches normally considered in the sep-
arated method do not contribute to FP estimates in the con-
catenated method because of this score competition. Thus,
the separated method uses a larger set of false matches to
estimate FPs, and as a result may lead to overestimates of FDR
(25), consistent with the trend observed in Fig. 7A. Overall, the
results indicate that the target-decoy strategy, whether sepa-
rated or concatenated, must be used with caution when com-
paring scores and search engines in unknown samples, where
score-specific biases may confound estimated FDR levels.

DISCUSSION

In this study, we demonstrate the use of large proteome-
wide spectral libraries for MS/MS peptide identification using
rank- and probability-based scoring methods. The new scor-
ing metrics are more resistant to library size expansion com-
pared with dot product-based methods, and outperformed
Mascot for both small and large sized libraries. We demon-
strate that high coverage libraries can be successfully gener-
ated by simulations using a kinetic fragmentation model, and
when searched with our new scoring methods, result in in-
creased peptide identifications and amino acid coverage over
the identified proteins. The best search discrimination at the
level of unique peptide sequences was observed using a
hybrid library, which combines observed reference MS/MS
with spectra generated by kinetic simulation. In this way, we
gain the advantage of high accuracy in reference spectral
intensities, while retaining the comprehensive proteome cov-
erage afforded by simulated spectra. The increase in search
discrimination attained when simulated spectra were replaced
with observed spectra indicates a systematic difference in the
simulated spectra, perhaps because the gas-phase fragmen-
tation of certain peptides was imperfectly modeled by Mass-
Analyzer. Work ongoing in our lab to develop an improved
kinetic model indicates that certain classes of peptides with
unusual fragmentation chemistries indeed are poorly mod-
eled, because of dissociation mechanisms not accounted for
in the original model.

Interestingly, while searches against a small reference li-
brary identified larger numbers of MS/MS compared with

searches of the TargetSS library, these assignments repre-
sented a smaller number of unique sequences. We attribute
this effect to the higher protein coverage of the larger pro-
teome-wide libraries. We expect that as reference libraries
grow in size, the performance of hybrid libraries will show a
corresponding increase in performance due to the presence
of larger proportions of high quality observed MS/MS. Simi-
larly, improvements in gas-phase peptide fragmentation mod-
els (4) will enable more accurate prediction of MS/MS inten-
sities and translate to increased discriminatory power of
Spec2spec library search methods.

One important question is whether spectra generated with
different instruments and activation methods can be identified
by searching ion-trap reference libraries and libraries simu-
lated with MassAnalyzer’s ion-trap fragmentation model. Pre-
vious studies have demonstrated that ion-trap libraries can be
used to identify triple quadrupole and Qtof MS/MS, but at the
expense of lower sensitivity due to minor differences in the
fragmentation and spectral characteristics (34, 35). Thus,
when searching non-ion trap data against simulated spectra,
using instrument specific kinetic models for library generation
would likely result in increased performance. While the current
version of MassAnalyzer is capable of simulating collision-cell
fragmentation spectra (Qtof), the underlying model has not
been published.

Target-decoy search strategies are used for estimating sta-
tistical significance of MS/MS assignments, and have seen
recent use in evaluating false discovery rates in spectral li-
brary search algorithms (13, 23). Concatenated target-decoy
searches generally show a bias against simulated decoy
spectra, with smaller reference libraries showing higher de-
gree of bias than the larger simulated libraries. Furthermore,
tests with the UPS1 standard protein mixture indicated that
the separated target-decoy method systematically overes-
timates FDR and FP for all scores, with Mascot showing the
lowest bias. Conversely, the concatenated method system-
atically underestimated the FDR using Mascot, RDP, and
RSIM, with the hypergeometric scores showing the least
amount of bias. The optimal target-decoy strategy for ap-
plication to large scale unknown samples is likely score
dependent, and may require correction of the underlying
bias to enable accurate comparisons of different scores and
search algorithms.

In summary, we have developed and adapted new scoring
methods to a spectrum-to-spectrum search strategy opti-
mized for large simulated libraries with high proteome cover-
age. In addition, these scores are applicable to the smaller
reference libraries, with discrimination performance surpass-
ing the sequence-based search algorithm Mascot. Moreover,
our hybrid library approach shows the highest discrimination
performance for all scores. The general approach demon-
strated in this study is a significant step toward the use of the
spectrum-to-spectrum searching as a primary protein identi-
fication tool in proteomic workflows.
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