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Abstract
Background: Classically protein kinase A (PKA) and transcription factor activator protein 1 (AP-1)
mediate the cyclic AMP (cAMP) induced-corticotrophin releasing hormone (CRH) expression in the
placenta. However enteric Gram (-) bacterial cell wall component lipopolysaccharide (LPS) may also
induce-CRH expression via Toll like receptor (TLR)4 and its adaptor molecule Myd88. Here we
investigated the role of MyD88, TRIF and IRAK2 on cAMP-induced CRH promoter activation in JEG3 cells
in the absence of LPS/TLR4 stimulation.

Methods: JEG3 cells were transfected with CRH-luciferase and Beta-galactosidase expression vectors and
either empty or dominant-negative (DN)-MyD88, DN-TRIF or DN-IRAK2 vectors using Fugene6 (Roche).
cAMP-induced CRH promoter activation was examined by using a luminometer and luciferase assay.
Calorimetric Beta-galactosidase assays were performed to correct for transfection efficiency. Luciferase
expression vectors of cAMP-downstream molecules, CRE and AP-1, were used to further examine the
signaling cascades.

Results: cAMP stimulation induced AP-1 and CRE promoter expression and led to dose-dependent CRH
promoter activation in JEG3 cells. Inhibition of MyD88 signaling blocked cAMP-induced CRE and CRH
promoter activation. Inhibition of TRIF signaling blocked cAMP-induced CRH but not CRE expression,
while inhibition of IRAK2 did not have an effect on cAMP-induced CRH expression.

Conclusion: MyD88 and TRIF exert direct regulatory effect on cAMP-induced CRH promoter activation
in JEG3 cells in the absence of infection. MyD88 most likely interacts with molecules upstream of IRAK2
to regulate cAMP-induced CRH expression.
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Background
Cyclic AMP-protein is a second messenger that mediates
the physiologic responses to a number of hormones, neu-
rotransmitters, and drugs. β-adrenoceptor agonists, pros-
taglandin E2 (PGE2) activate adenyl cyclase; which
catalyzes the conversion of ATP to cAMP. cAMP then
binds and activates protein kinase A (PKA), which phos-
phorylates substrates that regulate key cellular functions
such as ion channels, contractile proteins and transcrip-
tion factors.

One of the molecules induced by cAMP is corticotropin
releasing hormone (CRH). In the placenta cAMP induces
CRH expression via PKA, cAMP response element (CRE)
and transcription factor activating protein (AP)-1 signal-
ing [1]. CRH is then thought to lead to positive feedback
mechanisms with fetal cortisol and dehydroepiandroster-
one (DHEA) production, fetal maturation and initiation
of the parturition.

Infection is a well known risk factor associated with pre-
term delivery [2], and innate immune system receptors,
Toll like receptors, via adaptor molecule myeloid differen-
tiation primary response (MyD)88 [3] and TIR-domain-
containing adapter-inducing interferon-beta (TRIF) [3]
and their down stream signaling molecule interleukin-1
receptor-associated kinase (IRAK)2 are expressed in uterus
and placenta, and mediate the infection associated
inflammatory responses [4-6]. We have previously shown
that MyD88 mediates the Toll like receptor (TLR)4-
lipopolysaccharide (LPS)-induced CRH expression in
JEG3 choriocarcinoma cell line [7]. In those experiments
we used cAMP as the positive control and observed that
inhibition of MyD88 signaling, in the absence of LPS
stimulation, blocked the cAMP-induced CRH promoter
activation as well. Here, our aim is to further examine the
role of MyD88 and TRIF in cAMP-induced CRH promoter
activation in the absence of infection or TLR stimulation.

Methods
Cell lines and reagents
JEG3 choriocarcinoma cell line was obtained from Amer-
ican Type Tissue Culture Collection (Manaaas, VA) and
cultured in MEM (Invitrogen Life Technologies, Carlsbad,
CA) supplemented with 10% fetal bovine serum, 10 mM
HEPES, 1 mM sodium pyruvate and 100 nM of penicillin/
streptomycin (Invitrogen Life Technologies). A cell per-
meable cyclic AMP (cAMP) analog, 8-bromoadenosine
3',5' cAMP was obtained from Sigma-Aldrich (St. Louis,
MO).

Expression vectors
The CRH-luciferase vector, pGL3-CRH 663, was character-
ized and described previously [8]. Dominant negative
(DN) cDNA constructs of MyD88 and interleukin-1 recep-

tor-associated kinase (IRAK)2 have been characterized
and described previously [9]. The NH2-terminally deleted
DN-MyD88 coding for amino acids 152–296 inhibits IL1
induced NF-kB activation [9]. IRAK2 is downstream to
MyD88 and DN-IRAK2 coding for aa 1–96 inhibits
MyD88 induces signaling [9]. The pcDNA3 empty vector
and pCMV-β-galactosidase vectors have been described
previously [10]. Luciferase data obtained from the cells
transfected with pcDNA3 empty vector was used to assess
the specificity of dominant negative vectors (DN-MyD88,
DN-TRIF) to suppress cAMP-induced luciferase activity.
The viral cAMP response element (CRE)-luciferase vector
was described by Giebler et al [11]. This vector contains
CRE and GC-rich flanks form a critical DNA element
(called the viral CRE) that is obligatory for human T cell
leukemia virus type 1 (HTLV-1) protein Tax transactiva-
tion [11]. Dr. Shizuo Akira generated the dominant nega-
tive TIR domain-containing adapter inducing IFN-beta
(TRIF) by truncating the full length 712 aa TRIF to 162 aa
Toll/Interleukin-1 receptor domain (TIR)-only domain
[12]. The AP-1 luciferase construct was kindly obtained
from Dr. Phillip Koeffler (Cedars-Sinai Medical Center,
UCLA School of Medicine).

Transfection of JEG3 cells
JEG3 cells were plated at a concentration of 50,000 cells/
well in 24-well plates and cultured in MCDB-131 with
10% fetal bovine serum overnight. Cells were co-trans-
fected the following day with FuGene6 Transfection Rea-
gent following the manufacturer's instructions. The Roche
Fugene6 transfection system is routinely used by our lab-
oratory and others, and does not affect the cell viability or
induce cytokine production in the transfected cells [10].
The reporter genes CRH-Luciferase (0.5 μg) and either
empty vector or dominant negative mutants of MyD88
and TRIF were transfected into the JEG3 cells. Reporter
gene CRE-luciferase (0.5 μg) was transfected to assess the
effect of TLR stimulation on CRE expression. pCMV-β-
galactosidase cDNA (0.1 μg) was transfected to normalize
the results for transfection efficiency as described earlier
[10].

After overnight transfection, the cells were stimulated
with various concentrations of cAMP. CRH-luciferase
cDNA transfected JEG3 cells were stimulated with cAMP
for 5 hrs or 20 hrs in separate sets of experiments. Cells
were then lysed and luciferase activity was measured with
a Promega kit (Promega, Madison, WI) and a luminome-
ter. The adequacy of the transfection was assessed by co-
transfecting the cells with β-galactosidase vector and per-
forming calorimetric galactosidase assay. This is a very
well established and accepted method of assessing the
transfection efficiency. The cells transfected with β-galac-
tosidase are also considered to be transfected with the vec-
tor in question, in our case CRH-luciferase vector. β-
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galactosidase activity was determined by calorimetric
method as described earlier [10]. The luciferase data was
corrected for transfection efficiency by dividing the luci-
ferase measurement with the galactosidase measurement.
This result was expressed as the relative light unit (RLU).

Statistical analysis
Each experiment was performed in triplicate or quadrupli-
cate and repeated at least three independent times. To
study the effect of the varying combinations and concen-
trations of cAMP and the DNA-vectors across each assay,
one-way ANOVA was used to examine the difference in
luciferase units across the different treatment groups.
Tukey's test was then used to compare the average luci-
ferase units between each of the treatment groups against
the control while properly adjusting for multiple compar-
isons. The data presented are the results of a representative
experiment.

Results
cAMP induces CRH promoter activation in the JEG3 cells
cAMP is known to induce CRH expression in the trophob-
lasts. We first confirmed and extended those observations
in JEG3 cells by transiently transfecting them with CRH-
luciferase expression vector. We treated the cells with dif-
ferent concentrations of cAMP (0.1, 0.5, 1 μM) for 5 or20
hours and observed that cAMP treatment increased CRH
promoter activation in a dose dependent manner and this
was evident at 5 h (data not shown). Based on this data we
stimulated the cells with 0.5 μM cAMP for 5 hr in the rest
of the experiments. The transcription factor AP-1 has been
shown to mediate cAMP induced CRH promoter activa-
tion in humans [13]. As anticipated cAMP stimulation
induced luciferase activity significantly above media
treated control in JEG3 cells transiently transfected with
AP-1 luciferase vector (Figure 1). Pair-wise comparisons
using Tukey's test found that this increase was maximal at
0.3 μM cAMP concentration.

DN-MyD88 and DN-TRIF block the cAMP induced CRH 
promoter activation in JEG3 cells
Infection induced innate immune responses play a signif-
icant role in the pathogenesis of preterm delivery. Innate
immune receptors, Toll like receptors, are expressed in the
female reproductive system and placenta, and mediate the
immune responses to intrauterine infections [14,15].
MyD88 is the common adaptor molecule that transmits
signals from all TLRs and the IL1 receptor to induce NF-κB
activation [3,16].

We have previously shown that MyD88 mediates the LPS-
induced, TLR4 mediated, CRH promoter activation in the
placenta [7]. In order to assess whether MyD88 plays a
direct role in cAMP-induced CRH promoter activation, we
cotransfected JEG3 cells with CRH-luciferase and β-galac-

tosidase expression vectors and either nonsignaling dom-
inant negative (DN)-MyD88 [9] or empty vector and
stimulated the cells with cAMP. There was no increase in
cell death after transfection or cAMP treatment as assessed
by microscope.

We observed that expression of DN-MyD88 significantly
blocked the cAMP-induced CRH expression in a dose
dependent manner (Figure 2A). DN-MyD88 effect was
maximal at 0.5 μM concentration, as the luciferase activity
at this concentration was significantly lower than that
seen with 0.3 μM DN-MyD88 (p = 0.03) (Figure 2A).
These data suggest that inhibition of MyD88 signaling
blocks the cAMP-induced CRH promoter activation.

MyD88-independent signaling is mediated via adaptor
molecule TRIF, which transduces signals induced by TLR4
and TLR3 [3,17]. MyD88-independent pathways are
involved in interferon (IFN) regulatory factor (IRF)-3 acti-
vation and subsequent induction of IFN-β and IFN-induc-
ible genes and delayed NF-kB activation by TLR4. To test
if TRIF plays a role in cAMP-induced CRH promoter acti-
vation, we cotransfected the JEG3 cells transiently express-
ing CRH-luciferase and β-galactosidase expression vectors
with either DN-TRIF or empty vector and stimulated them
with cAMP. Pair-wise comparisons using Tukey's test
found that expression of both 0.3 and 0.5 μM DN-TRIF
significantly inhibited the cAMP-induced CRH-luciferase

The JEG3 cells were transiently transfected overnight with AP-1 luciferase and β-galactosidase expression vectorsFigure 1
The JEG3 cells were transiently transfected over-
night with AP-1 luciferase and β-galactosidase 
expression vectors. The cells were stimulated with cAMP 
for 5 hr and AP-1 promoter activation was assessed by per-
forming luciferase assay. Calorimetric β-galactosidase assay 
was performed to correct for the transfection efficiency. 
Luciferase activity was expressed as relative light unit (RLU). 
(*p < 0.01 compared to media treated cells). Each experi-
ment was performed in triplicate or quadruplicate and 
repeated at least three independent times.
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expression (p < 0.01 for each concentration) (Figure 2B).
This decrease was maximal at the 0.3 μM concentration of
DN-TRIF (Figure 2B). These data suggest that inhibition of
TRIF signaling blocks the cAMP induced CRH promoter
activation.

IRAK2 is downstream to MyD88 and mediates the MyD88
induced NF-κB activation [3,9]. We transiently transfected
the JEG3 cells expressing CRH-luciferase and β-galactosi-
dase expression vectors with either empty vector or vari-
ous concentrations of DN-IRAK2 cDNA. We stimulated
the cells with cAMP for 5 hours and examined the CRH
promoter activation by performing luciferase assays. We
observed that expression of DN-IRAK2 cDNA did not
block the cAMP-induced CRH promoter activation (data
not shown). These data suggest that MyD88 regulation of
cAMP-induced CRH expression is proximal to IRAK2.

DN-MyD88 but not DN-TRIF blocks the cAMP induced 
CRE expression in JEG3 cells
The cAMP response element (CRE) is downstream of PKA
and mediates the cAMP induced CRH promoter activation
in trophoblasts [1,8,18]. We questioned whether MyD88
and TRIF regulated cAMP-induced CRE promoter expres-
sion. We first confirmed that 5 hr stimulation with cAMP
induces CRE activation in a dose dependent manner in
JEG3 cells transiently expressing the CRE-luciferase
expression vector (Figure 3). This increase was maximal at
0.5 μM cAMP as CRE-luciferase levels were significantly
higher at this concentration over those seen at the 0.3
umol concentration (p < 0.01) (Figure 3).

Next, we tested whether Myd88 and TRIF influences
cAMP-induced CRE expression. In JEG3 cells transiently
cotransfected with CRE-luciferase vector, expression of
DN-MyD88 cDNA significantly decreased the cAMP-
induced CRE-luciferase levels in a dose dependent man-
ner (p < 0.01 for all concentrations). This decrease was

We cotransfected the JEG3 cells with CRH-luciferase and B-galactosidase constructs and either empty vector (pcDNA3; 0.5 μg) or various concentrations of DN-MyD88 (Figure 2A) or DN-TRIF (Figure 2B) overnight using Fugene6Figure 2
We cotransfected the JEG3 cells with CRH-luciferase 
and B-galactosidase constructs and either empty vec-
tor (pcDNA3; 0.5 μg) or various concentrations of 
DN-MyD88 (Figure 2A) or DN-TRIF (Figure 2B) 
overnight using Fugene6. The cells were treated with 
cAMP (0.3 μM) or media for 5 h. Luciferase activity was 
determined to assess CRH promoter activation. Calorimet-
ric β-galactosidase assay was performed to correct for the 
transfection efficiency. (*p < 0.01 compared to empty vector 
transfected cells). The data was presented as fold change in 
luciferase activity above media treated-empty vector trans-
fected control wells. Each experiment was performed in trip-
licate or quadruplicate and repeated at least three 
independent times.
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The JEG3 cells were transiently transfected with CRE-luci-ferase and β-galactosidase reporter constructs overnight using Fugene6 (Roche) as described under MethodsFigure 3
The JEG3 cells were transiently transfected with 
CRE-luciferase and β-galactosidase reporter con-
structs overnight using Fugene6 (Roche) as described 
under Methods. The cells were stimulated with either 
cAMP or media. Luciferase assay was performed to assess 
CRH promoter activation. Calorimetric β-galactosidase assay 
was performed to correct for the transfection efficiency. 
Luciferase activity was expressed as relative light unit (RLU). 
(*p < 0.01 compared to media treated cells). Each experi-
ment was performed in triplicate or quadruplicate and 
repeated at least three independent times.
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maximal at 0.5 μM concentration of DN-MyD88; at this
concentration of DN-MyD88 cAMP-induced luciferase
activity was significantly lower than that observed with
the 0.3 μM concentration (p = 0.04) (Figure 4A). In con-
trast, DN-TRIF did not inhibit cAMP-induced CRE pro-
moter activation (Figure 4B).

Discussion
cAMP is a ubiquitous second messenger that regulates
numerous biological processes. Here we show that the
innate immune system molecules MyD88 and TRIF regu-
late the cAMP signaling in trophoblasts. In JEG3 cells,
inhibition of MyD88 signaling blocked the cAMP-
induced CRE-promoter and CRH-promoter expression;

whereas inhibition of TRIF blocked only the CRH pro-
moter activation.

cAMP is produced in response to hormones and nutrients,
and via PKA regulates numerous processes (i.e. cardiovas-
cular function [19], glucose homeostasis [20], adipocyte
metabolism [21], growth-factor-dependent cell survival
[22], learning and memory [23], immune function [24]
and exocytotic processes such as gastric acid secretion
[25]). cAMP also regulates reproductive function. Acute
steroid biosynthesis is regulated by cAMP induced choles-
terol release from lipid droplets and cholesterol transport
across the mitochondrial membrane [26]. The initiation
and maintenance of sperm motility depends on cAMP
and PKA [27]. The gonadotropin induction of ovulation
and oocyte maturation are associated with increased
cAMP levels in the ovarian follicles [28].

During pregnancy, cAMP has diverse functions. Through
its effects on calcium and potassium channels and myosin
light chain kinase, cAMP promotes myometrial relaxation
[29]. Tocolytic beta-mimetics operate through cAMP to
inhibit uterine contractility in preterm labor [30] whereas
in the trophoblasts, cAMP induces the release of CRH.
CRH then crosses into the fetus to induce dihydroepian-
drosterone (DHEA) release. DHEA is converted into estro-
gen in the placenta, and estrogen then induces the
expression of genes that lead to cervical softening and
myometrial contractility [31]. CRH expression has been
shown to be higher in women who deliver preterm and
increased CRH levels have been proposed to play role in
early parturition [32].

In the placenta, cAMP induces CRH expression through
activation of PKA, CRE and transcription factor AP-1
[1,8,18]. Here we first confirmed that cAMP induces CRH
promoter activation through CRE and AP-1 in the JEG3
cell line and showed that innate immune system mole-
cules, MyD88 and TRIF, play a direct role in cAMP-
induced CRH promoter activation in JEG3 cells. Our data
suggests that IRAK2 does not play a role in MyD88 regula-
tion of cAMP signaling.

Adenylate cyclases (AC) synthesize cAMP from ATP and
these enzymes are found in microbes as well as humans.
In microbes, cAMP signaling is involved in the pathogen-
esis and virulence by regulating microbial metabolism,
stress resistance, and maturation [reviewed in [33]]. Our
data potentially suggest that the innate immune system
molecule, MyD88, may regulate microbial-cAMP signal-
ing and may potentially induce a direct antimicrobial
effect. Cirl and colleagues have recently shown that viru-
lent bacteria evolved a mechanism to inhibit the host
MyD88 specific signaling to suppress host innate immu-
nity [34]. We propose that microbial pathogens may

We cotransfected JEG3 cells expressing CRE-luciferase and β-galactosidase expression vectors with empty vector (0.5 μg) and DN-MyD88 (0.1, 0.3, 0.5 μg) or DN-TRIF (0.1, 0.3, 0.5 μg) cDNA as described above, treated them with cAMP (0.5 μM) or media for 5 h, and assessed the luciferase activityFigure 4
We cotransfected JEG3 cells expressing CRE-luci-
ferase and β-galactosidase expression vectors with 
empty vector (0.5 μg) and DN-MyD88 (0.1, 0.3, 0.5 
μg) or DN-TRIF (0.1, 0.3, 0.5 μg) cDNA as described 
above, treated them with cAMP (0.5 μM) or media 
for 5 h, and assessed the luciferase activity. Calorimet-
ric β-galactosidase assay was performed to correct for the 
transfection efficiency. (*p < 0.01 compared the cAMP 
treated empty vector transfected control). Luciferase activity 
was expressed as relative light unit (RLU). Each experiment 
was performed in triplicate or quadruplicate and repeated at 
least three independent times.
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potentially inhibit host cell MyD88 signaling to suppress
cAMP signaling to regulate host metabolism, immunity,
and cardiovascular function.

cAMP regulates gene transcription via PKA. In the basal
state, PKA resides in the cytoplasm as an inactive heterote-
tramer of paired regulatory (R) and catalytic (C) subunits.
cAMP liberates the C subunits, which passively diffuse
into the nucleus and phosphorylate CREB [35]. CREB
mediates the activation of cAMP-responsive genes by
binding as a dimer to a conserved cAMP-response element
(CRE) [36].

cAMP is known to inhibit immune activation in macro-
phages since 1970s [37]. Scaffold proteins called A-kinase
anchoring proteins (AKAPs) are known to mediate cAMP
inhibition of immune activation via protein kinase A
[38,39]. AKAPs also form complexes with other signaling
molecules for specificity of signaling. For example,
AKAP79 binds to PKA, protein kinase C (PKC), and pro-
tein phosphatase 2B. AKAP79 basic regions also bind to
membrane vesicles containing acidic phospholipids
including phosphatidylinositol-4, 5-bisphosphate
[PtdIns(4,5)P2] [40]. MyD88 is recruited to TLR4 by
TIRAP, which interacts with phosphatidylinositol-4,5-
bisphosphate (PtdIns(4,5)P2) rich regions of the plasma
membrane through its amino-terminal phosphatidyli-
nositol 4,5-bisphosphate (PIP2)-binding domain [41].
MyD88 may potentially interact with an AKAP to regulate
PKA function and cAMP induced signaling (Figure 5).
Indeed MyD88 has been shown to contain a PKA binding
site (personal communication with Dr. Douglas Golen-
bock, University of Massachusetts Medical School).

Conclusion
Here we demonstrate that inhibition of MyD88 and TRIF
signaling block cAMP-induced CRH promoter activation
in the JEG3 cells in the absence of infection. These data
add to our previous findings on infection induced placen-
tal CRH expression [7] and suggest a direct role for innate
immune system adaptor molecules MyD88 and TRIF to
regulate cAMP signaling in the absence of infection.
Inhibitors of MyD88 signaling are considered as potential
anti-inflammatory treatments; our data suggest that it is
important to understand the effect of MyD88 on cAMP
signaling.
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