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Colon adenocarcinoma (COAD) is one of the most common malignant tumors and
has high migration and invasion capacity. In this study, we attempted to establish a
multigene signature for predicting the prognosis of COAD patients. Weighted gene co-
expression network analysis and differential gene expression analysis methods were first
applied to identify differentially co-expressed genes between COAD tissues and normal
tissues from the Cancer Genome Atlas (TCGA)-COAD dataset and GSE39582 dataset,
and a total of 309 overlapping genes were screened out. Then, our study employed
TCGA-COAD cohort as the training dataset and an independent cohort by merging
the GES39582 and GSE17536 datasets as the testing dataset. After univariate and
multivariate Cox regression analyses were performed for these overlapping genes and
overall survival (OS) of COAD patients in the training dataset, a 13-gene signature was
constructed to divide COAD patients into high- and low-risk subgroups with significantly
different OS. The testing dataset exhibited the same results utilizing the same predictive
signature. The area under the curve of receiver operating characteristic analysis for
predicting OS in the training and testing datasets were 0.789 and 0.868, respectively,
which revealed the enhanced predictive power of the signature. Multivariate Cox
regression analysis further suggested that the 13-gene signature could independently
predict OS. Among the 13 prognostic genes, NAT1 and NAT2 were downregulated
with deep deletions in tumor tissues in multiple COAD cohorts and exhibited significant
correlations with poorer OS based on the GEPIA database. Notably, NAT1 and NAT2
expression levels were positively correlated with infiltrating levels of CD8+ T cells and
dendritic cells, exhibiting a foundation for further research investigating the antitumor
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immune roles played by NAT1 and NAT2 in COAD. Taken together, the results of our
study showed that the 13-gene signature could efficiently predict OS and that NAT1
and NAT2 could function as biomarkers for prognosis and the immune response in
COAD.

Keywords: colon adenocarcinoma, weighted gene co-expression network analysis, prognosis, NAT1, NAT2,
immune infiltration

INTRODUCTION

Due to a number of factors including environmental exposure
to carcinogens and genetic predisposition, the morbidity and
mortality rates of colorectal cancer are increasing rapidly, and
more than 2.2 million new cases are expected to be diagnosed,
accounting for 1.1 million cancer-related deaths by 2030 (Arnold
et al., 2017; Islami et al., 2018). Colon adenocarcinoma (COAD)
is the most frequently diagnosed histological subtype of colorectal
cancer, ranking fourth in terms of incidence and mortality
among all kinds of malignant tumors in 2018 (Bray et al., 2018).
Although considerable progress has been made in the early
diagnosis strategies and multidisciplinary cancer management
in recent decades, the invasion, migration, metastasis and
recurrence of COAD have been bottlenecks for improving the
long-term survival of patients, and these bottlenecks have kept
the 5-year survival rate for patients diagnosed with COAD from
exceeding 30% (Siegel et al., 2017; Watanabe et al., 2018; Li
et al., 2019). Conventional methods utilizing the American Joint
Committee on Cancer (AJCC) tumor node metastasis (TNM)
classification system, vascular invasion and other parameters are
widely employed to predict prognosis and guide treatment in
COAD. However, considering the high genetic heterogeneity of
COAD, disease metastasis, progression and clinical outcomes
cannot be accurately predicted based on conventional staging
methods (Weiser et al., 2011; Cancer Genome Atlas Network,
2012; Guinney et al., 2015). Although patients suffering from
COAD may be in the same TNM stage, their clinical outcomes
may differ considerably. Therefore, it is highly important to
identify accurate prognostic biomarkers to understand the
pathogenesis, predict clinical outcomes and devise personalized
therapies in COAD.

Genome-sequencing technological development has strongly
affected our understanding of the molecular mechanisms
of colorectal carcinogenesis, and an increasing number of
scientists have recognized the considerable potential of molecular
signatures at the genetic level in predicting COAD prognosis.
It has been reported that single genetic alterations, such as
DNA mismatch repair (MMR) genes, BRAF, and KRAS, might
represent as novel markers for predicting the prognosis of COAD
(Punt et al., 2017). COAD is a molecularly complex disease that
develops via the inactivation of tumor suppressor genes and
the activation of oncogenes, suggesting that a single prognostic
biomarker may differentiate COAD patients into different
prognostic subgroups less reliably than a multiparameter
molecular signature (Nguyen et al., 2020). Extensive studies
have been conducted to investigate multigene-based signatures
for the prediction of prognosis outcomes in COAD. For

example, Ge et al. (2020) established a five-gene prognostic
signature (SMAD4, MUC16, COL6A3, FLG, and LRP1B) that
discriminates patients with stage III COAD into good- and
poor-prognostic subgroups. Another study constructed a six-
gene signature (EPHA6, TIMP1, IRX6, ART5, HIST3H2BB, and
FOXD1) that accurately identified COAD patients at high risk
of death (Zuo et al., 2019). However, few of these models have
been widely applied in clinical practice, and a systematic study
integrating gene expression profiling data from multiple source
meta-analyses and improving statistical power for differentially
expressed gene (DEG) identification are highly important for
constructing more accurate and reproducible prognostic models.
In addition, since a growing number of studies have identified
hub genes that are increased in tumors tissues as compared
with normal specimens, the tumor suppressor roles played by
downregulated genes in tumors have largely been overlooked (Lv
and Li, 2019; Yuan et al., 2020b). It is also important to explore
the molecular mechanisms underlying hub genes that exhibit
weak expression in tumors and are involved in the occurrence
and development of COAD.

The overall goal of this study was to evaluate gene expression
changes between COAD and normal samples and identify hub
genes with prognostic value in COAD. Recently, considerable
gene expression information regarding multiple carcinomas has
been obtained from publicly available genomic datasets, such as
The Cancer Genome Atlas Cancer Genome (TCGA) and Gene
Expression Omnibus (GEO), and deep mining of both datasets
has good application prospects in exploring cancer biology and
identifying potential biomarkers for cancer diagnosis, treatment
and prognosis (Chibon, 2013). In the current study, the
transcriptomic expression data of the GEO GSE39582 dataset and
TCGA-COAD dataset were downloaded and subjected to DEG
analysis to evaluate gene expression changes between COAD
and normal samples. Weighted gene co-expression network
analysis (WGCNA) was employed to screen highly correlated
gene clusters with COAD tumorigenesis. WGCNA, a powerful
bioinformatic method, is widely used to detect potential modules
of highly correlated genes and hub genes associated with clinical
features on the basis of the theory that genes with similar
functions or involved in common biological regulatory pathways
may have similar co-expression patterns. Furthermore, univariate
and multivariate Cox regression analyses were performed to
select novel prognostic genes associated with the overall survival
(OS) of COAD patients among the above genes and establish a
stepwise 13-gene prognostic model. The prognostic performance
of the 13-gene model was characterized by using the TCGA-
COAD dataset and further validated in an independent dataset by
merging the GSE39582 and GSE17536 datasets. Finally, in-depth
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bioinformatic analyses were employed to identify the underlying
regulatory mechanisms of the identified prognosis-related genes.

MATERIALS AND METHODS

Data Sources and Processing
A workflow of this study was depicted in Figure 1. Three
independent human COAD datasets obtained from publicly
available genomic datasets were included in this study: two
expression microarray datasets (GSE39582 and GSE17536)
and an RNA-sequencing dataset (TCGA-COAD). From the
TCGA-COAD dataset1, gene mRNA expression data and the
corresponding clinical information from 480 tumor tissues
and 41 paracancerous tissues were downloaded, in which the
acquisition and application procedures aligned to the protocol.
The mRNA-seq data were produced using the Illumina HiSeq
2000 platform and converted to the gene symbols based on the
human reference genome hg38. For the expression microarray
datasets, original Series Matrix Files of GSE39582 and GSE17536
were collected from the GEO database2. GSE39582 was submitted

1https://portal.gdc.cancer.gov/repository
2https://www.ncbi.nlm.nih.gov/geo/

by Marisa et al. (2013) and contained 566 COAD tissues and
19 paracancerous tissues. GSE17536 was submitted by Smith
et al. (2010) and consisted of 177 tumor tissues. Owing to the
lack of normal tissues, GSE17536 dataset was not included in
the next DEG analysis. Detailed information on these datasets
is provided in Supplementary Tables 1–3. Standardized data
were mapped to the corresponding genetic symbols based on
the annotation file provided by the GPL570 platform (Affymetrix
Human Genome U133 Plus 2.0 Array). The batch effect of the
two-chip data was removed by using an SVA algorithm. Based
on the requirement for data integration, data were processed
according to the following criteria: (1) data from patients
with incomplete information on clinicopathological variables,
including survival status and survival time, were removed, and
(2) duplicated samples were removed by the average expression
values of all these genes.

Identification of Key Co-expression
Modules Using WGCNA
Gene co-expression network analysis was specifically performed
on the gene expression profiles of TCGA-COAD and GSE39582
using the “WGCNA” package. The analysis was conducted
according to a previous study (Langfelder and Horvath, 2008).

FIGURE 1 | Study design and workflow of this study.
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First, co-expression analysis was performed for all pair-wise genes
using Pearson’s correlation matrices. Subsequently, the weighed
adjacency matrix that described the correlation strength between
each pair of nodes was constructed by using a power function
amn = |cmn| β (amn encoded the strength of the correlation
between gene m and gene n; cmn represented Pearson’s
correlation coefficient between gene m and gene n; β represented
a soft-thresholding parameter). After selecting the optimal soft-
thresholding power based on the pickSoftThreshold function
in R language, the adjacency matrix was transformed into a
topological overlap matrix (TOM), which could quantitatively
describe the similarity in genes by comparing the weighted
correlation between two genes and other genes. Next, hierarchical
clustering was conducted to classify genes with similar expression
profiles into different gene co-expression modules using the
DynamicTreeCut algorithm based on TOM dissimilarity.

To identify candidate modules relevant to clinical
traits, module eigengenes (MEs) were obtained using the
moduleEigengenes function to indicate the principal component
of each module, and the module-trait associations between
MEs and clinical subtypes (normal and tumor) were calculated
using linear regression. Modules with the highest correlation
coefficient among all the selected modules were considered the
key modules significantly associated with clinical subtypes of
COAD and were subjected to further analysis.

Identification of DEGs
Screening of DEGs can identify the differences in gene
expression levels between tumor tissues and matched normal
tissues and identify the specific genes correlated with biological
characteristics in tumors. We employed the “edgeR” package
to analyze the differences between non-malignant samples
and COAD tissues in the TCGA-COAD dataset. The analysis
of DEGs in the GSE39582 dataset was conducted using the
“limma” package in R software. DEGs including significantly
downregulated and upregulated genes were selected for
further study with the cut-off criteria of false discovery rate
(FDR) < 0.05 and |log2 fold change (FC)| > 1 and visualized
as volcano plots by using the “ggplot2” package. Afterward,
the DEGs were intersected with the co-expression module
genes that were extracted from the above mentioned analysis
to obtain the overlapping candidate genes (OCGs). Finally,
the OCGs were visualized as a Venn diagram using the
“VennDiagram” package and subsequently applied to construct
a predictive gene signature.

Construction of Prognostic Signature
The TCGA-COAD dataset served as a training cohort to
establish a gene-based model for prognosis prediction
of COAD. To determine the feasibility and reliability of
survival-associated genes as prognostic markers in COAD,
univariate Cox proportional hazards regression analysis
was performed to evaluate the associations between the
expression of OCGs and patient OS by using the “survival”
package. Only those OCGs of the training set with P-values
less than 0.05 were selected for stepwise multivariate Cox
regression to build a prognostic predictive model. To

elucidate the underlying biological mechanisms of survival-
associated genes, pathway enrichment analysis including
gene ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways was performed using the
“clusterProfiler” package and “org.Hs.eg.db” package. GO terms
that consist of the three major classifications—biological
process (BP), cellular component (CC), and molecular
function (MF)—are able to provide a comprehensive
understanding of the biological properties of gene sets
for all organisms. The results of GO and KEGG pathway
analyses were considered to indicate significance at a cut-
off threshold of P-value < 0.05, and the “ggplot2” package
was applied to visualize the enrichment results to help
interpret the results.

Next, the risk score formula of each patient was constructed
based on a linear combination of a regression coefficient (β)
multiplied by the genetic expression level of significant OCG:
The risk score = (βgene1

∗ expression level of gene1) + (βgene2
∗ expression level of gene2) + (βgene3

∗ expression level of
gene3) + (βgenen

∗ expression level of genen). In addition,
univariate and multivariate analyses were performed to
determine whether the prognostic value of the prognostic
risk model was independent of other clinicopathological
parameters including age, gender, stage, and TNM status in the
TCGA-COAD dataset.

Evaluation of the Predictive Value of the
Prognostic Signature
To validate the robustness and transferability of the prognostic
risk model, the predictive power was validated on the testing
cohort. To increase the sample sizes, we merged the GSE39582
and GSE17536 datasets as the testing cohort. With the median
risk score as the cut-off value, patients were divided into high-
risk and low-risk cohorts according to the gene-based risk score
formula. Kaplan–Meier (KM) curves and log-rank tests were
plotted to compare two groups’ survival events. The ability of
the signature to predict patient survival was further assessed by
using receiver operating characteristic (ROC) curve methodology
and calculating the area under the curve (AUC) with the R
package “survival ROC.” Otherwise, the prognostic risk model
was visualized as a risk plot in the training and testing cohorts that
comprised the distributions of the risk score, the survival status
of each patient and the expression profiles of the screened OCGs.

Validation of Gene and Protein
Expression of Prognostic Genes
Based on the data from the TCGA database, the gene expression
levels of prognosis-related genes between COAD and normal
tissues were normalized using the “edgeR” package and drawn
as a box plot graph. The relationships among prognosis-related
genes were analyzed using Pearson correlation analysis and
plotted as co-expressed heatmaps in the COAD and normal
tissues, respectively. Moreover, the Human Protein Atlas (HPA3)
was utilized to validate the protein expression levels of prognosis-
related genes by immunohistochemistry (IHC).

3http://www.proteinatlas.org
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Genomic Alterations of Favorable
Prognostic Genes by the cBioPortal
Database
The cBioPortal Cancer Genomics Portal4 is a web-
based platform for performing multidimensional cancer
genomics data exploration, analytics, and visualization
(Gao et al., 2013). The gene alteration status of favorable
prognostic genes derived from the prognostic risk
model was analyzed using the cBioPortal tool regarding
COAD. OncoPrint was constructed in cBioPortal (TCGA
provisional) to directly provide an overview of genetic
alterations in each gene.

Survival Analysis of Favorable
Prognostic Genes Based on the GEPIA
Database
The Gene Expression Profiling Interactive Analysis (GEPIA)
database5 is a web-based tool for analyzing RNA sequencing
expression data and providing customizable functions such
as patient survival analysis, which includes 9736 tumors and
8587 normal samples from the TCGA and Genotype-Tissue
Expression databases (Tang et al., 2017). Survival curves were
plotted using the online tool GEPIA to evaluate the relationship
between OS and the expression of favorable prognostic genes
in COAD patients.

Immune Infiltrate Analysis Based on the
TIMER Database
TIMER6 is a web-based data-mining platform that includes
10,897 samples across 32 cancer types and applies a
deconvolution previously published statistical method to
determine the relative levels of six immune infiltrates from their
gene expression profiles (Li et al., 2017). The association of
immune infiltration levels in COAD with somatic copy number
alterations (SCNA) for prognostic genes was investigated by
the “SCNA module” in the TIMER database. SCNAs in TIMER
include deep deletions, arm-level deletions, diploid/normal
alterations, arm-level gains and high amplifications. The
distributions of each immune cell subset at each copy
number status in COAD were plotted by box plots and a
two-sided Wilcoxon rank sum test was utilized to compare
the immune infiltration level in each SCNA category with
that for normal samples. In addition, we further analyzed the
correlation of NAT1 and NAT2 expression with tumor purity
and levels of infiltrating CD8+ T cells and activated myeloid
dendritic cells.

Statistical Analysis
R software (version 3.6.1) was employed to implement the
statistical analyses in the study. P-values < 0.05 were considered
to be significant unless otherwise specified.

4http://cbioportal.org
5http://gepia.cancer-pku.cn/
6https://cistrome.shinyapps.io/timer/

RESULTS

Construction of Weighted Co-expression
Network and Identification of Key
Modules
After data preprocessing and quality assessment, we obtained the
expression matrices from the 521 samples in the TCGA-COAD
dataset and the 585 samples in the GSE39582 dataset. Using the
system biology method of WGCNA, co-expression modules in
COAD patients were identified by constructing the co-expression
networks from the TCGA-COAD and GSE39582 datasets. In
the present study, a soft power β = 5 (Figure 2A) was chosen
to build a scale-free network and 11 modules were generated
through average linkage hierarchical clustering in the TCGA-
COAD dataset (Figure 2B). Meanwhile, a total of 12 modules
(Figure 3B) were obtained by selecting an appropriate soft-
thresholding power = 5 in the GSE39582 dataset (Figure 3A).
Furthermore, we analyzed the association of modules between
each module and clinical subtypes (normal and tumor) to
identify key modules and construct the heatmaps of module-
trait relationships in Figures 2C, 3C. MEyellow in the TCGA-
COAD module (r = 0.88, p < 0.001) and MEbrown (r = 0.69,
p < 0.001) in the GES39582 module that were found to have the
highest association with normal tissues were selected as clinically
significant modules.

Identification of DEGs and OCGs
Under the cut-off criteria of FDR < 0.05 and | logFC| ≥ 1.0, the
“limma” algorithm identified 1461 DEGs in the GES39582 dataset
(796 upregulated and 665 downregulated genes, Figure 4B).
A total of 4021 DEGs in the TCGA-COAD dataset (1609
upregulated and 2412 downregulated genes, Figure 4A) were
obtained by the “edgR” package. As plotted in Figure 4C, the
brown module of the GES39582 dataset with 569 co-expression
genes and the yellow module of the TCGA-COAD dataset with
818 co-expression genes intersected with the DEGs, and 309
genes were screened as the OCGs for further analyzed.

Identification of a Gene-Based Signature
From the Training Dataset
All the OCGs in the training dataset (TCGA-COAD) were
subjected to univariate Cox analysis and a total of 18 genes
that were significantly associated with OS (Figure 5, P < 0.05)
were considered to be prognostic genes for multivariate Cox
regression analysis. To elucidate the underlying biological
mechanisms of 18 survival-related genes, GO and KEGG pathway
enrichment analyses were performed using the ClusterProfiler
package, and the results demonstrated that 5 KEGG pathways
and 241 GO terms were enriched for these prognostic genes
(Supplementary Tables 4, 5). The top ten terms in the three
functional groups (BP, CC, and MF) from the GO results are
demonstrated in Figure 6B. Among the BPs, the prognostic
genes were largely associated with metabolic biological processes,
including xenobiotic, fatty acid, and icosanoid metabolic
processes. For the CC results, it was demonstrated that the
prognostic genes were primarily located at zymogen granules,
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FIGURE 2 | Identification of modules associated with clinical information in the TCGA-COAD dataset. (A) Determination of soft-thresholding power in WGCNA
analysis. (B) Gene cluster tree. Based on the adjacency-based dissimilarity of the hierarchical clustering gene clustering chart, dynamic tree cutting method was
utilized to identify modules by dividing the tree diagram at significant branch points. Modules are assigned different colors in the horizontal bar immediately below the
tree diagram. (C) Module-trait relationships for normal and tumor. Each row in the table corresponds to a color module, and each column to a clinical trait. Numbers
in each cell reported the correlation coefficient between each module and clinical traits and the corresponding p-value.
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FIGURE 3 | Identification of modules associated with clinical information in the GSE39582 dataset. (A) Determination of soft-thresholding power in WGCNA analysis.
(B) Gene cluster tree. Based on the adjacency-based dissimilarity of the hierarchical clustering gene clustering chart, dynamic tree cutting method was utilized to
identify modules by dividing the tree diagram at significant branch points. Modules are assigned different colors in the horizontal bar immediately below the tree
diagram. (C) Module-trait relationships for normal and tumor. Each row in the table corresponds to a module eigengene, and each column to a clinical characteristic.
Numbers in each cell reported the correlation coefficient between each module and clinical traits and the corresponding p-value.
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FIGURE 4 | Identification of consensus differentially expressed genes (DEGs) among the TCGA-COAD and GSE39582 datasets of COAD patients. (A) Volcano plot
of DEGs in the TCGA-COAD dataset. (B) Volcano plot of DEGs in the GSE39582 dataset. (C) The Venn diagram showing the overlapping candidate genes among
DEG lists and co-expression modules.

euchromatin, tricarboxylic acid cycle (TCA) enzyme complexes
and peroxisomal matrices. Moreover, MF analysis indicated
that these genes were primarily involved in regulating the
biological functions of multiple enzymes and receptors, such
as N-acetyltransferase, prostaglandin receptor, hydrolase and
peroxisome proliferator activated receptor. According to KEGG
analysis (Figure 6A), these genes were correlated with drug
metabolism-other enzymes, chemical carcinogenesis and the
TCA cycle, which modulated the metabolic biological processes
to affect the tumorigenesis of COAD.

Next, 13 genes were further selected to establish a prognostic
gene signature, of which four genes were independent
prognostic factors associated with unfavorable overall
survival (FXYD3, FRMD3, LINC01133, and CHGA), and
nine genes were confirmed to be favorable prognostic factors
for COAD (TSPAN1, HRCT1, MIER3, NR3C2, SLC41A2,
NAT1, NAT2, ZG16, and PPARGC1A). The risk score
formula for assessing the prognosis of each patient was
calculated as follows: risk score = (–0.003) × (expression

value of TSPAN1) + 0.002 × (expression value
of FXYD3) + (–0.107) × (expression value
of HRCT1) + 0.136 × (expression value of
FRMD3) + (–0.039) × (expression value of
NR3C2) + (–0.072) × (expression value of SLC41A2) + (–
0.173) × (expression value of NAT1) + (–0.116) × (expression
value of NAT2) + (–0.033) × (expression value of
MIER3) + 0.076 × (expression value of LINC01133) + (–
0.021) × (expression value of ZG16) + 0.016 × (expression
value of CHGA) + (–0.074) × (expression value of PPARGC1A).
Detailed information on the multivariate Cox regression is
presented in Table 1.

Prognostic Role of the 13-Gene
Signature
The 13-gene based risk score was calculated for each patient
in the training and testing sets, and patients were stratified
into the low-risk and the high-risk subgroups with the median
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FIGURE 5 | Overall information of 18 prognostic DEGs screened out by univariate Cox proportional hazards regression in the TCGA-COAD dataset. Solid squares
represent the hazard ratio (HR) of death, and close-ended horizontal lines represent the 95% confidence intervals (CI).

FIGURE 6 | Functional enrichment analysis of the 18 survival-associated genes. (A) KEGG pathways in enrichment analysis of the prognostic genes; (B) GO
enrichment analysis results of the prognostic genes. Bubble color refers to the enrichment P-value, and the size of the bubble represents the gene number.

prognostic score of the training set serving as the cut-off point.
Next, we used the KM plot and ROC curve to describe the
performance of the 13-gene signature in predicting the survival
risk of COAD patients. The distribution of the risk score along
with the survival status of COAD patients and the heatmap of

the 13 prognostic genes in the two datasets are displayed in
Figure 7 (left panel), which indicates that patients with low scores
had lower mortality rates than did patients with high scores.
Consistent with these results, the KM analyses showed that the
high-risk group had a significantly shorter OS time than the
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TABLE 1 | Coefficients of 13 genes constituting gene-based risk signature that
were identified from multivariate Cox regression analysis.

Gene Coefficient HR HR.95L HR.95H P-value

TSPAN1 −0.003 0.997 0.993 1.001 0.140

FXYD3 0.002 1.002 1.001 1.002 0.001

HRCT1 −0.107 0.899 0.768 1.054 0.189

FRMD3 0.136 1.146 1.070 1.227 0.001

NR3C2 −0.039 0.962 0.915 1.011 0.128

SLC41A2 −0.072 0.931 0.864 1.002 0.06

NAT1 −0.173 0.841 0.734 0.965 0.014

NAT2 −0.116 0.890 0.751 1.056 0.181

MIER3 −0.033 0.968 0.927 1.011 0.138

LINC01133 0.076 1.079 1.042 1.117 < 0.001

ZG16 −0.021 0.979 0.960 0.998 0.032

CHGA 0.016 1.016 1.008 1.023 < 0.001

PPARGC1A −0.074 0.929 0.851 1.014 0.099

HR, Hazard ratio.

low-risk group (log-rank p < 0.001 in the training and testing
sets, Figure 7, right panel). The AUCs for the 13-gene signature
reached 0.789 and 0.868 in the training set and the testing set,
respectively, indicating the enhanced power of the signature in
predicting the survival outcomes of COAD patients (Figure 7,
right panel). In addition, we included age as a continuous
variable and gender and TNM stage as categorical variables for
univariate and multivariable Cox regression analyses to further
analyze the performance of our signature in the training set.
The results of the multivariate Cox regression analyses showed
that the 13-gene signature was an independent and unfavorable
prognostic factor in terms of OS after adjusting for age, gender,
and TNM stage (HR = 1.015, 95%CI = 1.008–1.022, p < 0.001,
Table 2).

Verification of the Expression Patterns of
the Prognostic Genes
To elucidate the role played by the prognostic genes derived
from the predictive signature in COAD, we explored the
gene expression levels of these genes among the patients
of the TCGA database and verified the protein expression
levels using the HPA database. As shown in the Figure 8A,
all the gene expression levels of prognostic genes were
significantly downregulated in COAD compared with non-
tumor tissues (All P-values < 0.001). The characteristic IHC
photos of prognostic genes in tumor and normal tissues are
presented in Figure 8B and the results indicated that six
of the prognostic genes showed significant downregulation
in COAD compared with normal tissue, including MIER3,
CHGA, SLC41A2, NAT1, NAT2, and ZG16. However, the
HPA dataset did not provide the immunochemical profiles of
HRCT1, LINCO1133, and PPARGC1A. Moreover, we employed
Pearson correlation analysis to explore the correlation between
the mRNA expressions of the 13 prognostic genes in the
TCGA dataset. The co-expression pattern in the normal tissues
(Figure 8C) was notably different from that in the tumor
tissues (Figure 8D).

Somatic Mutation Landscape and
Prognostic Values of Favorable
Prognostic Genes
Nine genes showing negative coefficients in the prognostic
signature were considered to be favorable prognostic genes.
Since the tumor genome pattern is reportedly associated with
tumorigenesis, we explored the somatic mutation for favorable
prognostic genes contained in the prognostic signature by
cBioPortal database analysis. Figure 9A illustrates the somatic
mutation landscape of the nine favorable prognostic genes in
COAD samples, with red and blue representing amplification and
deep deletion, respectively. Gene alterations in MIER3, NAT1,
and NAT2 were observed to occur in 5% of the sequenced
cases, and deep deletion accounted for the majority of alteration
types. Approximately 3% of genetic alterations of TSPAN1
were observed in COAD patients, including deep deletions and
missense mutations with unknown significance. Moreover, copy
number alterations (CNAs) were found in the most of COAD
patients. In addition, OS analyses of the nine favorable prognostic
genes were conducted by KM analyses based on the GEPIA
database to further confirm the prognostic values of these genes
in patients with COAD (Figure 9B). Among these genes, NAT1,
NAT2,NR3C2,ZG16, and PPARGC1A showed significant positive
correlations with OS and could be considered to be protective
genes in COAD. From the above mentioned analyses, we found
that only the two protective genes NAT1 and NAT2 underwent
the deep deletion and tended to be downregulated in COAD
tissues, suggesting that the two genes might play critical roles in
cancer development and progression. Furthermore, we compared
the differences in NAT1 and NAT2 among different subgroups
in COAD (Figure 10). NAT1 and NAT2 were significantly
differentially expressed in COAD patients with different AJCC
stages. Lower NAT1 and NAT2 expression was associated with
higher pathological stage.

Association of NAT1 and NAT2
Expression With Immune Infiltration
It is well-known that immune cells play an important anti-tumor
surveillance role. Thus, to elucidate the potential regulatory
mechanisms of NAT1 and NAT2 in the development of COAD,
the relationships between the SCNAs of NAT1 and NAT2
and immune infiltrates in the COAD microenvironment were
explored. Compared to the immune infiltrate levels of six cells,
deletion of NAT1 and NAT2 was associated with substantially
lower levels of four immune cell types, including B cells,
CD8+ T cells, neutrophils, and dendritic cells, which indicated
their influence on the tumor microenvironment (Figure 11A).
Furthermore, we observed that NAT1 and NAT2 expression was
significantly correlated with the infiltration levels of CD8+T cells
and dendritic cells (Figure 11B).

DISCUSSION

The molecular pathogenesis of COAD is multifaceted in
nature and characterized by a variety of genomic instabilities,
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FIGURE 7 | Risk score analysis, Kaplan–Meier survival curves and ROC curves for the 13-gene signature in COAD. Our study employed TCGA-COAD cohort as the
training dataset and an independent cohort by merging the GES39582 and GSE17536 datasets as the testing dataset. (A) The distributions of the risk score,
survival status and expression profiles, Kaplan–Meier curve and ROC curve of the 13-gene signature in the training set. (B) The distributions of the risk score, survival
status and expression profiles, Kaplan–Meier curve and ROC curve of the 13-gene signature in the testing set.

epigenomic alterations, gene expression dysregulation and
chromosomal aberrations, which are not separate events but
multiple cellular processes (Cancer Genome Atlas Network,
2012; Guinney et al., 2015). Although several advances

focusing on diagnostic and therapeutic techniques have
been identified to effectively reduce the mortality rates of COAD
patients, there are still a number of challenges facing early
diagnostic and therapeutic strategies, including a lack of the
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TABLE 2 | Identifying the independent prognostic parameters in the TCGA-COAD dataset.

Variables Univariable model Multivariable model

HR 95%CI of HR P-value HR 95%CI of HR P-value

13-gene risk score 1.016 1.009-1.023 < 0.001 1.015 1.008-1.022 < 0.001

Age 1.016 0.995-1.037 0.145 1.035 1.013-1.059 0.002

Gender 1.132 0.704-1.820 0.609 0.968 0.595-1.573 0.895

AJCC stage 3.883 2.309-6.530 < 0.001 1.993 0.595-1.573 0.047

ATCC T stage 7.330 1.791-29.996 0.006 3.163 0.743-13.475 0.119

AJCC N stage 4.512 2.790-7.294 < 0.001 2.788 1.590-4.888 < 0.001

AJCC M stage 3.721 2.300-6.019 < 0.001 1.598 0.903-2.829 0.108

HR, Hazard ratio; CI, confidence interval; AJCC, American Joint Committee on Cancer.

awareness of high-risk patients, a lack of clinically applicable
biomarkers to identify high-risk patients, and the high cost
of screening high-risk populations. Currently, genes can be
utilized to construct a prognostic risk model that helps to
assess tumor progression, prognosis and reaction to therapeutic
strategies, and a number of studies have established gene
signatures based on large-scale public datasets (Zuo et al.,
2019; Yuan et al., 2020a). Therefore, to accurately predict
survival time and identify high-risk patients, we conducted
a comprehensive screening of DEGs from two independent
datasets and subsequently constructed a 13-gene signature in
prognosis prediction for COAD patients. We also performed
validation analysis of the prognostic predictive signature and
found that this signature was credible in predicting the OS
of COAD patients.

Compared with the gene-based signatures constructed in
the previous study (Zuo et al., 2019; Yuan et al., 2020a), our
prognostic model was different. First, we adopted integrated
bioinformatic methods, WGCNA and DEG analysis, to select
significant DEGs related to the clinical traits from the GES39582
dataset and the TCGA-COAD dataset. Integrated bioinformatic
analysis tends to be an effective method to identify tumor-
specific genetic alterations associated with the occurrence
and development of tumors and guide patients’ personalized
therapy. Although traditional DEGs analysis is a powerful
analysis that can discover genetic alterations between control
groups and experimental groups, then generating highly valuable
information, only WGCNA, a data exploration tool, can be used
to determine the interactions among genes and find modules of
highly related genes that are significantly associated with clinical
features and biological tumor behavior. Second, numerous
studies have used WGCNA to select key modules associated with
clinicopathological parameters in multiple cancers. For example,
Xie and Xie (2019) identified genes significantly associated with
pathological M stage based on WGCNA and constructed a 6-
gene signature for the prognosis of non-small-cell lung cancer
patients. A previous study defined one gene module related to
tumor grades in colorectal cancer, and the putative representative
biomarkers associated with prognosis were identified (Yuan
et al., 2020b). Unlike traditional WGCNA, our study focused on
the modules notably correlated with normal tissues in the two
independent datasets and selected the module genes that might

play an important role in maintaining physiological function.
Thus, our study identified a brown module in the GES39582
dataset and a yellow module in the TCGA-COAD dataset, both of
which were significantly related to normal tissues compared with
tumor tissues. Furthermore, the 309 OCGs between DEGs and
the co-expression module genes were obtained and subjected to
univariate and multivariate Cox analyses for prognostic signature
construction. Our study employed TCGA cohort as the training
dataset and an independent cohort by merging the GES39582 and
GSE17536 datasets as the testing dataset. Moreover, to minimize
variability, an SVA algorithm was utilized to remove the batch
effect of the two GEO datasets.

In this study, a total of 18 survival-related genes was
firstly identified based on univariate Cox analysis in the
TCGA-COAD dataset. Functional annotation analysis indicated
that these genes were mainly involved in various metabolic
processes, which might affect the development of cancer. The
top activated pathway in the enrichment analysis was fatty
acid metabolic process, an essential cellular process that reflects
the function of mitochondria. Increased fatty acid synthesis
is crucial for the proliferation and growth of cancer cells by
new membrane biosynthesis and steroid hormone production,
thereby promoting tumorigenesis and tumor progression (Röhrig
and Schulze, 2016). Next, we constructed a novel gene-based
signature consisting of 13 genes (FXYD3, MIER3, LINC01133,
CHGA, TSPAN1, HRCT1, FRMD3, NR3C2, SLC41A2, NAT1,
NAT2, ZG16, and PPARGC1A) for predicting the OS of
COAD patients. Furthermore, the 13-gene signature could
categorize COAD patients into low-risk and high-risk groups
with statistically different survival outcomes, which was validated
by the ROC analysis and KM curve analysis in both TCGA and
the merged GEO datasets. Besides, to further clarify whether this
signature is an independent factor in COAD, multivariate Cox
regression analyses was performed and showed that it was able
to predict the survival of COAD patients without consideration
of other conventional clinicopathological variables, including
age, gender, and AJCC stage. Taken together, these findings
provide the evidence for translating the 13-gene signature into
clinical practice.

In the 13-gene signature, most genes were regarded as
favorable prognostic genes, while only FXYD3, FRMD3,
LINC01133, and CHGA were found to do the opposite. As
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FIGURE 8 | The expression of the 13 prognostic genes in COAD. (A) The expression profiles of the 13 genes in the TCGA-COAD dataset. Wilcoxon rank-sum tests
were conducted to compare the difference in the expression level of each gene between tumor and normal tissues. ***p < 0.001; N, normal tissues; T, tumor tissues.
(B) Protein levels of the 13 genes in the COAD and normal tissues based on the Human Protein Atlas. (C) Transcription-level correlation analysis of the 13 prognostic
genes in the normal tissues of TCGA-COAD dataset. (D) Transcription-level correlation analysis of the 13 prognostic genes in the tumor tissues of TCGA-COAD
dataset. Pearson correlation analysis was performed to analyze the relationships among prognosis-related genes. Numbers in each cell reported the correlation
coefficient between these genes.
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FIGURE 9 | The genomic mutations and prognostic values of the nine favorable prognostic genes in COAD. (A) The expression alteration profiles of the nine
favorable prognostic genes based on the cBioPortal database. The genetic alterations of the favorable prognostic genes in COAD, including copy number
amplification, deep deletion, amplification, and genomic mutation were assessed. The OncoPrint tab provides an overview of genetic alterations in each gene across
a sample set. Each row refers to a gene, and each column refers to a tumor sample. (B) The overall survival analyses of the 9 favorable prognostic genes using the
GEPIA online platform. Kaplan–Meier plotter was applied to evaluate the prognostic value of each gene. Hazard ratios (HRs) and log-rank p-values were calculated.

the survival time of cancer patients could be influenced by
aberrant expression of genes, we confirmed the gene and protein
expression patterns of the prognostic genes based on the TCGA
database and HPA database. All 13 genes were determined to be
downregulated at the genetic level in COAD tissues relative to
normal samples, among which six genes were consistent with
the IHC results in the HPA dataset and tended to be reduced at
the protein level in tumor specimens, including MIER3, CHGA,
SLC41A2, NAT1, NAT2, and ZG16, providing the vital function
of favorable prognostic genes in COAD. However, unfavorable
prognosis-related genes have also been reported to be involved
in tumor proliferation. FXYD3, a new regulator of Na-K-ATPase,
has been found to be expressed in normal colon tissues (Geering,
2006). A study on a total of 150 resected colorectal cancer

specimens measured the protein levels of FXYD3 by IHC staining
and demonstrated an association of downregulated expression
of FXYD3 proteins with cancer progression defined by Dukes’
staging (Widegren et al., 2009). Recent publications have
revealed that LINC01133 is significantly reduced in colorectal
cancer and is considered as a potential tumor suppressor in
cancer progression and metastasis (Kong et al., 2016; Zhang
et al., 2017). CHGA has been approved as a powerful biomarker
for the early detection of various digestive system carcinomas,
including gastric cancer (Yang and Chung, 2008), pancreatic
neuroendocrine tumors (Weisbrod et al., 2013), and colorectal
cancer (Zhang et al., 2019). The current research mechanism
of FRMD3 in COAD has not been reported to date, but it has
been reported that non-small cell lung carcinoma (NSCLC) is
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FIGURE 10 | NAT1 and NAT2 expression in subgroups of patients with COAD, stratified based on AJCC TNM stage. Wilcoxon rank sum tests were performed to
compare the difference of NAT1 and NAT2 expression among different subgroups of clinicopathological variables. (A) Boxplot showing relative expression of NAT1
and NAT2 in COAD patients in stage 1, 2, 3, or 4. (B) Boxplot showing relative expression of NAT1 and NAT2 in COAD patients in T1, 2, 3, or 4. (C) Boxplot showing
relative expression of NAT1 and NAT2 in COAD patients in N0, 1, or 2. (D) Boxplot showing relative expression of NAT1 and NAT2 in COAD patients in M0, or 1. The
central mark is the median; the edges of the box are the 25th and 75th percentiles.

highly correlated with reduced FRMD3 expression, which could
induce apoptosis by regulating the activity of caspases in NSCLC.
Therefore, further research is warranted to be carried out to
characterize the role of FRMD3 in COAD.

For the favorable prognostic genes, their genetic status was
further analyzed by the cBioPortal tool. The results showed
that deep deletion was the most common genetic alteration,
which could result in gene expression downregulation in tumors,
further indicating the credibility of our results. Various studies
have suggested that these favorable prognostic genes might play
important roles in tumor progression. A recent study showed
that MIER3 expression was significantly reduced in colorectal
cancer at the mRNA and protein levels and was negatively
correlated with aggressive tumors and poor clinical outcomes
(Peng et al., 2017). Moreover, overexpression of MIER3 could
inhibit the aggressive behaviors of colorectal cancer in vivo
and in vitro (Peng et al., 2017). In our study, the mRNA and
protein levels of MIER3 were significantly reduced in tumor
tissues, and deep deletion was the most common type of MIER3
mutation in COAD. However, no correlation was found between
the gene expression of MIER3 and the prognosis of COAD
patients in our survival analysis. TSPAN1, a member of the
transmembrane 4 superfamily, has been reported to be increased
in various cancers at the mRNA level, including prostate cancer
(Xu et al., 2000), gastric carcinoma (Chen et al., 2008), and
COAD (Chen et al., 2009). A clinical study indicated that COAD
patients with TSPAN1 overexpression had a significantly shorter
survival period than patients with weak expression, which was
not consistent with our survival study (Chen et al., 2009). An

in vitro study indicated that the downregulation of TSPAN1
significantly inhibited the proliferation and invasion of colon
cancer cells, suggesting that TSPAN1 might be a valuable
therapeutic target molecule in colon cancer (Chen et al., 2010).
Thus, the molecular mechanisms governing TSPAN1 in COAD
still need to be further investigated. Zymogen granule protein 16
(ZG16) is primarily expressed in mucus-secreting cells, including
goblet cells in the colon (Tateno et al., 2012). In a clinical
study with a small sample size, ZG16 expression was found
to be sequentially downregulated from normal colon tissues
and neoplastic precursor adenomatous polyps to COAD tissues
(Meng et al., 2018). A recent study showed that the expression
of ZG16 was associated with distant metastasis and lymphatic
invasion in colorectal cancer (Meng et al., 2020). In concordance
with previous studies, our study found that the gene and protein
expression levels of ZG16 were significantly reduced in tumor
tissues and correlated with poor prognosis, supporting the tumor
suppressor role of ZG16 in COAD progression. PPARGC1A
is a transcriptional coactivator of the PGC-1 gene family that
modulates the process of energy metabolism and mitochondrial
biogenesis (Seale, 2015). Based on the survival analysis in the
GEPIA database, we found that patients with higher PPARGC1A
expression had a better prognosis in COAD. However, the effect
of PPARGC1A on the initiation and progression of colorectal
cancer remains controversial. Accumulating studies have shown
that PPARGC1A promoted tumor growth (Bhalla et al., 2011;
Vellinga et al., 2015), whereas several studies have found that
the lower expression of this gene in COAD is associated
with an increased risk of cancer (Feilchenfeldt et al., 2004).
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FIGURE 11 | TIMER analyses of NAT1 and NAT2. (A) The associations of somatic copy number alterations (SCNAs) of NAT1 and NAT2 with immune infiltrates in
COAD. The SCNAs in TIMER included deep deletions, arm-level deletions, diploid/normal alterations, arm-level gains and high amplifications. The SCNA categories
of NAT1 and NAT2 were presented at the right bottom and the distributions of each immune cell subset at each mutation status were plotted by box plots.
Two-sided Wilcoxon rank sum test with calculated p-value was utilized to compare the immune infiltration level in each category with that for normal samples.
*P < 0.05; **P < 0.01; ***P < 0.001. (B) Correlation of NAT1 and NAT2 expression levels with tumor purity and infiltrating levels of CD8+ T cells and activated
myeloid dendritic cells. The Spearman method was used to determine the correlation coefficient. NAT1 and NAT2 expression levels were plotted on the y-axis, while
the abundance of immune infiltrating cells was plotted on the x-axis. Gene expression levels against tumor purity was displayed on the left-most panel.

Frontiers in Genetics | www.frontiersin.org 16 July 2021 | Volume 12 | Article 657658

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-657658 July 7, 2021 Time: 15:10 # 17

Zhang et al. Gene-Based Signature in COAD

In another study, genetic polymorphisms in PPARGC1A
(rs3774921) increased the risk of colorectal cancer in individuals
fed a highly inflammatory diet (Cho et al., 2017). NR3C2 is
a mineralocorticoid receptor gene encoding mineralocorticoid
receptor (MR) that has been considered a tumor suppressor in
colorectal cancer, which is consistent with our study (Tiberio
et al., 2013). MR downregulation in colorectal cancer was
correlated with increased expression of the VEGF receptor,
indicating that NR3C2 exerted specific role in decreasing
angiogenesis in tumor (Tiberio et al., 2013).HRCT1 and SLC41A2
were not reported to be involved in the process of tumorigenesis.
Further studies are needed to decipher the biological functions of
HRCT1 and SLC41A2 in COAD.

NAT1 and NAT2 are two members of the N-acetyltransferases
(NAT) family that encode polymorphic enzymes catalyzing the
metabolic activation of heterocyclic aromatic amines (HCAs),
which have been considered established carcinogens in human
colorectal cancer and urinary bladder cancer (Kadlubar et al.,
1992; Cross and Sinha, 2004). GO enrichment analysis of
the prognostic genes showed that these genes were closely
related to N-acetyltransferase activity, which was consistent
with the biological functions of NAT1 and NAT2. Previous
studies have shown that individuals with polymorphisms in
NAT1 or NAT2 enzymes were susceptible to HCAs present in
tobacco smoke and high-temperature cooked meat (Keku et al.,
2003; Nöthlings et al., 2009). For example, NAT1 and NAT2
acetylator status might create predispositions to increased COAD
risk with exposure to tobacco smoke and meat consumption
(Lilla et al., 2006). Although most studies have focused on
the role of NAT1 and NAT2 genetic polymorphisms in COAD
risk, the potential role played by their aberrant expression
in COAD has largely been ignored and whether NAT1 and
NAT2 expression influences cancer patient survival remains
unknown. Liu et al. identified NAT1 and NAT2 as critical
downregulated genes for CRC, but this study was limited
by a small sample size (Liu et al., 2015). Consistent with
the previous study, we found that the expressions of NAT1
and NAT2 was significantly reduced in tumor tissues at the
mRNA and protein levels, possibly attributable to the highly
frequent deep deletion of both genes in COAD, which was
confirmed by cBioPortal analysis. Moreover, we used the online
tool GEPIA to analyze the prognostic values of NAT1 and
NAT2 expression and found that lower levels of NAT1 and
NAT2 expression were correlated with poorer prognosis in
COAD patients. These findings suggested that NAT1 and NAT2
might play novel tumor suppressor roles in the development
and metastasis of COAD and could be served as prognostic
biomarkers in COAD.

Previous studies have shown that NAT1 is expressed
predominantly on T cells while NAT2 is expressed in
macrophages and natural killer cells, responsible for the
adaptive and innate immune response (Salazar-González et al.,
2014, 2018). The possible roles played by NAT1 and NAT2 in
modulating the immune response in COAD have not been
determined to date. Hence, we explored the relationship between
NAT1 and NAT2 expression and the infiltration levels of immune
cells and found that deletion of NAT1 and NAT2 was associated

with substantially lower levels of immune cells, including B
cells, CD8+ T cells, neutrophils, and dendritic cells. Moreover,
positive relationships between NAT1 and NAT2 expression levels
and infiltration levels of CD8+ T cells and dendritic cells were
identified. It is well-known that neoantigens accumulating on
tumor cells are initially recognized and presented by dendritic
cells, subsequently promoting the production of CD8+ T cells,
which are considered the main executors of cancer destruction,
enhancing immune cell activities in the microenvironment,
and thus preventing the development of cancer (Chen and
Flies, 2013; Buoncervello et al., 2019). These results supported
the notion that NAT1 and NAT2 downregulation might
inhibit the antitumor immune response, enhancing tumor
cell invasion and metastasis and thus decreasing the survival
time of cancer patients. However, this hypothesis needs to be
further validated.

Inevitably, there are several limitations in the present
study. First, a major issue is that we did not collect patients
diagnosed with COAD with adequate information in our own
hospital to validate the predictive performance of the 13-
gene based signature. A GEO cohort was used to confirm
the robustness of this signature, which could make up for
it slightly. Second, all of our samples and clinical data were
based on the TCGA and GEO datasets, in which most patients
were Western patients. Cohorts with larger sample sizes from
other regions are warranted to extend our findings. Third,
the prognostic risk model comprised too many genes, which
might decrease the accuracy of the model and increase the
expenses of laboratory testing, thereby limiting its clinical
application. Moreover, although we performed a comprehensive
bioinformatic analysis to build a prognostic risk model, the
results of bioinformatic analysis can be biased to an extent
when analyzing the data that have fewer non-tumor tissues than
tumor tissues or addressing technical artifacts of WGCNA, which
is similar to the limitations of other bioinformatic methods.
Thus, large sample sizes of normal tissues will be important
for reliable interpretation of data. In consideration of the
credibility of the WGCNA results, TCGA data and IHC data
from the HPA database were employed to confirm the gene
and protein expression levels of the prognostic genes. However,
due to the limitations of the HPA dataset, the IHC results
of some prognostic genes in COAD patients were lacking.
A series of experiments should be performed to clarify the
underlying mechanism of the prognostic genes in the regulation
of tumorigenesis in COAD.

In this study, we identified a 13-gene prognostic signature
to predict the OS of COAD by using a series of bioinformatics
analyses, which could accurately separate COAD patients with
unfavorable prognoses from those with favorable prognoses.
Moreover, the prognostic genes derived from the predictive
signature have the potential to modulate the tumorigenesis and
progression of COAD, especially NAT1 and NAT2, which have
been implicated in modulating antitumor immunity. Therefore,
the results of the present study not only showed the value of the
13-gene signature as a promising classification tool for COAD
prognosis but also provided new insights into the role of NAT1
and NAT2 in the tumorigenesis and progression of COAD.
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