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Abstract Many age- associated changes in the human hematopoietic system have been repro-
duced in murine models; however, such changes have not been as robustly explored in rats despite 
the fact these larger rodents are more physiologically similar to humans. We examined peripheral 
blood of male F344 rats ranging from 3 to 27 months of age and found significant age- associated 
changes with distinct leukocyte population shifts. We report CD25+ CD4+ population frequency is 
a strong predictor of healthy aging, generate a model using blood parameters, and find rats with 
blood profiles that diverge from chronologic age indicate debility; thus, assessments of blood 
composition may be useful for non- lethal disease profiling or as a surrogate measure for efficacy 
of aging interventions. Importantly, blood parameters and DNA methylation alterations, defined 
distinct juncture points during aging, supporting a non- linear aging process. Our results suggest 
these inflection points are important considerations for aging interventions. Overall, we present rat 
blood aging metrics that can serve as a resource to evaluate health and the effects of interventions 
in a model system physiologically more reflective of humans.

Editor's evaluation
This paper uses flow cytometry to characterize the changes in immune cell composition of the 
peripheral blood, as well as DNA methylation, during aging in male rats. Using this data, the authors 
were able to observe distinct cell composition and DNA methylation profiles with age, providing 
predictive measures of aging. Additionally, the authors identified a novel marker, CD25+ T cell 
frequency, as a predictor of age in rats. This resource will be useful to the community as a well- 
controlled dataset dissecting changes in circulating blood cells with aging in an important mamma-
lian model.

Introduction
Among all mammalian tissues, blood is perhaps the easiest to collect in relatively large quantities for 
various advanced analyses, with modest discomfort to the donor. This has made blood the prevailing 
tissue for a wide variety of applications requiring a sizable amount of material, such as: clinical 
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diagnosis, immune surveillance, and molecular investigations, including DNA methylation (Fahy et al., 
2019; Levine et al., 2020).

To date, peripheral blood aging has been largely characterized in humans (Márquez et al., 2020; 
Mahlknecht and Kaiser, 2010; Wayne et al., 1990) and mice (Pinchuk and Filipov, 2008). Studies 
in mouse models have provided important insights as this model system allows investigation of the 
impact of a variety of genetic interventions and hematopoietic stem cell (HSC) transplant assays. 
Many murine aging phenotypes accurately reflect reports from human studies including a decline in 
immunogenic response of lymphoid cells (Pinchuk and Filipov, 2008), decreased CD4/CD8 T cell 
ratio (Nikolich- Zugich, 2008), and an increase in myeloid cells at the expense of lymphoid cells (Pang 
et al., 2011). These phenotypes have been shown to be influenced, at least in part, by intrinsic HSC 
aging (Beerman et al., 2010).

However, the mouse has drawbacks as a model of human hematopoiesis including the fact that the 
common laboratory strains do not reliably develop spontaneous blood cancers, which is a common 
aging phenotype in humans (Zjablovskaja and Florian, 2019). The differences between the two 
species are further exemplified by the fact that mouse blood is dominated by lymphocytes whereas 
human blood is rich in neutrophils (Mestas and Hughes, 2004); which in the murine model may 
dampen the impact of the age- associated decrease in lymphoid potential.

An attractive alternative system is the rat model. Rat physiology is more analogous to humans 
(Blais et al., 2017; Gibbs et al., 2004), yet these rodents still have relatively short lifespans (Turturro 
et al., 1999) in which to study aging phenotypes. Furthermore, the rat and human genomes share 
genes involved in immunity and hematopoiesis absent in mice (Gibbs et al., 2004). Importantly, rats 
display age- related incidence of leukemia, especially the Fischer 344 CDF (F344) strain (Ward and 
Reynolds, 1983). All the above suggest the rat may be better suited to study the aging of the blood 
and immune systems. Despite these advantages, use of the rat model is less common for hematopoi-
etic studies as mice are smaller, generally cost less to maintain, and transgenic tools to manipulate 
the murine genomes have been extensively developed. As a result, the impact of aging on the blood 
compartment in rats is not well characterized.

We sought to describe changes in the composition of the peripheral blood during aging in the 
F344 male rat using flow cytometry. Additionally, we found that CD25+ T cell frequency is a novel 
marker for predicting aging, and rats have defined age- associated inflection points linked to altered 

eLife digest Our blood contains many types of white blood cells, which play important roles 
in defending the body against infections and other threats to our health. The number of these cells 
changes with age, and this in turn contributes to many other alterations that happen in the body 
as we get older. For example, the immune system generally gets weaker at fighting infections and 
preventing other cells from developing into cancer. On top of that, the white blood cells themselves 
can become cancerous, resulting in several types of blood cancer that are more likely to happen in 
older people.

Many previous studies have examined how the number of white blood cells changes with age in 
humans and mice. However, our understanding of this process in rats is still poor, despite the fact that 
the way the human body works has more in common with the rat body than the mouse body.

Here, Yanai, Dunn et al. have studied samples of blood from rats between three to 27 months old. 
The experiments found that it is possible to accurately predict the age of healthy rats by measuring 
the frequency of populations of white blood cells, especially a certain type known as CD25+ CD4+ 
cells. If the animals had any form of illness, their predicted age deviated from their actual age. Further-
more, while some changes in the blood were gradual and continuous, others displayed distinct shifts 
when the rats reached specific ages.

In the future, these findings may be used as a tool to help researchers diagnose illnesses in rats 
before the animals develop symptoms, or to more easily establish if a treatment is having a positive 
effect on the rats’ health. The work of Yanai, Dunn et al. also provides new insights into aging that 
could potentially aid the design of new screening methods to predict cancer and intervene using a 
model system that is more similar to humans.

https://doi.org/10.7554/eLife.76808
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methylation profiles and cell composition. These results indicate that age- associated blood pheno-
types in rats provide relevant insight into human blood aging and point to a critical time period of 
hematopoiesis which may best be targeted for anti- aging interventions.

Results
Aging patterns in rat peripheral blood leukocyte populations
We analyzed the peripheral blood composition of 146 male F344 rats ranging in age from 3 to 
27 months, using a panel of seven monoclonal antibodies to evaluate major leukocyte populations. 
As cell- specific gating strategies for rat blood populations are less defined than in humans or mice, 
we initially evaluated the flow cytometry results in an unbiased manner using t- distributed stochastic 
neighbor embedding (t- SNE) and self- organizing maps analyses. Cells generally clustered in a manner 
that allowed for identification of defined populations (Figure 1a and Figure 1—figure supplement 
1) and clustering analysis helped inform decisions for gating strategies we devised for cell- type clas-
sification (Figure 1—figure supplement 2). Age- related changes were also profiled from single- cell 
analyses and revealed an accumulation of cells in clusters corresponding to myeloid lineage cells and a 
reduction of cells in clusters expressing markers associated with B and CD8+ T cells (Figure 1b). Glob-
ally CD4+ T cells decreased with age, but we identified two distinct CD4+ populations with different 
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Figure 1. Unsupervised clustering of all F344 rat peripheral blood cells. Clustering of rat peripheral blood using a self- organizing map algorithm. For 
detailed clustering also see Figure 1—figure supplement 1. (a) Overall clustering of all leukocytes from 146 rats overlaid on a t- SNE map; each cluster 
is denoted as a different color (see legend). (b) Specific blood cell types illustrated on the same t- SNE map for three age groups (n = 10,000 cells from 
each age group; total 30,000 cells). For visualization purposes, rats were divided into age groups: young (3–4 months), middle- aged (15–23 months), and 
old (24+ months).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Self- organizing map clustering of F344 rat leukocytes.

Figure supplement 2. Gating strategy.

https://doi.org/10.7554/eLife.76808
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trajectories during aging. The CD4+ T cell cluster expressing high levels of CD25 did not show an 
age- associated decline in cell number and instead increased in frequency over time. t- SNE- defined 
clusters 5 and 9 (brown and cyan, Figure 1a) also show age- associated increases in frequency (same 
top left location as Figure 1a, but blue in Figure 1b); however, these clusters could not be fully iden-
tified from this combination of antibodies (Figure 1—figure supplement 2). Cluster 5, due to a high 
expression of CD11b/c, is most likely a type of myeloid cell, whereas cluster 9 most likely consists of 
debris (Figure 1—figure supplement 1) as it stained equally positive for all antibodies. Most identi-
fied cell populations that were categorized encompassed two or more clusters, indicating potential 
subpopulations we were unable to define with the panel of antibodies in this study.

We next sought to determine if age- specific blood parameter characteristics could be defined 
using frequencies of the distinct cell populations identified (Figure 1—figure supplement 2). Using 
unsupervised clustering of all rats based on leukocyte population frequencies, animals clustered into 
three discrete groups (Figure 2), indicating the overall fingerprint of blood composition is age depen-
dent. The cluster classified as ‘young’ is characterized by a high proportion of lymphocytes in general, 
and T cells in particular, but with a low frequency of CD25+ CD4+ T cells.
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Figure 2. Distinct age clustering of rats based on white blood cell frequencies. Hierarchical agglomerative clustering with distance matrix by Ward’s 
method. The top lines represent the distance matrix for the individual rats, and the three major branches are annotated by green, dark gray, and orange. 
The heatmap represents the normalized frequency of each population as indicated by the legend. The lines on the left indicate the distance matrix of 
the frequencies. The bottom histogram represents the age distribution for each of the major clusters in the same colors as above.

https://doi.org/10.7554/eLife.76808
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In contrast, the ‘old’ cluster, on the far right, is characterized by a low overall lymphocyte frequency, 
and elevated proportions of both myeloid and CD25+ CD4+ T cells (Figure 2). This increase in CD25+ 
CD4+ T cells is similar to what is seen in human peripheral blood aging (Gregg et al., 2005), while 
in the murine model CD25+ CD4+ T cells only accumulate in secondary lymphoid organs (spleen and 
lymph nodes) but not in the peripheral blood (Chiu et al., 2007). This analysis also defines a specific 
‘middle age’ profile that is distinct from both young and old phenotypes, but clusters more closely to 
the young rat profile than the old.
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Figure 3. Age and illness prediction by blood leukocyte composition. All blood cell population frequencies were used to create a standard least square 
model of age prediction. Variables that did not contribute to the model were removed in a backstep fashion. (a) Predicted age vs. actual age, the red 
line indicating the mean and fit. Animals excluded due to illness are depicted in light gray. The effect summary for the variables used is depicted in the 
right panel (ffect Summary) with the Logworth cutoff depicted by a blue line. (b) Residual age (i.e. the difference between actual age and predicted 
age) plotted as absolute mean values against assessment of health as determined by necropsy. Yes = no health issues; Mild = mild health problems 
(e.g. minor foot lesions); No = clear health issues found during necropsy (Source data 1). (c) The correlation between myeloid/lymphoid ratio and age 
in healthy (blue) and ill (red) animals. (d) Myeloid/lymphoid ratio in the peripheral blood plotted against health status (left panel) and large granular 
lymphocytic leukemia (LGLL) pathology score as detected in the liver and spleen. Each dot represents a single rat. Dot color denotes age.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Prediction of pathology.

Figure supplement 2. Fresh vs fixed samples.

https://doi.org/10.7554/eLife.76808
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Peripheral blood parameters predict age and pathology in rats
To assess the blood cell types most predictive of aging, we fit all leukocyte frequencies in a standard 
least square model to predict aging in animals with no detected pathology and then eliminated 
the least significant parameters in a backstep fashion (Figure  3a, Figure  3—figure supplement 
1). The health status of all rats was recorded throughout the study, and necropsy was performed 
on all animals, less than a month post blood collection (for full health/pathology report see Source 
data 1). This enabled testing of how the health status of each rat fit into the model. One caveat 
was that moribund animals were excluded and euthanized per vet recommendation, so the health 
analysis captures mostly underlying illnesses only discernable during necropsy. The resulting blood 
parameter model predicted age with an approximate 2- month margin of error (as indicated by the 
root mean square error value). The single most predictive parameter of rat age was the proportion 
of CD25 expression in CD4+ T cells (Figure  3a, right panel). Animals with histological indication 
of disease, including indications of large granular lymphocytic leukemia (LGLL) in spleen or liver, 
described in Finesso et al., 2021, are generally predicted by our model as more variable than their 
actual age (i.e. have stronger residual age values) (Figure 3b). When constructing an age predic-
tion model only for ill animals, we found the myeloid/lymphoid ratio was the strongest contributor 
to age prediction (Figure 3d). Additionally, we constructed a nominal logistic regression model to 
predict illness and found that myeloid/lymphoid ratio is the strongest contributor, even more so than 
age (Figure 3—figure supplement 1). While the myeloid/lymphoid ratio increases with aging, this 
phenomenon is more pronounced in sick animals. However, this ratio alone is not sufficient to predict 
illness (Figure 3d, left) and must be combined with the other blood parameters that are character-
istic of age and how variable the predicted age is from the chronologic age (Figure 3b and c). We 
also observed that myeloid/lymphoid ratio increases concurrently with severity of LGLL (Finesso 
et al., 2021; Figure 3d, right).

As blood samples from the 146 rats were analyzed post- fixation (see Methods), we were inter-
ested to determine whether the model generated is also applicable for freshly isolated blood. We 
thus generated data for both fresh and fixed rat blood, taken from the same donors. We found only 
small differences (<10%) in population frequencies associated with fixation, with changes in the T 
cell and B cell population frequencies post- fixation showing the biggest variation (Figure 3—figure 
supplement 1a). Despite these differences, applying the age- prediction model, generated from fixed 
blood samples, on the blood profiles generated on unfixed samples of varying ages (Figure 3—figure 
supplement 1b) demonstrated that the existing model (from fixed blood) could be used in a similar 
fashion to predict age with only minor mathematical adjustments.

As this study was primarily focused on male rats, we wanted to evaluate if the model could be used 
in a sex- independent manner. We collected a small dataset of 5 young (5 months), 5 middle- aged 
(15 months), and 5 old (23 months) females and compared the blood parameters to the males of the 
same age. We observed at the three age groups evaluated, females present sex- specific differences 
in leukocyte populations with notably lowered B cell and T cell percentages, and a higher frequency 
of neutrophils (Figure 3—figure supplement 1c). Interestingly, we also observed sex- specific aging 
trends that exacerbated the T cell and neutrophil differences. Surprisingly, despite the sex- specific 
phenotypes, the male generated model still robustly predicted female age (p<0.0001) (Figure 3—
figure supplement 1d).

Regression analysis reveals potential aging intervention points
This study involved a minimum of five rats from each month of age starting from 3 months to 27 
months (Source data 2) which enabled us to cross- sectionally examine the dynamics of blood changes 
during aging. Overall, the changes in leukocyte frequencies of age- matched rats, reflected described 
changes in aging human blood, including a reduction in B cells and T cells, and an increase in mono-
cytes, neutrophils, and CD25+ CD4+ T cells (Figure 4—figure supplement 1). However, while the 
ratio of CD4/CD8 in T cells initially declined, it increased after 15 months of age. To better under-
stand the dynamics of these blood composition shifts, we performed a multiple regression analysis for 
each cell population and identified timepoints in which there was a major trajectory shift (Figure 4a 
and Figure 4—figure supplement 1b). Most of these shifts appear to converge at approximately 
15 months of age (Figure 4a and b). A strong age- associated increase in the overall variance of the 
different parameters was also observed, which was especially pronounced at around 24 months of age 

https://doi.org/10.7554/eLife.76808
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(Figure 4c). Interestingly, the first hematopoietic inflections appeared prior to the decline in survival 
of the classic Gompertz curve for this rat strain (Turturro et al., 1999).

Peripheral rat blood DNA methylation changes with age
DNA methylation data was generated from the peripheral blood of these rats and was previously 
analyzed to define a rat aging ‘methylation clock’ (Levine et al., 2020). We analyzed the epigenic 
landscapes for hematopoietic- specific changes in methylation associated with aging using the Bismark 
pipeline. Global, age- dependent hypomethylation (Figure 5a) occurred, located mostly in intergenic 
and intronic regions. Promoter regions had a more balanced ratio of sites that either gained or lost 
methylation (Figure 5b). Interestingly, overall decreases in methylation were more pronounced in the 
transition between middle and old age compared to the global methylation changes seen in the shift 
from young to middle age (Figure 5a). To gain insight into the difference between the early- aging and 
late- aging changes, we performed differentially methylated region (DMR) analysis on locations near 
transcription start sites (TSS). Most regions with significant DNA methylation changes were progres-
sively altered during aging, which is slightly incongruous with the phase shifts seen in blood compo-
sition. However, we also found non- linear changes in methylation using a differential methylation 

Figure 4. Dynamics of leukocyte frequencies during aging. (a) Aging trends of variables with inflection points depicted by a cubic spline regression (λ 
= 0.521). Shaded colored areas indicate the fit. Inflection/breakpoints are depicted as dotted vertical lines with SE(Standard error) in shaded gray. (b) 
Summary of leukocyte critical aging points (color coded) in relation to reproductive capacity (orange) and survival curve points (gray) (Turturro et al., 
1999). (c) Variance (S2) and coefficient of variation for each parameter as a function of age (in a sliding window of 3 months).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Major leukocyte population frequencies as a function of age.

https://doi.org/10.7554/eLife.76808
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Figure 5. Differentially methylated regions (DMR) with rat aging. (a) Global differential methylation histograms per age group comparison. A cutoff 
of 5% methylation difference was used. (b) Proportion of hypermethylated and hypomethylated regions (DMR) compared to distance from the closest 
transcription start site (TSS). (c) Venn diagram for the number of DMR within 20 k bp distance of the nearest TSS based on age group comparisons. 
A cutoff of false discovery rate (FDR) <0.05, >5% CpG mean change, and at least 3 CpG differential DMR site per block was used. Hypermethylated 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.76808
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analysis of three major age groups (Figure 5). We identified 140 DMRs unique to the young vs. middle 
age comparison and 94 DMRs unique to the middle- aged vs old (Figure 5c). 456 DMRs appeared as 
significantly differential only between the young and old animals, which we attribute to a slow progres-
sive change that only passed the cutoff of significance and fold change in the young vs old compar-
ison (Figure 5c). Enrichment analysis of DMRs showed age- associated hypermethylation for several 
processes and included some overlaps between the early (Y- M) and late (M- O) aging phenotypes, 
such as regulation of T cells and differentiation (Figure 5d). However, some enrichments were unique 
to the middle age transition (regulation of apoptosis) and the late age (notch signaling pathway), 
again indicating a difference between the early and late aging phenotypes. Of note, while hypometh-
ylated DMRs between young and middle age were identified for several processes (Figure 5d, right 
panel), hypomethylated DMRs in the transition from middle- aged to old were not enriched for any 
specific process (Source data 3); perhaps suggesting that these changes are more reflective of drift or 
random alterations and not necessarily concerted DNA methylation changes. To assess if the observed 
DNA methylation aging changes are specific to rats or might be more conserved, we compared our 
results to previously published data from mice (Sziráki et al., 2018) and humans (Hannum et al., 
2013). Significant age- associated methylation changes in whole blood from both human and rat were 
predominantly hypomethylation; but in mice the distribution between hypomethylation and hyper-
methylation is more balanced (Figure 5a and f). When comparing the DMRs observed in rats to other 
species (Figure 5g) we find a high level of concordance, suggesting that many age- associated meth-
ylation changes may be common to several mammalian species. However, it is important to note that 
the sequencing was performed with different techniques for each study, resulting in a difference of 
coverage of orthologous loci (Figure 5g, right panel).

To eliminate a potential bias of predetermining age groups, we also analyzed DNA methylation at 
all TSS to determine if changes occurred as a function of age using the response screening platform 
(see Experimental Procedures) (Figure 5—figure supplement 1a). The most significantly changed 
sites were all located near the TSS of RUNX family transcription factor 1 (Runx1), and these sites all 
show strong hypermethylation with age (Figure 5e, left panel). The hypermethylation of Runx1 can 
be mapped immediately distal to the TSS (Figure 5e, middle panel). The second most significantly 
changed DMR was located near the TSS of Dnmt3a (Figure 5e, right panel). A principal component 
analysis based only on the 2311 DMRs that significantly changed as a function of age (Figure 5—
figure supplement 1b) demonstrates a marked increase in variation around the 2- year mark, analo-
gous to the increased variation observed for population frequencies (Figure 4c).

Early and late life DNA methylation switches
As the blood population frequencies indicated a mid- life inflection, we explored whether DNA meth-
ylation patterns exhibited similar signature transitions. First, we performed both linear and logistic 
regressions on significant age- associated DMRs near TSSs (Figure  5—figure supplement 1a and 
Figure 6—figure supplement 1). We next selected the regression with the best fit (based on Akaike 
Information Criterion, Shavlakadze et al., 2019). 62.9% of the sites changed linearly with age while 
37.1% showed a better fit to a logistic regression (Figure 6—figure supplement 1). The breakpoint 
was calculated for sites that did not change linearly with age (Figure 6a), and a module enrichment 
analysis was performed for genes with switches before and after 15 months of age (Figure 6b). The 
methylation switch points defined converged at around 22  months of age and mildly at close to 

and hypomethylated changes are indicated by the noted colors. (d) Summary of gene set enrichment analysis for DMRs in proximity of TSSs (<20 k 
bp). Analysis was performed for three age groups: young (3–8 months), middle- aged (13–17 months), and old (22–27 months). Combined score was 
calculated as −log10(FDR) × fold enrichment. YM - young vs. middle- aged; MO - middle- aged vs. old; YO - young vs. old. The list of hypomethylated 
DMRs for the MO comparison had statistically significant enrichments. For a full enrichment analysis see Table S4. (e) Individual methylation levels 
of regions near the Runx1 and Dnmt3a genes. Left panel - Runx1; middle panel - methylation map in the Runx1 TSS; right panel - Dnmt3a. (f) Global 
differential methylation histograms of mouse (Sziráki et al., 2018) and human (Hannum et al., 2013). A cutoff of 5% methylation difference was used. 
(g) Heatmap depicting concordance of DMRs near orthologous gene sites between rat (left), mouse (center), and human (right) datasets. Only genes 
identified as differentially methylated in old rats are shown, the rightmost panel depicts the coverage for each dataset, where missing data is black.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Response screening to determine transcription start sites that change their methylation as a function of age.

Figure 5 continued

https://doi.org/10.7554/eLife.76808
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12 months of age. Genes that had a breakpoint earlier than 15 months of age were enriched for 
cytokine production, regulation of differentiation and hematopoiesis, and include Apolipoprotein E 
(Apoe) and Runx1. Genes identified to have a switch later in life were enriched for myeloid differenti-
ation, leukocyte activation, ion transport, and epithelial development. Similar to the changes in blood 
parameter composition, these DNA methylation results highlight differences come in waves, notably 
at around 15 months, rather than occurring in a linear fashion and suggest a key remodeling timepoint 
of the hematopoietic system.

Discussion
Although the rat peripheral blood compartment has been analyzed in regard to aging (Flaherty et al., 
1997), newer panels of monoclonal antibodies offer improved insight into changes of the hemato-
poietic system. Here, a relatively simple blood profiling technique using eight antibodies led us to 
construct a model that predicts both age and, potentially, pathology. The model can be used to predict 
the risk of illness as a function of the deviation from predicted age to actual age, and we propose 
such a model could also be used to determine if intervention experiments mitigate aging phenotypes. 
While our dataset and analyses were for a specific set of flow cytometric parameters generated on 
fixed cells, we found we were able to adapt these analyses to also predict the age of freshly isolated 
blood (using similar flow cytometry markers). Thus, with inclusion of proper controls to account for 
experimental design variation, this resource of aging rat blood parameters could be adapted for 
studies of rat aging or pathology without requiring euthanasia of the animals. We believe this would 
be especially useful for longitudinal or intervention studies given the ease of blood collection at 

��� ���

Figure 6. Early and late life methylation breakpoints. (a) Distribution of breakpoints by age. Each dot represents the breakpoint of a single gene 
transcription start site; color scales by age from young (blue) to old (red). Contour violin plot of the distribution is displayed in gray. (b) Functional 
module networks of the genes with breakpoints before (bottom - blue) and after (top - red) 15 months of age. Each dot represents a single gene with 
size corresponding to its connectivity in the network. The lines indicate interactions (edges). The networks were built for blood tissue, with human 
orthologs as input. The interaction network is built using the closest gene neighbors and then clustered based on enrichment in GO(Gene Ontology) 
categories. Networks were generated using HumanBase (https://hb.flatironinstitute.org).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Determination of methylation changes ‘switch’ points.

https://doi.org/10.7554/eLife.76808
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multiple timepoints. It would also be interesting to see how our reported blood parameter changes 
synergize with other non- invasive measurements such as the frailty index, gait speed, etc.

This experiment was performed in male rats. In humans, clear sex aging differences have been 
defined, both before and after menopause (Márquez et  al., 2020; Gubbels Bupp, 2015; Huang 
et al., 2021). In this study, we were surprised to observe a good fit of females to the male generated 
age prediction model. However, we only tested a relatively small sample of 15  females of varying 
ages. Additionally, we found sex- specific leukocyte frequency differences that were accentuated by 
age. These differences highlight potential sex- specific aging patterns that remain to be fully explored. 
This comparison would be especially intriguing if viewed in the context of aging of the reproductive 
system as in the males we observed an alignment between hematopoietic aging and the end of the 
late reproductive period (Figure 4b).

A strong predictor of age was the accumulation of CD25 on CD4+ T cells in the F344 rat model. 
These results support previous findings that report an age- dependent accumulation of regulatory T 
cells (Tregs) (Chiu et al., 2007; Lages et al., 2008; Sharma et al., 2006). This stable increase in the 
F344 rat is more similar to that observed in humans (Gregg et al., 2005) than in mice (Chiu et al., 
2007) and highlights the relevance of the rat model to study hematopoietic aging. Garg et al., 2014 
have previously suggested that this accumulation is driven by hypomethylation of forkhead box P3 
(Foxp3) in CD25+CD4+ T cells; however, in our dataset analyzing total blood cell methylation, we do 
not see differential methylation of Foxp3. This is likely because CD25+CD4+ T cells are a rare subpop-
ulation of the total blood, and DNA methylation changes in this population would not significantly 
affect the global blood methylation profiles.

We observed an age- dependent myeloid bias with rat aging, similar to mice (Beerman et al., 2010) 
and humans (Pang et al., 2011). The observed myeloid bias was a strong predictor of pathology in 
general, and of LGLL in particular. Importantly, strong myeloid bias was correlated with illness that was 
otherwise only noticeable during autopsy and undetectable during routine veterinary observation. A 
caveat to this observation is that myeloid bias increases with age, even in healthy animals, meaning 
that the myeloid/lymphoid ratio can only be useful as a diagnostic parameter when plotted against 
the expected ‘normal’ age- dependent increase. In this reference dataset, we found a significant asso-
ciation between severity of LGLL and increased myeloid cell numbers. The myeloid bias we report 
in rats has previously been documented in mice; however, most mouse models do not develop age- 
associated blood diseases seen in humans. Thus, we find the correlation between increased myeloid 
cells and LGLL severity in rats to be of particular relevance for potential modeling of human blood 
aging phenotypes.

Our analysis of the age- related changes in leukocyte profiles indicates inflection points in the 
trajectories occurring at early middle age (~15 months) and at ~24 months of age. The first inflec-
tion point is characterized by several shifts in leukocyte frequencies, including a stabilization of T 
cell decline, peak in CD8+ T cells, rapid drop of B cells, deceleration in the accumulation of CD25+ 
CD4+ T cells, and an acceleration in the increase of stimulated monocytes. The second shift point 
we observed is defined by a marked increase in variance between individual rats which alludes to a 
pan- hematopoietic loss of homeostasis (Figure 4c). Alternatively, this increased variability could be 
the result of a divergence in biological aging rates between individual rats. It would be interesting to 
investigate this further in a longitudinal study that can make a clear distinction between these postula-
tions. We hypothesize that interventions aiming at mitigating aging phenotypes would be significantly 
more effective if performed prior to these defined shift points. The inflection points in the blood are 
similar to the transition pattens (linear, early logistic, and mid- logistic) of gene expression on tissues 
isolated from aging Sprague- Dawley rats (Shavlakadze et al., 2019). Furthermore, supporting a claim 
for interventions predating the observed switch point are studies of caloric restriction (CR). It is quite 
clear that early onset CR has more benefits than late onset, but it is yet unclear what the ideal starting 
age should be (Ingram and de Cabo, 2017). In fact, late onset CR has even been shown to be poten-
tially detrimental to cognitive function (Todorovic et al., 2018). However, Chen et al. (Chen et al., 
2015) reported a beneficial effect of late onset CR to muscle mass and metabolism in Sprague- Dawley 
rats, indicating that the ideal points of intervention could vary greatly between different systems. In 
fact, interventions that aim to prevent or delay aging could be fundamentally different than those that 
aim to reverse it, even to the extent where harm could be caused when one strategy is applied instead 
of the other (Hadley et al., 2005). It is therefore critical to understand which systems display aging 

https://doi.org/10.7554/eLife.76808


 Research article      Evolutionary Biology | Immunology and Inflammation

Yanai, Dunn et al. eLife 2022;11:e76808. DOI: https://doi.org/10.7554/eLife.76808  12 of 18

switch points, and when, in order to design the appropriate intervention regimen. This is especially 
true when translating experimental paradigms to human interventions due to the great heterogeneity 
between the aging rates of both individuals and different systems within the individual (Gonzalez- 
Freire et al., 2020).

The combined results of changes in population frequencies and the DNA methylome indicate that 
hematopoietic aging of rats occurs in phases as opposed to a continuous process. However, with the 
current data, we cannot ascertain the drivers underlying the shift between these aging phases, whether 
they are triggered by a specific event, or simply manifest when a critical mass of small changes reaches 
a threshold. Whichever the case, investigating these relatively early timepoints in which blood profiles 
begin to irreversibly shift, indicating critical trajectory alterations, is of great interest.

The age- related DNA methylation changes in all leukocytes highlight the potential involvement of 
epigenetic changes that have occurred in HSCs and/or early progenitors, and are transmitted to all 
the differentiated progeny, as indicated by the hypermethylation of Runx1 and the gene enrichment 
analysis. In addition, the lack of enrichment for hypomethylated TSS in the transition from middle 
age to old indicates that age- related gains of methylation may be a directed process, whereas loss 
of methylation later in life is more non- specific and perhaps attributed to drift. If so, mitigating the 
seemingly random loss of methylation would be an interesting potential aging intervention. Intrigu-
ingly, there is a surprising concordance between the rat and human differential methylation patterns, 
both in terms of a predominant global loss of methylation with age and in specific DMRs that are 
near orthologous genes. However, a more comprehensive coverage of overlapping methylation sites 
is needed to validate these initial findings. As we observed a change of leukocyte frequencies with 
age consistent between species, and different cell types present different DNA methylation profiles, 
it would be interesting to ascertain in future studies to what extent the observed methylation change 
rely on distinct changes in blood composition. However, we observed different breakpoints for the 
population frequencies and the DNA methylation, which indicate a slight disconnect between the 
two. This supports the notion that at least some of the methylation changes are derived from aging 
alterations in stem/progenitor cells that are inherited by their progeny (Beerman et al., 2013).

In summary, we present this work as a resource for investigators studying aging in the rat model, 
which appears to be a robust system for modeling the aging human hematopoietic system. Our 
research emphasizes the importance of studying changes in homeostasis during aging as we present 
key trajectory shifts in blood populations that occur at relatively early age (15 months). Finally, our 
research model describes aging ‘juncture points’. Given these specific breakpoints in composition of 
the hematopoietic system, we posit that strategic aging interventions would likely be more robust 
and beneficial if performed earlier in life to mitigate or stall the major changes that occur under 
homeostatic conditions. While our data support that the male- derived model can be used for female 
predictions, it was evident there are sex- specific differences in the blood of rats. We hope these data 
will be expanded upon in a female longitudinal study, in which fraility measurements would also be 
included. It would be exciting to further explore if an illness prediction model based off of these 
defined blood parameters could be extrapolated for a broad range of diseases, and ultimately if 
similar age- associated shifts occur in other organs/tissue systems, animal models, and specifically in 
humans.

Methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Rattus Norvegicus) Fischer 344 male and female (F344- cdf) NIA aging colony F344- cdf

Housed at the Charles River Laboratories 
(Frederick, MD)

Antibody
(Mouse monoclonal) Anti- rat CD3- FITC, 
Clone 1F4 BioLegend Cat#201,403 (1:200)

Antibody
(Mouse monoclonal) anti- rat CD25- PE, 
clone OX- 39 BioLegend Cat#202,105 (1:200)

Antibody
(Mouse monoclonal) anti- rat CD8a- 
PerCP, clone OX- 8 BioLegend Cat#201,712 (1:200)

https://doi.org/10.7554/eLife.76808
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Antibody
(Mouse monoclonal) anti- rat CD11b/c- 
PE- Cy7, clone OX- 42 BioLegend Cat#201,818 (1:200)

Antibody
(Mouse monoclonal) anti- rat CD4- APC- 
Cy7, clone W3/25 BioLegend Cat#201,518 (1:200)

Antibody
(Mouse monoclonal) anti- rat RT1B- 
AF647, clone OX- 6 BD Biosciences Cat#562,223 (1:200)

Antibody
(Mouse monoclonal) anti- rat CD45RA- 
BV421, clone OX- 33 BD Biosciences Cat#740,043 (1:200)

Antibody
(Mouse monoclonal) Anti- rat CD45- 
BV605, clone OX- 1 BD Biosciences Cat#740,515 (1:200)

commercial assay or kit IMMUNOPREP Reagent System Beckman Coulter Cat# 7546999
Compatible with the  
COULTER TQ- Prep workstation

software, algorithm Trim Galore
Babraham Bioinformatics, 
Krueger et al., 2021

https://github.com/ 
FelixKrueger/TrimGalore

software, algorithm CutAdapt

National Bioinformatics 
Infrastructure Sweden, Martin, 
2022

https://github.com/marcelm/ 
cutadapt

software, algorithm Bismark Babraham Bioinformatics
https://www.bioinformatics. 
babraham.ac.uk/projects/bismark/

software, algorithm MethylKit Bioconductor

https://www.bioconductor. 
org/packages/release/bioc/ 
html/methylKit.html

software, algorithm DMRseq Bioconductor

https://www.bioconductor. 
org/packages/release/bioc/ 
html/dmrseq.html

software, algorithm ClusterProfiler Bioconductor

https://bioconductor.org/ 
packages/release/bioc/ 
html/clusterProfiler.html

software, algorithm Homer package UCSD http://homer.ucsd.edu/homer/

software, algorithm JMP JMP- SAS Ver16 https://www.jmp.com

software, algorithm FlowJo BD Life Sciences Ver10.8 https://www.flowjo.com/

software, algorithm Cytobank Beckman- Coulter
https://www.beckman.com/flow-cytometry/ 
software/cytobank-premium

 Continued

Animals
All experimental procedures were conducted in accordance with the Guide for the Care and Use 
of Laboratory Animals and approved by the NIA(National Institute on Aging) Animal Care and Use 
Committee (467- CMS- 2018 and 469- TGB- 2022). Male and female Fischer 344 CDF (F344) rats (were 
obtained from the NIA Aged Rodent Colony housed at the Charles River Laboratories [Frederick, 
MD]). The animals were housed with Nylabone supplementation and ad libitum access to food (Envigo 
2018åSX) and water. Rats younger than 3 months were housed in groups of three; all other rats were 
single housed. All rats were maintained on a 12/12 lighting schedule, with all procedures carried out 
during the light cycle. Rats were habituated to the facility for at least 3 days before sample collection. 
Some of rats reported here were also analyzed in previous studies (Levine et al., 2020; Finesso et al., 
2021).

Flow cytometry and sample collection
500 µl of whole blood was collected via retro- orbital bleedings for DNA and FACS analysis. Blood for 
DNA for DNA methylation was collected in heparinized tubes, spun, and the plasma removed; buffy 
coat and red blood cells were frozen at −80°C until DNA extraction. Blood for FACS analysis was 
collected in EDTA- treated tubes, chilled on ice, and 100 µL was stained and then processed using 
a Beckman Coulter TQ- prep (fixation step) and the Beckman Coulter immunoprep reagent system. 
For the fresh sample analysis, blood was drawn as above, ACK treated, and immediately stained with 
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antibodies. For all samples, staining was performed on ice for 30 min in a 100 µl staining cocktail 
containing the following antibodies at a dilution of 1:200: FITC- conjugated anti- rat CD3 (clone 1F4, 
Cat#201403), PE- conjugated anti- rat CD25 (clone OX- 39, Cat#202105), PerCP- conjugated anti- rat 
CD8a (clone OX- 8, Cat#201712), PE- Cy7 conjugated anti- rat CD11b/c (clone OX- 42, Cat#201818), 
APC- Cy7 conjugated anti- rat CD4 (clone W3/25, Cat#201518) from Biolegend (San Diego, USA), 
and AF647- conjugated anti- rat RT1B (clone OX- 6, Cat#562223), BV421- conjugated anti- rat CD45RA 
(clone OX- 33, Cat#740043), and BV605- conjugated anti- rat CD45 (clone OX- 1, Cat#740515) from BD 
Biosciences (Franklin Lakes, USA). Immunophenotyping data was acquired on a BD FACSCanto II and 
analyzed using FlowJo (https://www.flowjo.com/). Original FCS files are available on http://flowrepos-
itory.org/id/FR-FCM-Z59K.

DNA methylation analysis
Samples were treated and sequenced for DNA methylation as described in Levine et  al., 2020. 
The raw sequencing datasets are available from GEO (GSE161141). To identify differentially meth-
ylated loci: we trimmed reads of adapter dimers using Trim Galore (0.4.3) and quality trimmed with 
a minimum quality score above >25 (--rrbs -q 25). The attached adapter dimers were trimmed using 
cutadapter. First, bisulfite- converted index (GA and CT conversion) was generated using F344 rat 
genome with bismark build option and trimmed reads were aligned with bismark (Krueger and 
Andrews, 2011). Once we created aligned reads and corresponding locations, we used the bismark_
methylation_extrator tool to summarize the level of methylation in CpG sites (bismark_methylation_
extractor -p –comprehensive –no_overlap –bedGraph –counts –buffer_size 16 G [$Aligned read bam 
file]). Approximately a total 1–2 million sites per sample were predicted with DNA methylated sites 
(or unmethylated). DMR and blocks of differentially methylated sites were identified with a minimum 
of 3 CpG sites per block and at least >5% methylation difference (FDR <0.05) using MethylKit (PMID: 
23034086 Akalin et  al., 2012) and DMRseq (Korthauer et  al., 2019). Functional annotation was 
performed using ClusterProfiler (Yu et al., 2012).

To generate RRBS(Reduced representation bisulfite sequencing) DNA methylation block: RRBS 
datasets were processed in a uniform way and DNA methylation levels for each sample were extracted. 
Then, we generated 200 base- pair binned DNA methylation levels across the genome. Each DNA 
methylation block contains 1–20 CpG sites. We first calculated the average DNAm level per DNAm 
block for each rat age then used this average DNAm level for mean CpG imputation. We calculated 
the DNAm level using all methylated and unmethylated sites from the binned CpG sites when the 
minimum coverage was more than 5. The F344 build of the rat reference genome was used for bisul-
fite sequencing alignment, and the rn6 genome feature was used to extract genomic annotation infor-
mation using the Homer package (Heinz et al., 2010). Genes, exons, introns, and UTRs were taken 
from Homer annotation tools ( annotatePeaks. pl DMR rn6). TSS- promoter sites were considered the 
identified DMRs close to TSS (less than 1 kb). TSS- proximal sites were considered the identified DMRs 
close to TSS (less than 20 kb), and TSS- distal sites were considered the DNAm block whose distance 
to TSS is above 20 kb. For downstream analysis to find inflection points, we used the TSS- promoter 
DNAm block for searching inflection point analysis (e.g. Runx1, Dnmt3a).

Calculation of DNA methylation breakpoints
Genes for DNA methylation breakpoint analysis were selected by first filtering for DMRs that changed 
as a function of age, determined by a response screening analysis (JMP platform) with an FDR 
p- value<0.05. The resulting 2,311 sites were then fitted for a linear and a logistic 4 P regression, and 
the better fit was selected based on Akaike Information Criterion (Shavlakadze et al., 2019). Next, 
we calculated the aging change breakpoint of DMRs that were more likely to be non- linear using the 
formula in Figure 6—figure supplement 1.

Statistical analysis and software used
Population frequencies were determined with FlowJo v10.8 Software (BD Life Sciences) ViSNE and 
self- organizing maps analyses were performed using Cytobank (Kotecha et al., 2010). All statistical 
analyses except those specifically detailed otherwise were performed using JMP (JMP, Version 16. 
SAS Institute Inc, Cary, NC, 1989–2021). The predictive model of age based on leukocyte frequencies 
was constructed using the least square method with backstep elimination of insignificant variables. 
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Analysis of pathology prediction was performed using the JMP Decision Tree Platform. Determination 
of regression formulas and breakpoints was performed in JMP according to the formulas indicated in 
Figure 6—figure supplement 1.
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The data that support the findings of this study are available in the supplementary material and 
supplementary tables of this article. The DNA methylation raw data is available via GEO Accession 
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and requests for resources and reagents should be directed to and will be replied to by the corre-
sponding authors.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Yanai H 2022 Rat Cross Sectional Aging 
PB

http:// flowrepository. 
org/ id/ FR- FCM- Z59K

FlowRepository, FR- FCM- 
Z59K

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Levine M 2020 A rat epigenetic clock 
recapitulates phenotypic 
aging and co- localizes 
with heterochromatin- 
associated histone 
modifications

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE161141

NCBI Gene Expression 
Omnibus, GSE161141
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