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Background.  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measure-
ments can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future 
infection. Previous estimates of the duration of antibody responses vary.

Methods.  We present 6  months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). 
Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was 
used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-
nucleocapsid waning.

Results.  Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval 
[CrI] 91–96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19–31) days post first polymerase 
chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 
121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81–90) days. Higher max-
imum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, 
and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age 
and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives.

Conclusions.  SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without 
symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term dura-
tion of antibody levels and their association with immunity to SARS-CoV-2 reinfection.
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Measurable immunoglobulin G (IgG) antibodies to severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens 
develop after many, but not all, SARS-CoV-2 infections [1–4]. 
Serological responses are typically detectable within 1–3 weeks 
[5–8]. This allows antibody assays to be used to estimate the 

proportion of a population exposed or infected. Additionally, 
although the extent of immunity associated with different an-
tibody titers and other immune responses is yet to be fully de-
termined, it is probable that antibody levels will provide some 
information about the risk and/or severity of future infection.

However, SARS-CoV-2 IgG antibody levels are dynamic over 
time [9]. This has implications for epidemiological studies; for 
example, if IgG levels fall below detection thresholds before 
they are measured, past infections may be underascertained. 
Similarly, it has implications for estimating population protec-
tion if antibodies are a marker for protective immunity.

Contrasting data have been made available on the longitu-
dinal trajectory and longevity of antibodies induced by SARS-
CoV-2 infection. For example, a US study showed IgG antibody 
levels to trimerized spike were relatively stable in 121 individ-
uals around 110 days post symptom onset [10]. Similarly, data 
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from 1215 individuals in Iceland suggest that IgG responses to 
nucleocapsid and the S1 component of spike were sustained for 
100–125 days [11]. However, others have noted declines in neu-
tralizing antibodies over similar time periods [12–14].

We have recently undertaken baseline serological testing 
in a cohort of >10 000 healthcare workers (HCWs) [15]. We 
now describe serial SARS-CoV-2 antibody measurements, 
demonstrating quantitative anti-nucleocapsid responses fall 
over time and vary with age, ethnicity, and previous symptoms, 
but anti-spike levels antibodies remain stably detected in most 
individuals.

METHODS

Setting and Participants

Oxford University Hospitals (OUH) offers both symptomatic 
and asymptomatic SARS-CoV-2 testing programs to staff at 
its 4 teaching hospitals in Oxfordshire, UK. In total, 12 411 
HCWs have undergone serological testing to date; data on 
HCWs who attended more than once for antibody testing are 
presented.

SARS-CoV-2 polymerase chain reaction (PCR) testing of 
nasal and oropharyngeal swabs for all symptomatic (new per-
sistent cough, fever ≥37.8°C, anosmia/ageusia) staff was offered 
from 27 March 2020 onward. Asymptomatic HCWs were in-
vited to participate in voluntary staff testing for SARS-CoV-2 
by nasal and oropharyngeal swab PCR and serological testing 
from 23 April 2020 onward. The cohort, associated methods, 
and findings from the first test per individual have been pre-
viously described [15]. Following initial PCR and antibody 
testing, asymptomatic HCWs were invited to optionally attend 
for serological testing up to once every 2  months, with some 
offered more frequent screening as part of related studies. 
Asymptomatic staff were also offered optional SARS-CoV-2 
PCR tests every 2 weeks.

Laboratory Assays

Serology for SARS-CoV-2 IgG to nucleocapsid protein was 
performed using the Abbott Architect i2000 chemilumines-
cent microparticle immunoassay (CMIA; Abbott, Maidenhead, 
UK). Antibody levels ≥1.40 manufacturer’s arbitrary units were 
considered positive, 0.50–1.39 equivocal (following Abbott 
Diagnostics Product Information Letter PI1060–2020) and <0.5 
negative. Anti-trimeric-spike IgG levels were measured using 
an enzyme-linked immunosorbent assay (ELISA) developed 
by the University of Oxford [2], using net-normalized signal 
cutoff of ≥8 million units to determine antibody presence and 
defining 4.0–7.9 million units as equivocal [16]. Details on PCR 
assays are provided in the Supplementary Data.

Statistical Methods

For anti-nucleocapsid antibodies, individuals with ≥1 posi-
tive antibody result (titer ≥1.40) and ≥2 antibody results were 

classified as showing rising titers only, falling or stable titers 
only, or both. Those with only one measurement could not be 
classified and were excluded. In those with falling/stable titers 
we estimated the duration of antibody responses following 
the maximum observed result using Bayesian linear mixed 
models and their association with age, gender, ethnicity, pre-
vious self-reported symptoms, and PCR results (allowing cor-
related random intercept and slope terms, see Supplementary 
Data for details and Supplementary Table 1). We assumed 
antibody levels fell exponentially and so modeled log2 trans-
formed antibody levels over time (observed data and fitted 
models demonstrated close congruence, Supplementary 
Data). The incidence of coronavirus disease 2019 (COVID-
19) in our hospital fell after a peak in March and April 2020 
[15], such that reexposure of HCWs during the study was un-
common; we therefore had insufficient data to study boosting 
of antibody responses.

We additionally modeled the antibody trajectory from a first 
positive PCR test using a similar approach but allowing for 
nonlinear effects of time rather than assuming an exponential 
decline.

It was not possible to model anti-spike IgG titers over time 
in those with a positive result as most positive readings were 
above the upper limit of quantification of the assay (9 million 
units). Therefore, we considered changes in binary results for 
both anti-spike and anti-nucleocapsid using Bayesian interval 
censored regression to estimate the proportion of individuals 
remaining antibody positive (as opposed to equivocal or nega-
tive) at varying times following their maximum antibody result 
(Supplementary Data).

Ethics

Deidentified data from staff testing were obtained from the 
Infections in Oxfordshire Research Database (IORD), which 
has generic Research Ethics Committee, Health Research 
Authority, and Confidentiality Advisory Group approvals (19/
SC/0403, 19/CAG/0144).

RESULTS

A total of 3276 HCWs provided ≥2 samples for serological 
testing between 23 April and 20 October 2020 (3217 had anti-
nucleocapsid results [Table 1], 3123 anti-spike results, 3064 had 
both) (Figure  1, Supplementary Table 2). For both assays the 
median (interquartile range [IQR]) [range] number of samples 
tested was 2 (2–2) [2–8], and time from the first to last sample 
was 124 (95–144) [3–174] days.

Observed IgG antibody trajectories are shown in Figure 2. 
In sum, 522/3217 (16%) HCWs had ≥1 sample with detected 
anti-nucleocapsid antibodies (Figure  2A, 2B), and another 
90 (3%) had ≥1 sample with an equivocal titer (Figure  2C). 
Antibody titers in those with consistently negative results 
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were broadly stable (Figure 2D), whereas falls were observed 
in 438/466 (94%) initially anti-nucleocapsid antibody positive 
individuals and in 61/83 (73%) with an initial equivocal titer 
(Figure 2A, 2C). Also, 560/3123 (18%) HCWs had a positive 
anti-spike IgG (Figure 2E, 2F) and 209 (7%) an equivocal re-
sult. Among 457 HCWs with an initially positive anti-spike 
titer, 362 (79%) had a final titer that remained above the 

upper limit of quantification, and 49 (11%) had a fall in titer 
(Figure 2E).

Anti-Nucleocapsid IgG Trajectories After a Positive Antibody Result

Among 522 individuals with ≥1 anti-nucleocapsid IgG-positive 
sample, 70 (13%) seroconverted with rising titers only and 
so were excluded from analyses of the duration of response 

Table 1.  Baseline Cohort Demographics for 3217 HCWs and 452 HCWs With ≥1 Positive SARS-CoV-2 Anti-Nucleocapsid IgG Result and ≥1 Subsequent 
Follow-up Sample

Characteristic Whole Cohort, n (%) or Median (IQR) [Range]
452 HCWs With a Positive Antibody Result and ≥1 Subsequent  

Sample, n (%) or Median (IQR) [Range]

Age

  Age, y 39 (29–50) [16–76] 41 (29–50) [17–69]

Gender

  Female 2542 (79) 340 (75)

  Male 673 (21) 112 (25)

  Not disclosed 2 (<1)  

Self-reported ethnicity

  White 2473 (77) 302 (67)

  Black 90 (3) 25 (6)

  Asian 440 (14) 89 (20)

  Other 214 (7) 36 (8)

COVID-19-like symptoms between 01 February 2020 and testing

  Yes 898 (28) 274 (61)

  No 2319 (72) 178 (39)

Previous positive SARS-CoV-2 PCR

  Symptomatic 128 (4) 95 (21)

  Asymptomatic 117 (4) 59 (13)

  None 2972 (92) 298 (66)

Abbreviations: COVID-19, coronavirus disease 2019; HCW, healthcare worker; IgG; immunoglobulin G; IQR, interquartile range; PCR, polymerase chain reaction; SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2.

Figure 1.  SARS-CoV-2 antibody trajectory cohorts. Abbreviations: IgG, immunoglobulin G; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2.
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Figure 2.  SARS-CoV-2 anti-nucleocapsid (A–D) and anti-spike (E–H) IgG antibody trajectories. Panels A and B show anti-nucleocapsid trajectories for HCWs with a positive 
result (≥1.40 arbitrary units) at some time. A, Those whose first measurement was positive (n = 466, only data from 100 randomly sampled individuals is shown to assist 
visualization). B, Remainder (n = 56) in whom seroconversion was observed. C, Those with a maximum titer that was equivocal (0.50–1.39, n = 90). D, Results from HCWs 
with a maximum titer that was negative (<0.50, n = 2605, 100 randomly sampled individuals are shown). Dashed and dotted lines indicate the thresholds for a positive and 
equivocal result; note the different y-axis scales in panels A and B vs panels C and D. Similarly, panels E–H show anti-spike trajectories in million net normalized units for 
individuals who start positive (≥8 million units, n = 457), seroconvert (n = 103), have a maximum equivocal result (4.0–7.9 million units, n = 209, 100 shown), and only negative 
results (<4 million units, n = 2354, 100 shown). Anti-spike assay values above the upper limited of quantification, ie, >9 million, are plotted as 9 million. Abbreviations: HCW, 
healthcare worker; IgG, immunoglobulin G; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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following a peak IgG result (39/70 had a PCR test and are in-
cluded in a separate analysis below). In the remaining 452 
(87%), the median (IQR) [range] number of samples tested was 
2 (2–3) [2–5], and time from the first to last sample was 121 
(83–143) [4–171] days. Only 3/120 (3%) of individuals with ≥3 
measurements had a final titer above the minimum observed; 
that is, potential evidence of boosting and titer increases were 
all <5%. The median (IQR) age was 41 (29–50) years, and 75% 
of participants were female (Table 1). The most common self-
reported ethnic groups were White (302, 67%) and Asian (89, 
20%; predominately south Asian and Filipino). In addition, 
274 (61%) recalled self-identified COVID-19-like symptoms 
between 1 February 2020 and testing; 95 (21%) had a positive 
SARS-CoV-2 PCR following symptomatic testing, and 59 (13%) 
a positive PCR during asymptomatic screening. It is likely that 
many of the remainder were infected prior to widespread 

availability of testing. The first positive PCR in each individual 
was prior to or on the day of their maximum antibody titer in 
all but 5/154 (3%, tested 3–17 days later).

Using a Bayesian statistical model, the trajectory of anti-
nucleocapsid IgG levels following the maximum measured titer 
in each individual is shown in Figure 3A. The estimated mean 
antibody half-life was 85 (95% CrI 81–90) days and estimated 
mean maximum antibody level 4.3 (95% CrI 4.1–4.4) arbitrary 
units. The mean trajectory crossed the diagnostic threshold of 
1.40, switching from a positive to equivocal result at 137 (95% 
CrI 127–148) days. IgG half-lives and maximum titers varied 
between individuals (Figure  3B, 3C). Higher maximum ob-
served anti-nucleocapsid levels correlated with longer IgG 
half-lives, that is, slower rates of decline over time (Figure 3D; 
Spearman rank R2 =  .65, P < .0001). Findings were similar in 
a sensitivity analysis investigating the impact of starting with 

Figure 3.  SARS-CoV-2 anti-nucleocapsid IgG antibody trajectories in 452 SARS-CoV-2 seropositive HCWs. A, Overall mean trajectory of anti-nucleocapsid IgG antibody 
levels from the maximum observed level (ie, model fixed effect). Posterior mean and 95% CrI are shown as a solid line and shaded area. Dashed line represents the diagnostic 
threshold of 1.40 arbitrary units. B, Estimated anti-nucleocapsid IgG half-life with 95% CrI by days for all participants, ranked by its value. Solid horizontal line indicates the 
overall mean. CrIs exceeding 500 days are truncated at 500 days. C, Estimated maximum anti-nucleocapsid IgG antibody level with 95% CrI for all participants, ranked by its 
value. Solid horizontal line indicates the overall mean. D, Comparison of maximum observed anti-nucleocapsid IgG antibody level and the estimated anti-nucleocapsid IgG 
half-life per individual. Abbreviations: CrI, credibility interval; HCW, healthcare worker; IgG, immunoglobulin G; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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each individual’s maximum result on half-life estimates (see 
Supplementary Data).

Effect of Demographics and Other Covariates on Anti-Nucleocapsid 
Trajectories

Within this cohort of HCWs of working age, age, self-reported 
ethnicity, prior symptoms compatible with COVID-19, and 
a positive SARS-CoV-2 PCR were independently associ-
ated with changes in anti-nucleocapsid trajectories (Table  2, 
Supplementary Figure 1–5, Supplementary Table 3). Increasing 
age was independently associated with higher maximum anti-
nucleocapsid levels and a longer half-life, .17 (95% CrI .07–.25) 
arbitrary units and 3.40 (1.79–4.62) days per 10 years, respec-
tively (Table 2, Supplementary Figure 5). HCWs of Asian eth-
nicity had higher maximum anti-nucleocapsid levels with 
adjusted increases of 0.54 (0.18–0.95) arbitrary units compared 
to White HCWs, with marginal evidence for longer half-lives, 
by 6.28 (−0.44 to 14.8) days. Within the limits of the power of 
the study, there was no strong statistical evidence that antibody 
trajectories varied in other ethnic groups.

Prior self-reported symptoms were associated with a higher 
starting maximum anti-nucleocapsid levels (adjusted increase .40 
[95% CrI .12–.69]) but not changes in half-lives. There was mod-
erate evidence that a positive PCR result undertaken for symp-
toms, independently increased the starting maximum level by 
.30 (−.04 to .67) arbitrary units, and half-life by 9.56 (2.35–19.09) 
days compared to those with no positive PCR. We observed no 
effect of gender on either maximum level or antibody half-life.

Anti-Nucleocapsid Trajectories Following a Positive PCR Test

In total, 245 of the 3217 HCWs with ≥2 anti-nucleocapsid sam-
ples had a positive PCR test. And 114/128 (89%) symptomatic 
HCW seroconverted (maximum IgG titer ≥1.40), including 
11/12 (92%) who required hospital treatment, all other infec-
tions were mild. 79/117 (68%) identified through asymptomatic 
screening seroconverted. In the 52 individuals not showing ev-
idence of seroconversion, all but 1 (98%) had ≥1 antibody test 
≥14 days after their PCR-positive test, and in 29 (56%) this was 
before 90 days. PCR cycle threshold values were lower in indi-
viduals who seroconverted (Supplementary Table 4).

Table 2.  Univariable and Multivariable Models of Determinants of SARS-CoV-2 Anti-Nucleocapsid Antibody Trajectories

Univariable Model Multivariable Model

Posterior Mean 95% CrI Posterior Mean 95% CrI

Baseline model Maximum antibody level (intercept) 4.26 4.07 4.44 3.33 3.02 3.67 

Antibody level half-life 85.38 81.17 90.01 69.94 63.74 77.19 

Gender model Maximum antibody level (intercept): Female 4.24 4.04 4.46    

Antibody level half-life: Female 84.88 80.14 90.25    

Change in intercept: Male .03 −.40 .47 −.05 −.34 .25 

Change in half-life: Male 1.95 −8.26 13.12 −.40 −5.66 5.30 

Age model Maximum antibody level (intercept): 41 years (median) 3.82 3.56 4.10    

Antibody level half-life: 41 years (median) 75.27 69.71 81.46    

Change in intercept: per 10-year older .21 .10 .30 .17 .07 .25 

Change in half-life: per 10-year older 4.07 2.52 5.17 3.40 1.79 4.62 

Ethnicity model Maximum antibody level (intercept): White 4.03 3.82 4.24    

Antibody level half-life: White 81.48 76.69 86.66    

Change in intercept: Black .48 −.30 1.37 .37 −.21 1.03 

Change in intercept: Asian .83 .32 1.34 .54 .18 .95 

Change in intercept: Other .59 −.10 1.37 .44 −.07 1.00 

Change in half-life: Black 7.03 −11.41 31.13 2.63 −6.92 15.03 

Change in half-life: Asian 14.64 1.54 29.29 6.28 −.44 14.76 

Change in half-life: Other 14.85 −3.12 38.26 8.24 −1.13 20.55 

Prior symptom model Maximum antibody level (intercept): No 3.90 3.64 4.16    

Antibody level half-life: No 83.57 77.38 90.61    

Change in intercept: Yes .60 .24 .96 .40 .12 .69 

Change in half-life: Yes 2.85 −5.99 11.59 .26 −4.52 5.19 

PCR model Maximum antibody level (intercept): No 4.09 3.87 4.32    

Antibody level half-life: No 80.23 75.48 85.28    

Change in intercept: Positive (symptomatic) .65 .17 1.16 .30 −.04 .67 

Change in intercept: Positive (asymptomatic) .23 −.31 .81 .14 −.24 .55 

Change in half-life: Positive (symptomatic) 19.60 7.22 35.66 9.56 2.35 19.09 

Change in half-life: Positive (asymptomatic) 13.49 −.31 30.37 6.45 −.86 15.85 

Posterior mean and 95% credibility intervals for the maximum antibody level (model intercept) and antibody half-life (model slope) are shown. See Supplementary Table 3 for other model 
parameters and statistical analysis quality metrics.

Abbreviations: CrI, credibility interval; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Data from PCR-positive individuals who seroconverted 
were used to model antibody trajectories relative to a first pos-
itive PCR test. Antibody levels rose to a peak at 24 (95% CrI 
19–31) days post-first positive PCR test, before beginning to fall 
(Supplementary Figure 6). Comparing with the antibody tra-
jectory estimated in the main analysis, the estimated rates of 
waning were consistent between the 2 models. Antibody trajec-
tories were similar in those being tested following symptoms or 
during asymptomatic screening (Figure 4).

Anti-Spike Trajectories

To enable comparison with anti-spike results and to facilitate 
comparison with studies reporting only categorical antibody 
results, we considered the proportion of seropositive individ-
uals remaining antibody-positive (as opposed to equivocal or 
negative) when observed at varying time intervals (Figure 5A, 
5C) and using an interval censored survival analysis approach 
(Figure 5B, 5D). Consistent with the model in Figure 4, the me-
dian time remaining anti-nucleocapsid IgG-positive was 166 
(95% CrI 139–214) days. In contrast, anti-spike IgG levels re-
mained above positive threshold in most seropositive HCWs 
for the duration of the study (Figure 5C, 5D), by 180 days post 
maximum anti-spike IgG level an estimated 94% (95% CrI 
91–96%) remained positive.

DISCUSSION

Most epidemiological outbreak models assume that SARS-
CoV-2 infection leads to the development of postinfection 

immunity for a defined duration. Here we show contrasting 
antibody trajectories in 608 symptomatic and asymptomatic 
HCWs seropositive for anti-nucleocapsid and/or anti-spike 
antibodies followed for a median of 4 months from their max-
imum IgG titer. We show anti-nucleocapsid IgG levels wane with 
an estimated half-life of 85 (95% CrI 81–90) days. We observed 
variation between individuals; higher maximum observed 
anti-nucleocapsid titers were associated with longer half-lives. 
Increasing age, Asian ethnicity, and prior self-reported symp-
toms were independently associated with higher maximum 
anti-nucleocapsid levels, and increasing age and a positive PCR 
test undertaken for symptoms with longer antibody half-lives. 
In contrast, although we could not quantitively follow titers of 
anti-spike IgG, levels remained stably above the threshold for a 
positive result in 94% at 180 days post maximum titer.

IgG waning and reinfection within a year is reported for 
seasonal coronaviruses [17], whereas IgG remains detectable 
against SARS-CoV and Middle East respiratory syndrome 
coronavirus (MERS-CoV) 1–3  years later [18]. The differ-
ences we observe in SARS-CoV-2 antibody trajectories may 
be antigen and/or assay dependent; for example, stable anti-
spike antibodies with waning of anti-nucleocapsid IgG using 
the same Abbott platform as in our study was also seen in an 
earlier smaller study, but total anti-nucleocapsid antibodies as-
sayed using a Roche platform remained stable [14]. To some 
extent these findings are conditional on assay cutoffs which 
can be tuned to prioritise sensitivity or specificity, with inher-
ently more specific assays having potential to also be set more 
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Figure 4.  Comparison of SARS-CoV-2 anti-nucleocapsid IgG antibody levels following a positive PCR test and the maximum IgG level per individual in those with a posi-
tive PCR test. A, Those with a positive PCR undertaken for symptoms; B, those with a positive PCR for asymptomatic screening. The x-axis value for the model starting from 
the maximum IgG level is aligned to the maximum point from the model starting with a positive PCR test. Model starting from a positive PCR is fitted with a 5-knot spline (3 
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sensitively, resulting in apparently longer durations of detect-
able antibody responses.

For anti-nucleocapsid, we observe higher IgG titers with 
longer durability occurring after symptomatic PCR-positive 
infection, consistent with data from Long et al, where 40% of 
asymptomatic individuals and 13% of the symptomatic group 
became negative for IgG in the early convalescent phase [19] 
and consistent with emerging coronaviruses, where antibody 
titers remained detectable longer after more severe illness [18], 
waning more rapidly after asymptomatic infection.

Relatively short-term anti-nucleocapsid IgG responses have 2 
epidemiological consequences. First, antibody waning may lead 
to under-ascertainment of previous infections within the cur-
rent pandemic, particularly in younger individuals following 
asymptomatic/mild infection. Additionally, IgG testing is un-
likely to determine whether SARS-CoV-2 has circulated histor-
ically, for example, in a particular geographic region.

Older age (within this cohort of working age HCWs, up to 
69  years) was associated with higher maximum observed anti-
nucleocapsid IgG titers and longer half-lives, with similar find-
ings associated with Asian ethnicity (many of the Asian HCWs in 
our study came to work in the UK healthcare system as adults). 
It is possible to hypothesize that this could arise from boosting of 
cross-reactive anti-nucleocapsid antibodies from prior exposure, 
for example, to a previously circulating or geographically restricted 
human coronavirus. However, anti-nucleocapsid cross-reactivity 
between endemic coronaviruses and other epidemic corona-
viruses, SARS-CoV and MERS-CoV, is uncommon [18, 20].

Limitations

The assays we used could only measure quantitative trajec-
tories for anti-nucleocapsid IgG, further studies, for example, 
using multiple serum dilutions, are required to quantify anti-
spike IgG over time. We therefore cannot say whether the 
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Figure 5.  Proportion of HCWs remaining anti-nucleocapsid IgG (A–B) and anti-spike IgG (C–D) antibody positive by days following their maximum antibody level. Panels 
A and C show the observed proportion in 30-day intervals with binomial 95% confidence intervals. Number of individuals tested and the number of individuals remaining 
antibody positive is shown at the base of each bar. Panels B and D show the results of Bayesian interval censored survival analyses, the posterior mean and 95% credibility 
interval are shown. Abbreviations: HCW, healthcare worker; IgG, immunoglobulin G; PCR, polymerase chain reaction.
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longer duration of positive anti-spike responses is due to slower 
waning or higher initial levels relative to assay cut-offs. Another 
limitation of our study was that our cohort of individuals con-
sisted of adults of working age (17–69 years); further longitu-
dinal studies will be required to investigate younger and older 
age groups. The small numbers of self-reported Black (n = 25) 
and other (n = 36) ethnicities reduced/limited power to de-
tect an association between these ethnicities and antibody tra-
jectories. We also do not account for mediators, for example, 
socioeconomic inequalities, that may link ethnicity to anti-
body responses in the absence of a direct causal relationship. 
Due to many of our staff developing symptoms before wide-
spread SARS-CoV-2 PCR testing was available, only 34% of the 
anti-nucleocapsid-positive cohort had a documented positive 
PCR, and as a proportion of the cohort were asymptomatic 
throughout, we modeled time from maximum positive anti-
body test rather than time from first positive PCR or time from 
symptom onset in our main analysis of antibody durability. 
However, under an exponential assumption, half-lives can be 
estimated from any measurements taken after a maximum; we 
excluded individuals with only evidence of rising titers to avoid 
underestimating half-lives. Furthermore, data from those that 
were PCR positive were consistent with this analysis (Figure 4).

Multiple different assays are in use globally to characterize 
antibody responses to SARS-CoV-2. Here we study only 2; how-
ever, other antibody classes and targets, and aspects of immu-
nity, including the innate and cellular responses, are important 
in conferring postinfection immunity [21]. When comparing 
longitudinal studies of antibody durability, care must be taken, 
as the various assays have not yet been cross-calibrated, and im-
plications for protective immunity are not fully understood.

Implications

It is widely recognized that pathogen-specific IgG levels decline 
after the acute phase of an infection. After the initial humoral 
response in which short-lived plasmablasts secrete high titers 
of antibody, long-lived plasma cells and memory B cells then 
contribute to longer-term antibody-mediated protection [22]. 
Although declines in IgG titers are expected, understanding the 
assay-dependent rate of decline, whether and when titers fall 
below assay positive cutoffs, and how these titers relate to pro-
tection from subsequent asymptomatic and symptomatic rein-
fection is crucial.

Serological testing also helps quantify the extent of infection 
in populations, informing epidemiological models and public 
health strategies. However, waning antibody levels may lead to 
underestimated exposure due to loss of seropositivity. For ex-
ample, using the anti-nucleocapsid assay, an estimated 33% of 
individuals seroreverted (ie, fell below the positive cutoff for the 
Abbott assay) within 3  months of IgG detection and an esti-
mated 53% of individuals by 6 months (Figure 5B). Therefore, 
depending on the assay used, seroepidemiological surveys 

performed several months into this pandemic may have under-
estimated prior exposure, especially in younger adults who lose 
detectable antibody faster. Our findings contrast with the re-
peated cross-sectional REACT2 study [23], which reported 
greater reductions over time at a population level in the propor-
tion of adults ≥65 years testing antibody-positive and more sus-
tained responses in those 18–24 years. Nearly all HCWs in our 
study were <65  years; other differences may arise from study 
design, the assay used, and the potential for new infections pre-
dominantly in younger people [24] to replace others who had 
seroreverted, supporting population-level seroprevalence (in 
our study each individual was followed up separately).

Future Work

Antibody dynamics have significant implications for the 
course and management of pandemics. Durability of immunity 
postinfection and postvaccination will dictate the overall course 
of the pandemic. Further work is required to determine how 
prior infection and/or vaccination impacts the probability of 
future infection and severity of subsequent disease, determine 
the antibody-based correlates of this protection, and therefore 
the ability of serological tests to identify those who are immune. 
Longitudinal cohorts with baseline immunology are required 
to determine immune correlates of protection, to determine 
whether measurement of the current antibody status is enough 
to infer whether an individual have functional immunity or not, 
whether waning IgG titers are representative of waning immune 
protection, or whether protection remains even after an indi-
vidual seroreverts.

CONCLUSION

We demonstrate that the half-life of SARS-CoV-2 anti-
nucleocapsid IgG antibody responses in a cohort of adult 
HCWs is 85 days and varies between individuals by age, eth-
nicity, and prior symptom history. In contrast, anti-spike IgG 
responses were sustained in most HCWs up to 180 days. The 
extent and duration of immunity to SARS-CoV-2 infection fol-
lowing COVID-19 and its association with antibody titers re-
mains a key question to be answered.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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