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Autocrine transforming growth factor- b growth pathway in murine
osteosarcoma cell lines associated with inability to affect
phosphorylation of retinoblastoma protein
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Abstract
Purpose. Production of active transforming growth factor-b (TGF-b ) by human osteosarcoma may contribute to malignant
progression through mechanisms that include induction of angiogenesis, immune suppression and autocrine growth stimula-
tion of tumor cell growth. To study events associated with induction of cell proliferation by TGF-b , we have evaluated the
TGF-b pathway in two murine osteosarcoma cell lines, K7 and K12.
Results. Northern and immunohistochemical analyses show that each cell line expressesTGF-b 1 andTGF-b 3 mRNA and
protein. Both cell lines secrete active TGF-b 1 and display a 30± 50% reduction in growth when cultured in the presence of
a TGF-b blocking antibody. Expression of TGF-b receptors Tb RI, T b RII and T b RIII is demonstrated by affinity labeling
with 125I-TGF-b 1, and the intermediates, Smads 2, 3 and 4, are uniformly expressed. Smads 2 and 3 are phosphorylated in
response to TGF-b , while pRb phosphorylation in each osteosarcoma cell line is not affected by either exogenousTGF-b or
TGF-b antibody.
Conclusions. The data implicate events downstream of Smad activation, including impaired regulation of pRb, in the lack
of a growth inhibitory response toTGF-b , and indicate that this murine model of osteosarcoma is valid for investigating the
roles of autocrineTGF-b in vivo.
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Introduction

Transforming growth factor-b (TGF-b ) is a pleio-
tropic cytokine that is highly abundant in bone and is
involved in various aspects of bone cell biology
including replication, differentiation, osteogenesis and
resorption.1 Both stimulatory and inhibitory effects
of TGF-b on the growth of cell lines derived from
normal osteoblasts and osteosarcoma cells have been
reported in the literature.2± 6 The mechanisms
responsible for the variable effects of TGF-b on
growth of osteoblastic cell lines are not clear. The
recent reports suggesting a correlation between
severity of disease and TGF-b expression in osteosa-
rcoma, as assessed by immunohistochemistry in tissue
samples, support the hypothesis that TGF-b plays a
role in the pathogenesis of this malignant bone
tumor.7± 9 An understanding of the mechanisms
mediating the effects of TGF-b on the growth of
osteosarcoma cells may give insight into the biology
of this tumor.

Three mammalian isoforms of TGF-b (TGF-b 1,
-b 2 and -b 3) have been identi® ed with nearly identical
biological activity in vitro, and overlapping patterns
of expression in vivo. TGF-b 1 is widely expressed in
most tissues throughout development and in the adult
organism, while TGF-b 3 is most strongly expressed
in tissues of mesenchymal origin.Though they share
overlapping activities in most culture systems,
TGF-b 3 is 3- to 10-fold more potent on a molar
basis than TGF-b 1 or TGF-b 2 in fetal rat bone and
in rat osteosarcoma cultures.1,10

The three isoforms signal through the same receptor
complex but with different binding affinities.11± 13

Three major classes of receptors have been identified
for TGF-b , namely a type I and type II receptor
(T b RI andTb RII) and betaglycan (T b RIII).The type
III receptor is a large cell surface proteoglycan whose
function is unclear, though it may be involved in the
presentation of ligand to the type II receptor.14,15

The T b RI and T b RII are transmembrane serine/
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threonine kinases. Upon ligand binding, the type II
receptor phosphorylates the type I receptor, which
mediates downstream signaling through the Smad
family of proteins.16 The pathway-restricted Smad2
and Smad3 proteins are phosphorylated by the type I
receptor and then form a complex in the cytoplasm
with Smad4, a signaling component common to many
TGF-b family proteins.This complex translocates to
the nucleus and mediates activation of target
genes.17± 21 The convergence of the TGF-b pathway
with vitamin D signaling pathways through Smad
transcriptional activators implicates their importance
in modulating bone mineralization and bone
growth.22,23

TGF-b appears to chie¯ y block progression through
the mid/late G1 phase of the cell cycle by affecting
expression and function of a number of cell cycle
regulatory proteins.24,25 TGF-b has been shown to
either downregulate expression or decrease the activity
of cdk2, cdk4 and cyclin E. In addition,TGF-b treat-
ment induces the expression and functional activity
of the cyclin-dependent kinase inhibitors (CDKIs).
p15INK4B and p21Cip1 are upregulated in a variety of
cell types, whereas the distribution of p27Kip1 is
altered in response to TGF-b .26± 28 These alterations
in cdks, cyclins and CDKIs block entry into the S
phase of the cell cycle by directly and indirectly
preventing the phosphorylation of the retinoblas-
toma protein (pRb).29± 31

The TGF-b ligands and signaling intermediates
play complex roles in tumorigenesis. Altered expres-
sion and mutational inactivation of theTGF-b recep-
tors and downstream effectors, including Smad2 and
Smad4, have been shown to prevent the growth inhibi-
tory effects of TGF-b and contribute to enhanced
tumorigenesis.32± 36 However, the role of TGF-b
ligands in carcinogenesis appears to be more complex,
and is in part attributed to the pleiotropic activity of
TGF-b , including the ability to act as an autocrine,
paracrine and sometimes endocrine growth factor.
TGF-b has been shown to be involved in tumor inva-
sion and metastasis, stromal matrix formation, immu-
nosuppressionand angiogenesis.37± 40Tumor cells that
become resistant to the growth inhibitory effects of
TGF-b often secrete an active form of the protein,
which acts in a paracrine fashion to promote tumor
progression by virtue of such effects on surrounding
tissues.41 Indeed, in murine models of carcinogenesis
involvingTGF-b 1 heterozygote knock-out mice, loss
of heterozygosity at theTGF-b 1 locus does not occur
within tumor tissue, presumably due to the selective
allelic retention and probable promoting effects of
TGF-b 1 in the tumor microenvironment.42

In this report, we describe the patterns of TGF-b
expression and the response to this cytokine in two
clonal murine osteosarcoma cell lines, K7 and K12,
derived from a single spontaneously occurring tumor
in a BALB/c mouse. These two cell lines exhibit
distinct morphologic and biologic differences. The

histology as well as the biology of these cell lines
injected into immunocompetent mice mimic those of
human osteosarcoma. The tumors are aggressive,
produce osteoid, express bone markers and have
varying metastatic potential.43 Using this murine
model for human osteosarcoma, we examine
components of theTGF-b pathway frequently altered
in human tumors, including the receptors, Smad
proteins and the retinoblastoma protein. The results
show that TGF-b acts as an autocrine growth factor
in this murine model of osteosarcoma, stimulating
proliferation in both K7 and K12 cell lines.The data
also represent the ® rst evidence for normal ligand-
induced phosphorylation of Smad2 and Smad3 in
osteosarcoma, and show that the disruption of these
events does not underlie the altered regulation of
retinoblastoma protein phosporylation in osteosar-
coma.

Materials and methods

Cell lines

K7 and K12 are two clonal cell lines that were
established and characterized by Schmidt et al. from
a single spontaneously occurring murine osteosar-
coma.43 Cell lines were grown in Dulbecco’s modi-
® ed Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 100 U/ml penicillin,
100 m g/ml streptomycin and 2 mM L-glutamine at
37 Ê C and 5± 6% CO2. The TGF-b sensitive Mv1Lu
(CCL64) cells were maintained subcon¯ uent in
DMEM (high glucose) containing L-glutamine, 10%
FBS and 1% penicillin/streptomycin.

TGF-b assays

Conditioned media preparation. A total of 3 3 106 oste-
osarcoma cells (K7 and K12) were cultured for up to
48 h in 2 ml of serum-free medium, supplemented
with 5 ml ITS+ (insulin, transferrin, selenium) culture
supplement (Collaborative Biomedical,Bedford,MA,
lot no. 901837). Culture supernatants were collected,
centrifuged at 10 000 3 g at 4 Ê C to pellet any cells or
debris, and supernatant was transferred to sili-
conized tubes with protease inhibitors (leupeptin,
pepstatin and aprotinin, 1 mg/ml) and stored at
± 70 Ê C.

TGF-b bioassay. A modi® ed Mv1Lu bioassay was
used. Cells were plated at 1 3 104 cells/well in 96 well
plates with 200 m l of DMEM containing 10% FBS,
and incubated for 8± 12 h at 37 Ê C to ensure complete
adherence. Media was aspirated and replaced with
serial dilutions of each conditioned media (diluted in
DMEM with 0.5% FBS), in the presence or absence
of 30 m g/ml of either the pan-speci® c mouse mono-
clonal anti-TGF- b blocking antibody 1D11
(Genzyme, Cambridge, MA) or control IgG;
additional wells were treated with media plus TGF-b
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standard concentrations in a total volume of 150 m l/
well (each condition was performed in triplicate).
Plates were subsequently incubated for an additional
24 h, and 1 mCi of [3H]thymidine was added for the
® nal 2 h of the incubation. Media was aspirated and
replaced with 50 m l of Trypsin-ethylene-
diaminetetraacetic acid (EDTA)/well, and cells were
incubated for 30 minutes at 37 Ê C prior to harvesting
onto 96-well ® lter plates which were processed with a
Top Count Microplate Scintillation Reader according
to manufacturer’s instructions (Packard Instrument
Company, Meriden, CT).

TGF-b enzyme-linked immunosorbent assay (ELISA)
assay. Performed using an TGF-b 1 immunoassay
kit (R&D Systems, Minneapolis, MN).44

Immunohistochemical detection of TGF-b isoforms in
tumor tissue

Tumor tissue was ® xed in neutral buffered formalin
and embedded in paraffin. Sections 5 m M thick were
stained with hematoxylin and eosin for routine
histology. Additional sections were evaluated with
isoform-speci® c anti-TGF- b antibodies directed
against TGF-b 1, TGF-b 2 and TGF-b 3, followed by
peroxidase staining as previously described.45± 47

TGF-b blocking studies with antibody and latency-
associated peptide

K7 and K12 cell lines were plated in triplicate in 96
well plates in DMEM with 10% FBS at a density of
5 3 103/well and 7.53 103/well, respectively. Twenty-
four hours later, cells were washed twice with 1XPBS
(phosphate buffered saline without calcium and
magnesium,pH 7.4) and incubated with pan-specific
anti-TGF- b antibody or recombinant TGF- b 1
latency-associated peptide (LAP) in 200 m l of 0.5%
FBS, DMEM and 2 m l of ITS+premix containing
insulin, transferrin, selenious acid, bovine serum
albumin (BSA) and linoleic acid (Beckton Dickinson
Labware, Bedford, MA); 10 m g/ml class-matched
mouse IgG1, k (MOPC-21) (Sigma BioSciences, St
Louis, MO), was used as control. Media was changed
every 48 h. Cells were harvested at 48, 72 and 96 h
after treatment. Cell number was determined using
colorimetric MTT (3-(4,5-diMethylThiazol-2-yl)-
2,5-diphenylTetrazolium bromide) (Sigma Chemical
Co., St Louis, MO) assay as previously described.48,49

Absorbencies were measured on each test well on a
Titertek enzyme-linked immunosorbent assay reader
using a test wavelength of 570 nm and a reference
wavelength of 690 nm.The optical density measure-
ments were converted to cell number using a standard
curve.

Studies with exogenous TGF-b 1

K7 and K12 cell lines were plated in triplicate in 96
well plates in DMEM with 10% FBS at a density of

5 3 103/well and 7.5 3 103/well, respectively. Twenty-
four hours later, cells were washed twice with 1XPBS
and incubated with 10 ng/ml of TGF-b 1 in 200 m l of
serum-free DMEM, and ITS+premix. The control
cells were treated with HB buffer (4 mM HCl and
1 mg/ml BSA). HB buffer is the vehicle for the exog-
enous TGF-b . Cells were harvested at 24 and 48 h
after treatment. Cell number was determined using
MTT assay as described above.

Western blot analysis

Cells were grown to approximately 50± 60% con¯ u-
ency. The cells were washed twice with 1XPBS and
switched to serum-free media. After 24 h the media
was changed to 5% FBS and DMEM plus the
designated treatment (10 ng/ml TGF-b 1, 10 ng/ml
TGF-b 3, HB buffer, MOPC, 5 m g/ml antibody to
TGF-b or no treatment). Cells were harvested after
24 h of incubation. A standard Western blotting
procedure as described by Pharmingen (San Diego,
CA) was used except that the primary antibody was
diluted in 1% gelatin in PBS, 0.1% azide and the
secondary antibody was diluted in 1% gelatin in PBS.
The speci® c antibodies used were as follows: purified
mouse anti-human Rb antibody protein (catalog no.
14001A, Pharmingen, San Diego, CA), mouse mono-
clonal anti-Smad4 (B-8) (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA) and anti-mouse horseradish
peroxidase (HRP) conjugated IgG (light and heavy
chain) polyclonal antibody (Santa Cruz Biotech-
nology, Inc., Santa Cruz, CA). The concentration of
protein for each sample was determined using
Bio-Rad DC Protein Assay (BIO-RAD Laboratories,
Hercules, CA).

TGF-b receptor cross-linking

Osteosarcoma cells were grown to con¯ uence in six
well plates, washed three times in ice cold binding
buffer (DMEM high glucose, 25 mM Hepes, pH 7.4,
1 mg/ml BSA), and incubated in 2 ml of the same
buffer plus 125I-TGF-b 1 (0.35 m Ci; Dupont/NEN,
Boston, MA) with or without an excess of unlabeled
TGF-b 1 (120 ng) to compete for speci® c binding of
radiolabeled ligand.Plates were incubated on a rocker
at 4 Ê C for 2.5 h, washed three times in cold wash
buffer (DMEM, 25 mM Hepes, pH 7.4) and
incubated in 1 ml of the same buffer containing 3 mM
disuccinimidyl suberate (Pierce, Rockford, IL). After
incubating for 1 h at 4 Ê C, cells were washed three
times in cold sucrose buffer (250 mM sucrose,10 mM
Tris, pH 7.4, 1 mM EDTA) and lysed in 200 m l of
1XRIPA (1XPBS, 1% NP40, 0.5% sodium deoxycho-
late, 0.1% SDS) with protease inhibitors (200 nM
AEBSF, 1 m g/ml leupeptin, pepstatin and aprotinin)
added immediately prior to cell lysis. Radiolabeled
proteins were separated on 8%Tris-Glycine polyacry-
lamide gels (NOVEX, San Diego, CA). Gels were
dried and exposed to Kodak Xomat ® lm (Kodak,
Rochester, NY).
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Smad immunoprecipitation

Cells were grown to con¯ uence in 100 mm tissue
culture dishes, washed twice with phosphate-free
DMEM and incubated with 2 ml phosphate-free
DMEM and 0.75 mCi [32P] orthophosphate at 37 Ê C
in an incubator for 90 minutes; 10 ng/ml of TGF-b 1
and 10 ng/ml ofTGF-b 3 was added to the designated
plate for each cell line and incubated for another 30
minutes. Cells were washed with cold PBS, counted,
lysed with RIPA buffer (plus protease inhibitors) and
incubated at 4 Ê C for 30 minutes. Cells were then
harvested with cell scrapers and spun at 12 000 r.p.m.
at 4 Ê C for 20 minutes. Supernatant was stored at
± 70 Ê C until ready to use. Protein G (50 m l per reac-
tion) (Santa Cruz Biotechnology, Inc.,Santa Cruz,CA)
with Smad2 (1 m g per reaction) mouse monoclonal
antibody (catalog no. S66220, Transduction
Laboratories, Lexington, NY) or MOPC-21 (1 m g per
reaction) was incubated overnight at 4 Ê C on a shaker;
50 m l of protein G plus the antibody was mixed with
one-third of the protein lysates (exact amount was
adjusted for cell count), and incubated with continuous
shaking at 4Ê C.The immunoprecipitates were collected
by centrifugation at 2500 r.p.m. for 5 minutes at 4Ê C.
The pellet was washed four times with PBS, resus-
pended in Tris-Glycine SDS sample buffer (NOVEX,
San Diego, CA), and boiled for 5 minutes.The agarose
beads were pelleted by centrifugation and the superna-
tant was loaded on an 8%Tris-Glycine polyacrylamide
gel. Electrophoresis was carried out at 125 V. The gel
was dried and exposed to Kodak BioMax Light Film
(Kodak, Rochester, NY).

Results

TGF-b is an autocrine growth factor in K7 and K12
cells

Expression of bothTGF-b 1 andTGF-b 3 mRNA was
detected by Northern analysis ( b 1> b 3) in both K7
and K12 cell lines, while there was no detectable
expression of TGF-b 2 (data not shown). Immunohis-
tochemical studies of sections from tumors of K7
and K12 grown in a syngeneic mouse strain reveal
abundant expression of both TGF-b 1 and TGF-b 3,
with no detectable TGF-b 2 protein (Fig. 1).

Culture of both K7 and K12 in serum-free condi-
tions revealed the production of active TGF-b by both
cell lines. Using an ELISA assay, we determined the
level of TGF-b 1 secreted into conditioned media over
a 48 h period to be 8.38 ng/ml for K7 and 0.94 ng/ml
for K12. TGF-b is secreted as a latent precursor by
most normal cells, but is produced in an active state by
a variety of tumors. Inhibition of the growth of mink
lung epithelial (Mv1Lu) cells was used to con® rm the
presence of active TGF-b in conditioned media, and
reveals that 40± 50% of theTGF-b secreted by K7 and
K12 is in the active form (Fig. 2).

We next sought to determine whether the endog-
enously secretedTGF-b had any autocrine biological

activity. Growth of either K7 or K12 in the presence
of 5 m g/ml or 10 m g/ml of a pan-speci® c blocking
monoclonal antibody resulted in a 50% reduction in
cell number when compared to their growth in the
presence of an IgG control antibody. (Fig. 3A, B).
Concentrations of antibody up to 30 m g/ml did not
result in further growth inhibition (data not shown).
To con® rm this autocrine stimulatory effect of
endogenousTGF-b on cell growth, K7 and K12 cells
were treated with recombinantTGF-b 1 LAP, a potent
inhibitor of biologically active TGF-b .50 Treatment
with 250 ng/ml of LAP resulted in 38% and 32%
decrease in growth of K7 and K12 cells respectively,
when compared to PBS-treated control cultures (Fig.
3C, D).

Mitogenic response to exogenous TGF-b in K7 and
K12 cells

Though both K7 and K12 cells secrete TGF-b , the
effect of exogenousTGF-b on their growth was also
examined. Exposure of K7 and K12 cell cultures
grown in serum-free media to 10 ng/ml of TGF-b 1
resulted in a greater than 60% increase in the rate of
growth in each cell line, when compared to the
solvent-treated control cultures (Fig. 4).

TGF-b receptors

Abnormalities in the expression of both T b RI and
T b RII have been reported in primary human tumors,
and in established tumor cell lines that are insensitive
to growth inhibitory effects of TGF-b . To assess the
receptor status in the K7 and K12 cell lines, an 125I
labeledTGF-b 1 affinity binding assay was performed.
All three TGF-b receptors are present on the cell
surface in each cell line, and appear at the expected
size (Fig. 5). Interestingly, there is an additional band
that migrates between the T b RII and T b RIII in both
cell lines, though more prominent in K12 than in K7.
Immunoprecipitation of this band with an antibody
to betaglycan suggest that this band may represent an
alternately glycosylated form of Tb RIII (data not
shown).

Phosphorylation of Smad2 similar in Mv1Lu and oste-
osarcoma cell lines

The established role of both Smad2 and Smad4 as
tumor suppressor genes highlights the importance of
their function in conveying the growth inhibitory
signals from TGF-b family ligands.Their function in
the mitogenic response to TGF-b in osteosarcoma is
not known.We ® nd no difference in the phosphoryla-
tion of Smad2 in response to TGF-b inhibition of
Mv1Lu (CCL64) cell growth or the mitogenic
response of either osteosarcoma cell line (Fig. 6). A
smaller band just below Smad2 was detected in the
TGF-b -treated cells in the [32P] orthophosphate
labeled immunoprecipitates with anti-Smad2. This
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Figure 1. Expression of TGF-b isoforms in murine K7 osteosarcomas, both in primary (A, C, E, G) and pulmonary (B, D, F, H)
metastatic tissue. Immunostaining of sections with the LC antibody to TGF-b 1 reveals intracellular localization (A, B), while staining
with the CC antibody toTGF-b 1 (E, F) generates the typical pattern of extracellular matrix-associated localization frequently observed
with this antibody, primarily in areas where osteoid is also observed (asterisk in E).The anti-TGF-b 3 antibody (C, D) also strongly
reacts with tumor cells and can be seen in normal columnar epithelia of the lung for comparison (arrowhead in D). Immunostaining of
sections with normal rabbit serum (G, H) are the negative controls. Comparable results were obtained for tumors derived from K12 cells.
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slightly smaller band is the appropriate size for Smad3,
which is highly homologous with Smad2 and reacts
with the antibody used for immunoprecipitation.
Smad 4 was also detected in K7 and K12 cells, at
levels similar to that found in CCL64 cells (Fig. 7).

Phosphorylation of pRb in response to TGF-b

An important target in the growth arrest response to
TGF-b in Mv1Lu cells is pRb, which is maintained in
a dephosphorylated state following exposure to this
cytokine.To assess the pattern of pRb phosphorylation
in response toTGF-b in K7 and K12 cells, we cultured
each in the presence of either exogenousTGF-b 1 or a
TGF-b blocking antibody. Neither treatment affects
the phosphorylation state of pRb in either K7 or K12.
However, as previously described,pRB is dephosphor-
ylated in Mv1Lu in response to TGF-b (Fig. 8).

Discussion

In the present study, we show that TGF-b acts as an
autocrine stimulator of growth in two murine oste-
osarcoma cell lines, K7 and K12. Our experiments

Figure 3. Effect of pan-speci® cTGF-b monoclonal antibody (A and B) and LAP (C and D) on the growth of K7 and K12 osteosa-
rcoma cell lines.K7 and K12 cells were plated in media containing 10% FBS at a density of 53 103/well and 7.53 103/well, respectively.
Twenty-four hours later, the cells were incubated with 10 mg/ml or 5 mg/ml anti-TGF-b monoclonal mouse anti-TGF-b 1,-b 2, -b 3 IgG1
or 250 ng/ml recombinant TGF-b 1 LAP in media containing 0.5% FBS; 10 mg/ml class-matched mouse IgG1, k (MOPC-21), was
used as control for the antibody and PBS was used as a control for LAP. Cells were harvested at 48, 72 and 96 h after treatment. Cell
number was assayed using a colorimetric MTT assay.The optical density measurements were converted to cell number using a standard

curve.The bars indicated represent standard deviation from the mean of triplicate samples.

Figure 2. Production of activeTGF-b by K7 and K12 murine
osteosarcomas was determined by a bioassay with the TGF-b -
sensitive mink lung epithelial cell line CCL64.CCL64 cells were
plated at subcon¯ uence. Growth in normal media (black bars)
was compared with growth in the presence of a 10-fold dilution
of media conditioned by each osteosarcoma cell line (CM, white
bars) as described in `Materials and methods’ .The addition of a
pan-speci® cTGF-b blocking antibody to CM (gray bars) results
in the reversal of inhibition of CCL64 cells by CM.The speci® -
city of inhibition is indicated by the inability of control IgG to
block the effects of CM.Treatment of CM at 80Ê C for 8 minutes
activates any latent TGF-b produced by the osteosarcoma cells,

and leads to further inhibition of the growth of CCL64 cells.
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show that the major proximal elements in the TGF-b
signaling pathway are intact, namely theTGF-b recep-
tors and Smads 2, 3 and 4. However, while ligand-
induced phosphorylation of Smads 2 and 3 is
associated with a reduction of phosphorylated pRb
and growth arrest in mink lung epithelial cells
(CCL64), culture of either K7 or K12 in the pres-
ence of either exogenous TGF-b or antibody to
TGF-b has no effect on pRb phosphorylation status.
The data suggest that the resistance to the growth
inhibitory effect of TGF-b in these osteosarcoma cell
lines results from the inability of normal receptor-
initiated events to affect the phosphorylation of pRb.
However, since TGF-b treatment did not alter the
phosphorylation status of pRb, the mechanism for

the growth stimulatory effects of TGF-b on these
cells remains unclear.

The retinoblastoma protein has been established
as an important mediator of growth inhibition in
response to TGF-b . Herrera et al. showed that under
certain growth conditions ® broblasts derived from
RB-de® cient mouse embryos (RB± /± ) had a stimula-
tory growth response to TGF-b .51 In addition,
abnormalities in the retinoblastoma gene are found
in greater than 50% of osteosarcomas, and are
believed to play a role in the pathogenesis of this
tumor.52,53 Alterations in the pathway controlling

Figure 4. Effect of exogenous TGF-b 1 on K7 (A) and K12
(B). K7 and K12 cell lines were plated in media containing
10% FBS at a density of 5 3 103/well and 7.5 3 103/well,
respectively. Twenty-four hours later, cells were incubated with
10 ng/ml of TGF-b 1 in serum-free media.The control cells were
treated with 4 mM HCl and 1 mg/ml BSA (vehicle for the
exogenous TGF-b ). Cells were harvested at 24 and 48 h after
treatment. Cell number was assayed using MTT assay. The
optical density measurements were converted to cell number using
a standard curve.The bars indicated represent standard devia-

tion from the mean of triplicate samples.

Figure 5. TGF-b receptors in K7 and K12 cells.Osteosarcoma
cells were incubated for 2.5 h with 125I labeled TGF-b 1 with
and without excess of unlabeled TGF-b 1. Cells were lysed after
a 1 h incubation with cross-linker.The proteins were separated
on 8% Tris-Glycine polyacrylamide gels, dried and exposed to
Kodak ® lm. Each of the receptors is designated with a thin black
arrow. An unexpected band migrating between the type II and

type III receptor is noted with an open arrow.

Figure 6. Phosphorylation of Smad2 in CCL64 and K7 cells.
Designated cells were metabolically labeled with [32P] orthophos-
phate, treated for 30 minutes with 10 ng/ml of TGF-b 1 or
TGF-b 3, and then immunoprecipitated with anti-Smad2 or
mouse IgG. Precipitates were analyzed on a 6% Tris-Glycine
polyacrylamide gel, dried and exposed to Kodak ® lm. Phospho-
rylated Smad2 is indicated with a closed arrow. The smaller
band indicated with the open arrow probably represents Smad3.
Similar results were obtained for K12 cells (data not shown).
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phosphorylation of pRb may account for the lack of
growth inhibitory response toTGF-b observed in our
cell lines and would be functionally analogous to
mutations found in human osteosarcomas. In the
human osteosarcomas where there is no mutation in
pRb detected one has to wonder if there are pertur-
bations in the Rb pathway. Our mouse model for
osteosarcoma allows one to study this possibility since
pRb is intact but seems resistant to the growth inhibi-
tory effects of TGF-b .

Active pRb (underphosphorylated form) acts to
maintain cells in the G1 phase of the cell cycle. The
events in the G1 phase of the cell cycle leading up to
phosphorylation of pRb involve modulation of both
the activity and the levels of cyclins and cdks as well
as the cdk inhibitors. Aberrations in any of these
components can potentially affect the cellular response
to TGF-b . It has been shown that overexpression of
cyclin E54 or cyclin D30 can overcome Rb-mediated
growth arrest. Mutations in the INK family of cdk
inhibitors, p15 and p16, have been described in a
variety of malignancies including osteosarcoma.55 p15

and p16 speci® cally bind and inhibit the activity of
cdk4 and cdk6, which are key elements in phosphor-
ylation of pRb. We are currently attempting to
determine whether there is any disruption of the
downstream effectors of the growth arrest response
to TGF- b in K7 and K12 cells, particularly
components of the cell cycle machinery involved in
regulating pRb activity.

The lack of an effect of TGF-b on phosphoryla-
tion of Rb might also be a normal event in the
physiologic response of cells of mesenchymal origin
to TGF-b . Although a great deal is known about the
pathways by which cells are growth-inhibited by
TGF-b , there is little known about growth stimula-
tory pathways in normal cells. In osteoblasts derived
from rat calvaria and fetal bovine bone cells, i.e.
normal osteoblasts, both mitogenic and
non-mitogenic effects of TGF- b have been
reported.4,10,56,57 These con¯ icting reports have
been attributed to a speci® c inherent property of
osteoblasts used in each study, such as their state of
differentiation, or to differences in the cell popula-
tions and assay conditions. Based on these observa-
tions, we cannot discount the possibility that the
growth stimulatory effect of TGF-b is a normal
physiologic response to this cytokine for osteoblasts
at a particular stage of differentiation. This would
seem quite plausible since TGF-b is closely related
to the bone morphogenic proteins which promote
growth and differentiation in bone.

The disruption of TGF-b pathway in cancer has
been demonstrated at the level of Smad signal trans-
duction. Inactivating mutations and deletions have
been found in Smad2 and Smad4 genes in a number
of human cancers.32,33,58,59 The phosphorylation
of Smad2 and probably Smad3 is increased in
response to TGF-b 1 andTGF-b 3 in K7 and K12 in
the same manner as in Mv1Lu, and Smad4 is also
expressed by both cell lines. These results indicate
that the early post-receptor events occur as expected
following exposure to ligand, and that in the persist-
ence of an inactive Rb they might result ultimately
in the mitogenic response. The potential in¯ uence
of inhibitory Smads, Smad6 and Smad7, has not
yet been evaluated, but may play a role despite the
normal appearance of phosphorylated forms of
Smad2 and Smad3 following receptor activa-
tion.60,61

In summary, we report the mitogenic potential of
autocrineTGF-b as produced by two clonal murine
osteosarcoma cell lines, K7 and K12. Our analysis
predicts that this murine syngeneic tumor model is
an appropriate in vivo system for determining how
the production of TGF- b by osteosarcoma
contributes to its growth. Further study of post-
receptor signaling events will aim to identify factors
dissociating normal ligand-induced activation of
Smads in osteosarcoma from inhibition of pRb phos-
phorylation.

Figure 7. Immunoblot detection of Smad4 in K7, K12 and
CCL64 cells; 40 mg of protein from the designated sample was
run on an 8% Tris-Glycine polyacrylamide gel, transferred
overnight onto a nitrocellulose membrane and probed with mouse

monoclonal antibody to Smad4.

Figure 8. Effect of treatment of cells with TGF-b 1, TGF b -3
and anti-TGF-b on phosphorylation of retinoblastoma protein.
Cells were growth-arrested in serum-free media for 24 h prior to
the addition of 5% FBS and 24 h treatment with either
MOPC-21 (lane 1), 5 mg/ml anti-TGF-b (lane 2), HB buffer
(solvent for TGF-b ) (lane 3), 10 ng/ml TGF-b 1 (lane 4) or
10 ng/mlTGF-b 3 (lane 5);40 mg of protein from the designated
cell lines was electrophoresed on a 6% Tris-Glycine polyacryla-
mide gel, transferred onto a nitrocellulose membrane and probed

with mouse anti-human Rb monoclonal antibody.
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