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Zoonotic viruses, such as HIV, Ebola virus, coronaviruses, influenza A viruses, hantaviruses, or he-
nipaviruses, can result in profound pathology in humans. In contrast, populations of the reservoir
hosts of zoonotic pathogens often appear to tolerate these infectionswith little evidence of disease.
Why are virusesmore dangerous in one species than another? Immunological studies investigating
quantitative and qualitative differences in the host-virus equilibrium in animal reservoirs will be key
to answering this question, informing new approaches for treating and preventing zoonotic dis-
eases. Integrating an understanding of host immune responses with epidemiological, ecological,
and evolutionary insights into viral emergence will shed light on mechanisms that minimize fitness
costs associated with viral infection, facilitate transmission to other hosts, and underlie the associ-
ation of specific reservoir hosts with multiple emerging viruses. Reservoir host studies provide a
rich opportunity for elucidating fundamental immunological processes and their underlying genetic
basis, in the context of distinct physiological and metabolic constraints that contribute to host
resistance and disease tolerance.
Introduction
Emerging infectious diseases have an enormous impact on

human health (Marston et al., 2014). Viruses account for a signif-

icant proportion of emerging infections, and the majority have

zoonotic origins, including ebolaviruses, human immunodefi-

ciency virus (HIV), hantaviruses, Hendra and Nipah viruses,

severe acute respiratory syndrome (SARS) coronavirus, and

influenza A viruses (Jones et al., 2008; Taylor et al., 2001). Trans-

mission can occur directly to people from live reservoir hosts

(e.g., bat shedding of Nipah virus into date palm collection ves-

sels [Luby et al., 2006]). In other instances, exposures to novel

viruses have been associated with the butchering of reservoir

hosts, such as bush meat in SIV or simian foamy virus transmis-

sion (Hahn et al., 2000; Wolfe et al., 2004) and, recently, in the in-

dex case of the ebolavirus outbreak in the Democratic Republic

of Congo (WHO, 2014). Alternatively, transmission can be facili-

tated by intermediate hosts (e.g., Nipah virus infection of pigs in

Malaysia resulting in pig-to-pig and pig-to-human transmission

by aerosol [Parashar et al., 2000]) or can be transferred via insect

vectors, as is the case for Dengue fever and West Nile virus

(Mackenzie and Jeggo, 2013). Substantial growth in size and

mobility of human populations, along with environmental and

climate changes, and the spread of agricultural practices pro-

moting human-animal contact has led to an increased frequency
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of pathogen emergence and potential for rapid dissemination

(Karesh et al., 2012). Novel viruses are being described that

cause disease in humans, such as the recently identified Middle

East respiratory syndrome coronavirus (MERS-CoV) associated

with acute respiratory illness and renal failure (Zaki et al., 2012).

Other zoonotic viruses continue to spread into new populations,

as is the case for a current outbreak of Ebola virus in western Af-

rica, where this virus was not previously documented and where

it is having an unprecedented societal, economic, and public

health impact (Pandey et al., 2014; WHO Ebola Response

Team, 2014).

Tools to rapidly detect and sequence novel viruses have

greatly improved in recent years, facilitating their detection and

diagnosis in humans (Marston et al., 2014) and simplifying the

identification of putative reservoir hosts. For instance, the origins

of Ebola virus, although first identified in 1976, were only recently

tied to bats (Biek et al., 2006; Pigott et al., 2014). These tools are

enabling initiatives to monitor viruses in wildlife populations in

their natural habitat before they emerge in humans and other

animals (Mokili et al., 2012; Morse et al., 2012). Ecological,

epidemiological, and evolutionary processes involved in the

introduction and spread of pathogens in novel host populations

are the subject of intensive research (Antia et al., 2003; Holmes

and Drummond, 2007; Woolhouse et al., 2012). However, there
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is little understanding of the within-host immunological pro-

cesses underlying reservoir host-virus interactions, and this

issue is rarely addressed in studies of emerging viral diseases.

Yet within-host processes are ultimately critical in determining

the outcome of infection, the balance between limiting infec-

tion-associated pathology and clearing the virus, and therefore

the likelihood of transmission.

Upon cross-species jumps, viruses can result in severe or fatal

disease in the novel, non-natural hosts, while these same viruses

often appear to cause onlymild infections in their reservoir hosts.

Examples exist in which circulating viruses can be lethal in reser-

voir host populations, as is the case for rabies virus in bat popu-

lations. But even rabies virus mortality rates were recently

estimated using epidemiological models as being much lower

in their natural bat reservoir (�10%) than in other mammals

(Blackwood et al., 2013). As we will discuss, there have been

few detailed direct studies of the pathogenesis of emerging

viruses in their natural wildlife hosts, and given the notorious dif-

ficulty of measuring mortality rates in wildlife populations, some

reservoir host populations could be affected to a greater degree

than we currently understand. Longitudinal studies may reveal

fitness costs, even when the symptoms of infection are far less

pronounced than what is observed in non-natural human hosts.

One documented example is simian immunodeficiency virus in

chimpanzees (SIVcpz), the viral precursor of HIV-1 in humans.

SIVcpz leads to detectable depletion of CD4+ T cells and is asso-

ciated with shorter life spans and reduced reproductive success

of wild chimpanzees (Keele et al., 2009). Although SIVcpz infec-

tion is less pathogenic in chimpanzees than HIV-1 in humans, it

is not apathogenic. Whether this is related to the more recent

acquisition of SIV by chimpanzees as compared to the older

association of SIV with other African nonhuman primates is still

unclear (Bailes et al., 2003). In contrast, SIV infection of sooty

mangabeys and African green monkeys, two natural reservoir

hosts of SIV, despite a high prevalence in the wild and persistent

high-level viral replication, has no detectable impact on host

survival or health (Keele et al., 2009; Pandrea and Apetrei,

2010; Silvestri et al., 2003). In fact, in many cases, available

observations suggest that zoonotic viruses are able to persist in

natural reservoir populations for significant periods of time with

no overt signs of pathology.

Different viral zoonoses affecting humans are characterized by

distinct biological and clinical manifestations, with many of them

displaying a significant immunopathological component. Here,

we argue that elucidating the nature of immune responses in

individual natural hosts may inform our understanding of how

virus-host equilibria are established without substantially im-

pacting host health. Furthermore, this may provide insight into

the mechanisms of disease pathogenesis and immunity in hu-

mans. We ask whether there are fundamental immunologic

properties that govern different infection outcomes of natural

reservoir species compared to non-natural human hosts while

acknowledging that other aspects of host physiology, behavior,

or population biology may also play fundamentally important

roles. Further, we examine whether there are any immunological

principles underlying the association of specific reservoir host

species with multiple emerging viruses. Eventually, character-

izing the host-pathogen interface in key reservoir hosts may
enable us to predict which novel viruses are more likely to

pose threats to human health.

Pathogenesis of Emerging Viral Infections in Humans
The pathogenic mechanisms underlying disease manifestations

arising in humans infected with specific emerging viruses—

whether acute or chronic in nature—are diverse, complex, and

incompletely understood. Infection outcomes may vary from

resolving with only mild symptoms (e.g., simian foamy virus

[Wolfe et al., 2004]) to rapid developing severe disease that is

either fatal or cleared (e.g., ebolaviruses), whereas others are

persistent and lead to disease only after a prolonged period

(e.g., HIV). The balance between protective and pathogenic

immune responses is critical (Rouse and Sehrawat, 2010). A

pivotal role in this balance is played by innate immune effectors

that detect the presence of viral products by pattern recognition

receptors, thus initiating the host response (Iwasaki, 2012). The

specific cytokines, chemokines, and lipid mediators produced

in response to immune activation, as well as downstream adap-

tive responses that themselves can modulate the innate

response, can skew the relative balance between aggressive re-

sponses that rapidly clear infection and responses that minimize

the extent of immunopathology. Exuberant innate immune acti-

vation can also play a direct role in precipitating host organ tissue

damage (Cameron et al., 2008; Kuiken et al., 2012).

Despite a range of virus-specific mechanisms for pathogen-

esis, some common themes exist. In emerging viral infections

causing disease in humans in whom host responses have been

studied, innate immune responses are often thought to underlie

severe disease manifestations. In the acute respiratory infec-

tions with SARS CoV and influenza A, excessive innate immune

activation causes local tissue damage and compromises the

generation of protective adaptive immune responses (Kash

et al., 2006; Peiris et al., 2010). During infection with highly path-

ogenic influenza A viruses, production of inflammatory cytokines

and chemokines responsible for the recruitment of neutrophils

and mononuclear cells to the site of infection contributes to the

severity of the pulmonary disease and systemic complications

(Kuiken et al., 2012; Peiris et al., 2010). In addition, other media-

tors of inflammation, including sphingosine phosphates, also

play an important role in the immunopathogenesis of influenza

tissue damage and disease (Oldstone and Rosen, 2014). Spe-

cific virus strains such as H5N1 and the 1918 H1N1 viruses are

particularly potent in activating high-level sustained proinflam-

matory cytokine production following infection (Kash et al.,

2006; Peiris et al., 2010). Similarly, the pathogenesis of SARS in-

volves infection of important cell populations in the lung, along

with the elicitation of high levels of a range of inflammatory me-

diators (Totura and Baric, 2012). Importantly, in individuals who

resolve SARS CoV infections, evidence of active innate re-

sponses wane, and effective adaptive responses develop that

clear the infection. By contrast, individuals with poor outcomes

exhibit persistently elevated type I interferon (IFN) production,

IFN-stimulated gene (ISG) expression, and chemokine produc-

tion in association with impaired antiviral antibody responses

(Cameron et al., 2008; Totura and Baric, 2012).

For emerging viruses that cause hemorrhagic fever, dysregula-

tion of the host response, the induction of inflammatory
Cell 160, January 15, 2015 ª2015 Elsevier Inc. 21



mediators, and the impairment of adaptive immunity, in addition

to direct viral damage of host tissues, are central to pathogenesis

(Geisbert and Jahrling, 2004). In fatal human filovirus infections

(of which Ebola virus is the best studied), antigen-presenting

cells, including dendritic cells and macrophages, represent

important targets for virus infection in vivo. High levels of proin-

flammatory cytokines, chemokines, and tissue factor lead to

lymphocyte apoptosis, pathologic activation of coagulation cas-

cades, and widespread compromise of vascular integrity that

results in multiorgan failure and a septic shock-like syndrome

(Martinez et al., 2012; Misasi and Sullivan, 2014; Zampieri et al.,

2007). In infections (for instance,withWestNile virus) inwhich en-

cephalitis due to viral penetration of the blood-brain barrier leads

to neuropathology, inflammatory responses may be responsible

for blood-brain barrier compromise (Wang et al., 2004).

In HIV infection, a persistent yet ineffective host response in

the face of chronic viral replication contributes substantially to

pathogenesis. Erosion of immunocompetence was initially

thought to arise from active virus replication causing progressive

depletion of CD4+ T cell populations. However, more recent ev-

idence indicates that chronic, pleiotropic immune activation (evi-

denced by increased activation, proliferation, apoptosis, and

dysfunction across diverse immune effector cell populations)

during HIV infection is the major driver of progressive immune

deficiency leading to AIDS (Moir et al., 2011). A key contributor

to chronic immune activation in HIV is the ability of unrelenting vi-

rus replication to stimulate host innate immune responses and

the production of type I IFNs and other proinflammatory cyto-

kines (Miedema et al., 2013). The resulting compromised infec-

tion resistance may further amplify systemic immune activation

and exacerbate its damaging effects by resulting in the expan-

sion of the enteric virome, damaging the intestinal epithelium

and leading to the translocation of intestinal bacteria, viruses,

and the antigens derived from them (Brenchley et al., 2006; Han-

dley et al., 2012).

Of note, in many instances, viral proteins produced by

emerging viruses antagonize specific immune recognitionmech-

anisms or circumvent cell-intrinsic restriction factors, thereby

influencing host antiviral responses and viral replication kinetics.

Given the central role of type I IFN in the direct inhibition of viral

replication within cells and in the activation and execution of host

innate and adaptive immune responses, it is not surprising that

diverse viral gene products have been shown to specifically

block the induction or the effects of the host IFN response. Ebo-

lavirus VP35 and VP24, lassa virus NP, influenza virus NS1,

SARS CoV NSP1, and ORF3b are just a few examples (Ayllon

and Garcia-Sastre, 2015; Hastie et al., 2012; Totura and Baric,

2012). Viral products have also been demonstrated to intercept

ISGs, other immune recognition pathways, restriction factors,

or production of effector molecules (Menachery et al., 2014).

Features of the virion, such as the complex structure and heavy

glycosylation of the HIV-1 envelope protein gp120, can make

them less effective targets for elicitation of neutralizing antibody

responses or structurally impervious to them when they arise

(Burton et al., 2005). Moreover, the viral genome itself plays a

role in the rapid evasion of adaptive immune responses, with

the generation of diverse viral quasispecies that is an inherent

consequence of error-prone RNA replication mechanisms
22 Cell 160, January 15, 2015 ª2015 Elsevier Inc.
(Holmes and Drummond, 2007). Thus, the efficacy of the host

response to infection depends on the complex interplay of bene-

ficial activation of innate and adaptive immune responses, the

potency and impact of viral strategies for immune evasion, and

the deleterious consequences of protracted or misdirected im-

mune responses.

Reservoir Host Infection and Disease Tolerance
A number of nonmutually exclusive hypotheses might explain

why many reservoir hosts of viruses capable of causing disease

in humans or other animal hosts do not show severe clinical or

behavioral signs of infection (Table 1): (1) the virus is cytopathic

in the nonnatural host, but not in its reservoir, (2) viral tropism dif-

fers between natural and non-natural hosts, (3) differences in the

interaction between the viral genome or viral gene products and

host resistance mechanisms alter the infection outcome be-

tween natural and non-natural hosts, (4) the virus confers a

benefit to the host that is not conferred to humans or other animal

host species, (5) interactions within the zoonotic host between

the virus and other elements of the microbiome alter the patho-

genesis of infection in a manner that does not apply to humans,

(6) reservoir host responses control viral replication more effec-

tively, or (7) viral infection is better tolerated by reservoir hosts

even when viral loads are high. In most cases, knowledge about

the features of viral infections in their reservoir hosts and immune

responses elicited is incomplete, and it remains unclear which of

these explanations holds for particular zoonotic viruses (Table 1).

Moreover, as-yet-undiscovered mechanisms may exist which

the study of reservoir hosts could reveal.

In some cases, differences in viral tropism may influence the

host-virus interface, resulting in reduced pathogenesis. For

instance, in the sooty mangabey, a natural host for the SIV that

is the origin of HIV-2, long-lived memory T cells may be more

resistant to infection due to reduced CCR5 expression (a core-

ceptor for SIV) such that T cell homeostasis is preserved (Paiar-

dini et al., 2011). Similarly, memory CD4+ T cells in African green

monkeys downmodulate CD4 expression, rendering them resis-

tant to SIV infection and to infection-induced dysregulation of

their homeostasis (Beaumier et al., 2009).

Alternatively, the role of viral genetic functions and structural

attributes in shaping the nature and consequences of host-vi-

rus interactions may be distinct in natural versus non-natural

hosts. Interestingly, most studies thus far have used non-natu-

ral hosts or their cells to explore the interaction of viral products

with host resistance mechanisms and impact on viral virulence.

In fact, much of our current understanding of viral immune

evasion and restriction factor inhibition strategies has come

from studies of emerging viruses. However, although these

strategies can be fit in a logical framework in the context of a

pathogenic infection, it is not clear how such regulatory and

structural mechanisms function or evolved within a nonpatho-

genic reservoir host environment, whether they promote virus

persistence or limit pathologic consequences of infection, and

how they impact cross-species jumps. For example, the type

I IFN-inducible host cell restriction factor tetherin, identified

as a cellular factor that acts to restrict the release of newly pro-

duced HIV-1 particles from the surface of human cells, is

antagonized by the HIV-1 accessory protein Vpu. Of the four



Table 1. Features of Emerging Viruses in the Natural Reservoir Hosts from which They Originated

Virusa (Family) Genome Pathogenesis in Humans Natural Host

Features of Infection and Immune Response in Natural Host

Virus Replication Innate Response Ab/B Cell T Cell Treg

Bas-Congo (Rhabdoviridae) �ssRNA acute hemorrhagic fever ? ? ? ? ? ?

MERS Coronavirus

(Coronaviridae)

+ssRNA acute pneumonia, renal failure bats, camels ? ? ? ? ?

Chikungunya (Togaviridae) +ssRNA high fever, skin rash, arthralgia African primates ? ? ? ? ?

Crimean-Congo hemorrhagic

fever (Bunyaviridae)

�ssRNA hemorrhagic fever hares, large herbivores? ? ? + ? ?

Ebola (Filoviridae) �ssRNA hemorrhagic fever fruit bats ? ? + ? ?

Hanta (Bunyaviridae) �ssRNA hemorrhagic fever with renal

syndrome, cardiopulmonary

syndrome

rodents, shrews,

and bats

P anti-inflamm tory + (+) +

Hendra and Nipah

(Paramyxoviridae)

�ssRNA severe acute encephalitis,

respiratory disease, systemic

vasculitis

fruit bats ? ? + T/P ? ?

Hepatitis E (Hepeviridae) +ssRNA hepatitis pigs ? ? ? ? ?

HIV (Retroviridae) �ssRNA AIDS African primates P (high) diminished ronic

type I IFN

(+) (low titres) (+) +

Influenza A

(Orthomyxoviridae)

�ssRNA respiratory disease aquatic birds T? variations in nate

signaling pa ways

+ ? ?

bats?

Lassa (Arenaviridae) �ssRNA mild febrile illness but can result in

hemorrhagic fever

rodents P ? + ? ?

Lymphocytic

choriomeningitis

(Arenaviridae)

�ssRNA mild febrile illness to meningeal

symptoms; fatal in

immunocompromised

rodentsb P, T? ? + ? ?

Menangle (Paramyxoviridae) �ssRNA influenza-like illness and rash fruit bats ? ? + ? ?

SARS coronavirus

(Coronaviridae)

+ssRNA progressive atypical pneumonia horseshoe bats ? ? + ? ?

Rabies (Rhabdoviridae) �ssRNA neurological disease bats T? ? + T? ? ?

Rift Valley fever (Bunyaviridae) �ssRNA hemorrhagic fever ? ? ? ? ? ?

West Nile (Flaviviridae) +ssRNA fever, meningoencephalitis birds? ? ? + ? ?

Yellow fever (Flaviviridae) +ssRNA hemorrhagic fever, jaundice African primates T ? + ? ?

T, transient; P, persistent; ?, unknown;+, present; –, undetectable; (+), present but weak/low compared to non-natural hosts.
aThe list is not exhaustive but highlights representative examples of emerging viral infections. See also Table S1 for a complete list of references.
bNote that, although LCMV infection of inbred laboratory mice is an extremely well-studied pathogen-host system and a lot is known about the immuno gical responses during chronic and acute

LCMV infections, very little is known about LCMV infection in wild rodents, circulating strains, whether virus is cleared or persistent, and how much th depends on the rodent species and virus

strain in question.
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groups of HIV-1 (M, N, O, and P) that arose via independent

transmission events from chimpanzees, only group M viruses

have become pandemic—the group shown to possess the

most potent anti-tetherin activities (Sauter, 2014). Tetherin

also inhibits the egress of arenavirus, filovirus, and rhabdovirus

particles from infected cells, and proteins such as Ebola virus

GP1,2 counteract the effects of tetherin (Misasi and Sullivan,

2014; Sauter, 2014). But whether these have a similar role in

their reservoir hosts remains to be examined.

Innate and adaptive immune cell development and their acti-

vation thresholds are calibrated by interactions with commen-

sals or previous pathogen encounters. Thus, it is possible that

the overall microbial environment of a reservoir host species

contributes to altering the outcome of a viral infection. For

example, helminth infection can either reactivate herpesviruses

from latency through generation of cytokines that activate or

repress viral promoters (Reese et al., 2014), or it can directly

inhibit T cell responses (Osborne et al., 2014). Multiple studies

now indicate that the microbiome alters host responses to viral

and parasite infection (Virgin, 2014). In some cases, these pro-

longed relationships may confer a mutualistic symbiotic advan-

tage to the host species (Barton et al., 2007). Thus, a reservoir

host may tolerate a given chronic infection and offset any fitness

cost of this infection by the benefit of altered host resistance to

other pathogens. However, there are as yet few studies that

explore this set of issues that might distinguish the outcome of

infection between a natural host and humans (Virgin, 2014; Virgin

et al., 2009).

Lastly, an important set of mechanisms that determine the

capacity of a reservoir host to carry a dangerous virus may be

the host’s ability to tolerate the damage caused by a specific

pathogen or by the immune responses raised to it. This param-

eter, termed disease or infection tolerance, is measured as the

rate of change in disease severity as a function of pathogen

loads and is in contrast to host resistance mechanisms, which

reduce pathogen burden (Schneider and Ayres, 2008). Interest-

ingly, evolutionary theory predicts that, because pathogens will

engage in an arms race with the host to evade resistance mech-

anisms but there is no selection on pathogens to evade disease

tolerance mechanisms, resistance traits will be more polymor-

phic in a population than tolerance traits (Roy and Kirchner,

2000). We note that immune tolerance as defined by diminished

immune responses to a given antigen is only one component of

disease tolerance. The concept of disease tolerance was first

examined in the context of selective pressures exerted by par-

asites and herbivores on plant evolution, and it is only recently

that studies have begun to examine disease tolerance in

mammalian host-parasite interactions (Råberg et al., 2007; Re-

goes et al., 2014) and investigate the pathways involved (Fig-

ueiredo et al., 2013; Jamieson et al., 2013; Jeney et al., 2014;

Rodrigue-Gervais et al., 2014; Weber et al., 2014). Character-

izing disease tolerance mechanisms is of particular importance

to understanding the absence of severe disease in reservoir

hosts and in the development of methods able to modulate

the human response to the same virus without the risk of select-

ing for viral evasion mechanisms. An immunologic understand-

ing of reservoir host species biology will include the study of all

mechanisms by which the host species minimizes the overall
24 Cell 160, January 15, 2015 ª2015 Elsevier Inc.
fitness costs to the individual or the population, attendant on

carrying a given pathogen in a form that is transmissible to hu-

mans.

Disease Tolerance and Transmission of Zoonotic

Viruses

Determining the kinetics of viral replication, the extent of im-

mune control, and parameters that might impact these, such

as genetic variation, hibernation, pregnancy, or stress, may

provide key insights into why some viruses are more likely to

make cross-species jumps and why some of these cause

severe disease in humans. Indeed, for many reservoir hosts,

immune responses have not been characterized beyond

demonstrating seroconversion (Table 1). Further, population-

level persistence of emerging pathogens in their reservoirs

has primarily been investigated from an ecological perspective,

and the contribution of the host response to determining pop-

ulation-level infection dynamics within reservoirs is unclear.

Experimental studies will provide critical data to improve field

ecological studies by identifying which age classes, gender,

or status of individual to focus on in studying transmission

events. Experimental infections will also form the basis for

improving dynamic modeling of infectious diseases, which is

used to assess infection risk and develop better controls to

prevent spillovers (Lloyd-Smith et al., 2009). A substantial list

of important biological questions remains to be answered

through focused experimental studies of the interfaces be-

tween various reservoir hosts and the specific viruses they

harbor (Box 1).

The extent to which immune responses limit viral replication

in reservoir hosts is likely an important factor in the probability

of cross-species transmission. Chronic or repeated virus

shedding in infected reservoirs increases the likelihood of

transmission due to the greater number of virus particles in

the inoculum for each exposed individual. In addition, immuno-

logical effector mechanisms that substantially restrict virus

replication will affect viral genetic diversity and evolution in

ways that may impact the spillover probability and the strain

structure present in the reservoir host population (Box 1). A

greater viral diversity may increase the chances that at

least a few viral variants are able to successfully establish an

infection in the novel host. Thus, we speculate that viruses

that have either chronically high virus levels or repeated tran-

sient high pathogen burdens in their natural hosts may be

overrepresented among emerging viral pathogens in humans

(Figure 1).

Interestingly, experimental data has suggested that, in the

case of malaria infection, increased tolerance may come at

the cost of reduced resistance (Råberg et al., 2007). Such a

tradeoff arises if resistance and tolerance are mechanistically

connected. For instance, more aggressive effector responses

that result in superior pathogen replication control may also

be the responses that lead to increased collateral damage.

Alternatively, such a tradeoff might be observed if resistance

and tolerance are energetically costly, and it is only feasible

to invest resources in one of the two strategies. Moreover,

attenuated immune responses may result in waning immuno-

logic memory. For instance, anti-yellow fever virus (YFV) anti-

body titers following YFV vaccination declined far more rapidly



Box 1. A Checklist for Studying Emerging Viruses in Reservoir Hosts
post infection in sooty mangabeys, a primate reservoir for YFV,

than in YFV-disease susceptible rhesus macaques and humans

(Mandl et al., 2011). Whether a tradeoff between resistance and

tolerance is a generalized phenomenon remains to be investi-
gated. A study of the rate of decline in CD4+ T cells across

different HIV viral load set points in humans found no relation-

ship between resistance and tolerance, although it may be the

case that such a link would only become apparent over a
Cell 160, January 15, 2015 ª2015 Elsevier Inc. 25



Figure 1. Reservoir Host Infection and Dis-

ease Tolerance
A feature of zoonotic infections in an individual
natural hostmay be the tolerance of high pathogen
burdens in the absence of substantial deviation
from health. Phase plots (adapted from Schneider
and Ayres [2008]) illustrating possible infection
trajectories following infection to highlight differ-
ences between novel and reservoir hosts in the
extent of viral replication, viral kinetics, and asso-
ciated disease burden. Transmission of zoonotic
viruses may be more likely in cases in which there
are persistently high viral loads or repeated acute
infections of reservoir hosts. Within a population of
the reservoir host, repeated infections with a
pathogen may occur as a result of waning immu-
nological memory within individuals, circulation of
diverse strains to which there is minimal cross-
reactive immunity, or the introduction of new
susceptible individuals (juveniles). To what extent
and in which instances features of the immune
response in reservoir hosts contribute to pathogen
maintenance in a population is an important open
question.
longer period of host-pathogen coevolution (Regoes et al.,

2014).

Several examples have been described in which zoonotic vi-

ruses replicate at persistently high levels in their reservoirs. SIV

establishes chronic infections in African primate species with

high levels of viremia and little evidence of effective immune

control (Pandrea and Apetrei, 2010; Silvestri et al., 2003).

Hantavirus infections of rodent reservoirs result in persistence

even in the presence of high antibody titers (Easterbrook and

Klein, 2008; Schountz and Prescott, 2014). For both of these

viruses, extensive within-host and between-host viral diversity

has also been described in their natural hosts, and distinct

strains are associated with distinct host species, suggestive

of a coevolutionary history (Demma et al., 2005; Feuer et al.,

1999).

In contrast, infections of wild waterfowl (Anas platyrhynchos)

with influenza A virus were shown to be transient (Jourdain

et al., 2010). Given the high prevalence of seropositivity and

the presence of an enormous diversity of influenza A strains pre-

sent in birds (Verhagen et al., 2012), this might be an example in

which reservoir hosts previously infected with one strain are only

partially protected from infection with co-circulating viral strains,

but this requires further investigation. In pteropid fruit bat spe-

cies, infections with Hendra and Nipah viruses are likely also

transient, but few experimental infection studies have been

done so far and the infection incidence is currently unknown

(Halpin et al., 2011; Middleton et al., 2007). These viruses have

been detected at a prevalence of around 1% or less, although

seroprevalence can be as high as 60% (Breed et al., 2013; Rah-

man et al., 2013). Given the seasonal and synchronous breeding

of these bats, it is difficult to distinguish whether there are sea-

sonal increases in incidence due to infections of susceptible ju-

veniles whose maternal antibodies have waned (Epstein et al.,

2013), or changes in bat immunity that enable reinfections or

the reactivation of low-level infections (Sohayati et al., 2011).

Clinical manifestations of infection, such as sneezing, cough-

ing, or diarrhea, can facilitate transmission between humans
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for certain zoonotic viruses where between-human secondary

transmissions occur (Wolfe et al., 2007). SARS-CoV, for

example, is transmitted by aerosolization and droplet infection

between humans (Peiris et al., 2004), and Ebola virus spreads

via contact with blood or body fluids (Dowell et al., 1999). In

the absence of symptoms in disease-tolerant reservoir hosts,

the routes of viral infection may be distinct from those observed

in non-natural hosts. Whereas Nipah and Hendra virus is primar-

ily respiratory in horses and pigs, transmitting oro-nasally (Geis-

bert et al., 2012), in bats, these viruses are shed in saliva and

urine and may also be transmitted vertically (Halpin et al.,

2000). For most zoonotic viruses, the transmission mode be-

tween reservoir hosts remains unknown.

Mechanisms of Disease Tolerance and Innate Immunity

Studying immune responses of reservoir hosts to their viruses

provides a unique opportunity to define molecular mechanisms

underlying disease tolerance and to identify therapeutic targets

to prevent the dysregulated immunopathology that often charac-

terizes infections of novel hosts. Mechanisms of disease toler-

ance (Schneider and Ayres, 2008) must have some degree of

pathogen specificity tomaintain immunocompetence. Innate im-

munity and mechanisms of recognizing viral invasion of cells are

an important first line of host defense, and signals downstream

of innate immune receptors play a key role in the magnitude of

the immune response initiated (Iwasaki, 2012). Viruses can

trigger endosomal, cell surface, or cytosolic innate immune

receptors in a nucleic-acid-dependent manner (by their whole-

genome, replication products or intermediates) or in a nucleic-

acid-independent manner by virion glycoproteins or by more

general changes associated with cellular stress (Iwasaki,

2012). It follows that investigating the innate immune recognition

of zoonotic viruses in their reservoir hosts will provide impor-

tant insight into how pathogen-specific disease tolerance is

achieved.

Though innate recognition mechanisms are evolutionarily

conserved, their complexity is becoming increasingly apparent.

Regulatory factors are being identified that contribute to



Figure 2. Differences in Immune Responses of Reservoir Hosts Impact Disease Tolerance, Infection Outcome, and the Probability of
Emergence in Humans
Qualitative or quantitative aspects of innate or adaptive immune responses and their cross-talk may differ in reservoir hosts compared to novel hosts, impacting
viral replication kinetics, decreasing pathology, and/or increasing the likelihood of transmission. Thus, reservoir host antiviral immunity may be one factor im-
pacting the probability of emergence of a zoonotic virus in humans, in addition to other ecological, evolutionary, or virological risk factors.
amplifying or dampening signaling pathways downstream of

innate receptors and impact the type and amount of cytokines

produced (Qian and Cao, 2013). In addition, the existence of ge-

netic heterogeneity within and between populations is emerging

as an important factor contributing to host variation in innate im-

mune responses to infection and susceptibility to disease (Lee

et al., 2014; Pothlichet and Quintana-Murci, 2013). In contrast,

an understanding of variation in quantitative parameters, such

as measures of maximum response, half-maximal effective con-

centration, the dose of stimuli at which a response is initiated, the

kinetics of the response, and the total magnitude of the response

(by measures such as area under the curve), is still lagging

behind, even in humans and mice, and may well turn out to be

a critical aspect in explaining differences between hosts. Ulti-

mately, heterogeneity in qualitative and quantitative aspects of

an immune response and the selection pressure exerted by spe-

cific pathogens shapes the innate immune system of a species

and thus impacts responses to future encounters with novel in-

fectious agents (Barreiro and Quintana-Murci, 2010), as well as

perhaps baseline cellular states (for which the relevant measures

are not always clear). Yet, species-specific differences in re-

sponses to immune stimuli are only beginning to be described

(Barreiro et al., 2010; Brinkworth et al., 2012; Seok et al., 2013).
In reservoir hosts, specific changes in innate immune recogni-

tion, innate signaling pathways, cross-talk with the adaptive im-

mune system, or the generation and differentiation of B and

T cells may play a key role in the disease tolerance to viruses

that they harbor (Figure 2). Understanding which receptors,

modulating factors, or deleterious molecular mediators are

involved will allow us to target these in humans to alter infection

outcome. For instance, blocking specific immune signaling path-

ways during pathogenic ebolavirus or henipavirus infection

through which signaling is reduced in bat reservoir hosts upon

infection may reduce tissue damage in humans. Alternatively, in-

hibiting specific ISGs found to be activated in non-natural hosts

but that are quiescent in natural hosts may reduce downstream

detrimental proinflammatory effects in infections such as HIV

without preventing the antiviral effects of other ISGs induced,

rather than blocking type I IFN completely (Sandler et al., 2014;

Schoggins et al., 2011).

Innate immune responses can play a directly beneficial role in

effecting early viral control following infection and are of funda-

mental importance in generating adaptive cellular and humoral

immune responses required to limit virus replication. Thus, the

absence of RIG-I, a sensor of viral RNA ligands, has been hy-

pothesized to make chickens less resistant to influenza viruses
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as compared to natural bird reservoirs such as ducks (Barber

et al., 2010). However, specific innate immune responses may

also precipitate immunopathologic consequences. For example,

the absence of TLR3 leads to a reduced production of inflamma-

tory mediators and improved survival upon infection with phle-

bovirus or influenza A viruses, despite similar or increased levels

of viral replication (Gowen et al., 2006; Le Goffic et al., 2006). IL-

17RA knockout mice infected with influenza A virus also display

lower expression of inflammatory cytokines and chemokines,

reduced lung inflammation, and improved survival despite hav-

ing higher levels of virus replication as compared to wild-type

laboratory inbred mice (Peiris et al., 2010). In addition, studies

of different inbred mouse strains that are either susceptible or

resistant to influenza-associated mortality have demonstrated

greater activation of genes associated with inflammatory re-

sponses in susceptible mice and have begun to define the un-

derlying genetic determinants of divergent infection outcomes

(Peiris et al., 2010). Importantly, differences in responses be-

tween natural and non-natural hosts may not simply be due to

the presence or absence of specific receptors or the switching

on or off of specific signaling cascades. Rather, in the context

of complex immune processes and cellular interactions, even

small differences in the magnitude or timing of responses can

substantially alter infection outcome. The use of mathematical

models and careful measurements of rates of change of key

response parametersmay be required to ensure that such expla-

nations are not missed.

Currently, the best-studied reservoir host responses are those

of African primate species to SIV and of rodent species to hanta-

virus (Easterbrook and Klein, 2008; Miedema et al., 2013;

Pandrea andApetrei, 2010; Schountz andPrescott, 2014). Unlike

humans infected with HIV, African primates do not develop the

severe immune dysfunction and susceptibility to opportunistic

infections that characterize AIDS. Pathogenic lentivirus infec-

tions in non-natural human or rhesus macaque hosts are associ-

ated with an elevated expression of ISGs and increased levels of

immune activation, which includes increases in the activation

and proliferation of T cells (Moir et al., 2011). During HIV infection,

the majority of type I IFN production is likely due to the recogni-

tion of HIV by TLR7 expressed by pDCs (Beignon et al., 2005).

However, in marked contrast to pathogenic HIV and SIV infec-

tions, an ISG expression signature is absent in sooty mangabeys

during chronic SIV infection (Mandl et al., 2008). Further, chron-

ically SIV-infected sooty mangabeys do not display elevations in

aberrant T cell activation and its consequences (Silvestri et al.,

2003). Whether the absence of chronic type I IFN production in

sooty mangabeys is a result of reduced pDC activation by SIV

or a function of actively suppressive mechanisms remains

debated (Bosinger et al., 2013; Mandl et al., 2008). In African

green monkeys, another reservoir host for SIV, a similar absence

of an ISG expression signature during chronic SIV infection has

been described (Jacquelin et al., 2009). In addition, SIV infection

of African green monkeys is associated with an anti-inflamma-

tory gene expression signature (Kornfeld et al., 2005). Interest-

ingly, baseline cellular activation states, as measured by Ki67

on NK and T cells, are significantly lower in sooty mangabeys

and African green monkey reservoir hosts than in the non-natu-

ral, AIDS-susceptible rhesus macaque host, though the rele-
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vance of this for immune response parameters upon infection

has not yet been explored (Mandl et al., 2008).

The situation in hantavirus-infected rodents has some notable

parallels to host-virus interactions in SIV-infected primates.

Rodents infected with hantavirus do not show signs of disease

or of discernable fitness costs (Easterbrook and Klein, 2008;

Schountz and Prescott, 2014). As in SIV-infected AGMs, induc-

tion of regulatory T cells at later stages of hantavirus infection,

while resulting in viral persistence, reduces effector T cell re-

sponses and is thought to limit immunopathology (Table 1) (East-

erbrook and Klein, 2008; Schountz and Prescott, 2014. Exactly

how the switch from initial immune activation to a dampened

response is mediated in rodents infected with hantavirus is still

unclear. Specific viral proteins may interact with rodent immune

pathways to limit proinflammatory responses while at the same

time preventing clearance. Alternatively, or in addition, as may

be the case for African primates infected with SIV, changes in

innate recognition could directly lead to reduced pathology

due to the reduction in the production of inflammatory mediators

or due to the induction of responses that actively suppress

damaging responses. Adaptive immune responses may also

play a major role in modulating innate immunity in reservoir

hosts. For example, cytokines secreted by activated T cells

can activate or suppress innate cells, and antigen-antibody

complexes impact innate cell function via Fc receptor signaling.

The induction of inhibitory receptors on T cells, such as PD-1,

can directly contribute to limiting T-cell-mediated pathology

while preventing viral clearance (Barber et al., 2006; Frebel

et al., 2012) (Figure 2). Recent data from chronically lymphocytic

choriomeningitis virus (LCMV)-infectedmice has highlighted that

an expanded population of regulatory T cells dampens CD8+

T cell responses and that the depletion of regulatory T cells in

conjunction with the blockade of PD-1 signaling substantially re-

duces viral load (Penaloza-MacMaster et al., 2014).

The innate sensors of nucleic acid engaged by a specific virus

are a function of its genome. Therefore, the innate pathways

important to sensing viruses with the same genomic composi-

tion or replication scheme often overlap substantially (Iwasaki,

2012). It has been hypothesized that viruses sharing cell tropism

and features that result in their recognition by the same innate re-

ceptor, termed ‘‘virotypes,’’ will trigger the same host transcrip-

tional response (Virgin, 2014). As a consequence of this, it is

possible that changes in a discrete innate pathway predispose

certain reservoir hosts to asymptomatically harbor multiple vi-

ruses recognized by the same pathway if such changes increase

disease tolerance to these virotypes in similar ways. Data from

human studies have shown that deficiencies—in particular,

innate receptor signaling molecules—can result in very defined

and narrow susceptibilities to only a few specific pathogens

(Al-Herz et al., 2014). Redundancies in immune recognition

explain why reservoir host-pathogen associations might be

very specific and thus not impair resistance to other pathogens.

Sooty mangabeys, in addition to being reservoirs for SIV, are

also natural hosts for yellow fever virus (YFV) and remain disease

free upon infection. Studies of immune responses of sooty man-

gabeys to YFV have shown that, like for SIV, they mount reduced

effector T cell responses following YFV infection compared to

humans and macaques (Mandl et al., 2011). Both YFV and SIV



stimulate type I IFN upon recognition by TLR7, so this raises the

intriguing possibility that specific changes in TLR7 signaling in

sooty mangabeys impact their adaptive immune responses to

these viruses.

Indeed, patterns of reservoir host and viral associations have

been observed, but their biological significance is unclear, given

the only very recent increase in comprehensive studies of spe-

cies’ viromes. For instance, bats are the reservoir of several

emerging infectious agents, the majority of which are single-

stranded RNA viruses, such as SARS coronavirus, MERS

coronavirus, Nipah and Hendra viruses, rabies, and related lys-

saviruses Menangle virus, Marburg, and Ebola viruses (Table

1). Bats may also be the ancient natural host reservoirs of the fla-

vivirus hepatitis C (Quan et al., 2013). Is this merely a result of

biases in sampling and analysis, or does the coevolution of a

host with one virus of a given virotype open awindow to infection

with others of the same virotype? Is this a result of life history

traits of bats and/or a function of species-specific variations in

innate immune recognition of RNA viruses between humans

and bats? Some studies have suggested that bats are dispro-

portionately responsible for viral emergence relative to species

diversity, but this conclusion and the reasons for the association

of bats with zoonotic viruses remain a matter of debate (Luis

et al., 2013; Olival et al., 2013). Interestingly, many viruses that

cause persistent infections in humans use DNA as genomic

material (Virgin et al., 2009). Is this entirely a property of these

viruses or a result of a coevolution of our immune response

with DNA virotypes that is different in other mammalian species

with a distinct history of virus encounters? Zoonotic DNA viruses

that cause disease in humans certainly exist, including monkey-

pox and herpes B viruses. A comparative and immune-centric

understanding of virus-host relationships between virotypes

and species will be required to investigate such questions. As

our data set on host-virus associations increases, so will our

ability to discern patterns and investigate their causes.

Reservoir Host Physiology, Metabolism, and Infection

Tolerance

Studying reservoir host responses will enable us to more accu-

rately measure the true physiological impact of emerging viruses

on their coevolved host. The immune system is embedded in

the complex physiology of an organism, and as such, infections

and the immune responses that they elicit trigger behavioral,

autonomic, endocrine, and metabolic effects. Soluble immune

mediators like IL-1 and TNFa result in ‘‘sickness behavior,’’

such as social withdrawal and decreases in food intake and mo-

tor activity in infected individuals (Dantzer et al., 2008). Specific

changes in metabolism during inflammation can lead to

cachexia, which is particularly well documented in Mycobacte-

rium tuberculosis (once termed ‘‘consumption’’), or HIV (once

termed ‘‘slim disease’’) infections or to local changes in tissue

microenvironment. In turn, metabolic processes and changes

in body temperature can impact host immunity. Metabolic by-

products can recruit immune cells to sites of infection, activate

innate immune cells via recognition through the pattern recogni-

tion receptors, which also sense microbial products, and initiate

the resolution of inflammation (Jin et al., 2013; Kominsky et al.,

2010). Nutrients, metabolites, and oxygen availability within tis-

sues can impact immune cell effector functions and immune ho-
meostasis (Pearce and Pearce, 2013; Sitkovsky and Lukashev,

2005).

It is possible that fundamental differences in reservoir host

physiology and the circuitry that interfaces with the immune sys-

tem are the consequence of distinct evolutionary tradeoffs be-

tween species and impact infection outcome or the resulting

disease manifestations. For instance, bats have evolved unique

life history traits that may have influenced their exposure to and

interaction with pathogens in ways that have led to distinct virus-

host détentes. Bats are capable of sustained flight and have

exceptionally long lifespans despite their high metabolic rates

and small body size (Wilkinson and South, 2002). Consistent

with the idea that changes in energy metabolism were required

to meet the extraordinary cost of flight, mitochondrial and nu-

clear genes involved in oxidative phosphorylation have under-

gone positive selection in bat lineages (Shen et al., 2010).

Concomitant selection pressure on DNA damage repair pathway

genes to prevent negative physiological effects of highmetabolic

rates caused by the release of reactive oxygen speciesmay have

had as yet undefined consequences for innate immune re-

sponses to viruses (Zhang et al., 2013). Hibernation has also

been associated with altered immune cell function and reduced

lymphocyte trafficking, an understanding of which could be key

to explaining the devastating impact of White-nose syndrome in

North American bat populations (Bouma et al., 2010; Meteyer

et al., 2012).

An Experimental Toolkit for Reservoir Host Immunology
Detailed assessments of immune responses in reservoir host

species have been challenging for a number of reasons. One

practical constraint has been establishing colonies of reservoir

host species to enable longitudinal experiments under controlled

conditions. Immunological field studies, though valuable in spe-

cific instances, can be difficult to interpret given that pathogen

exposure status between sampling time points is unknown and

it may not always be possible to recapture the same individuals.

However, keeping reservoir host colonies can require specific

animal husbandry techniques, may involve training animals to

accept available food sources not eaten in the wild, and can

require access to special facilities to maintain the animals

(such as aviaries to harbor bats or birds) and to perform infec-

tions with viruses that are often lethal to humans. Moreover, im-

porting reservoir hosts from their country of origin can be costly,

and quarantines are required to ascertain that they are free of the

zoonotic pathogens dangerous to humans. The lack of experi-

mental studies of wildlife reservoirs is also a product of our

poor understanding of the true wildlife reservoirs for a number

of recently emerged viruses. However, such studies, if conduct-

ed correctly, are critical to understanding pathogenesis and the

risk of exposure for humans.

A second technical challenge to studies of reservoir host im-

munity has been the establishment of viral infection models

that mimic infection in the wild and that are useful for investi-

gating pathogen kinetics and immune responses over time in a

setting where the time of infection is known and other environ-

mental parameters can be controlled (Box 1). Extensive viral

passaging in vitro, especially in cells lines that, while permissive

for infection, may be quite distinct from cells infected in vivo, can
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lead to the selection of viral variants that can no longer replicate

effectively in the host of origin. Similarly, the use of clonal viruses

can be problematic in recapitulating typical outcomes of natural

infections should initiation of infection with diverse viral quasis-

pecies be important. As such, the choice of viral inoculum can

greatly influence the course of infection. For example, in studies

of sooty mangabeys in which highly pathogenic SIV variants

passaged in macaques were used, the infection was rapidly

controlled, quite unlike the persistent high-level replication

seen in natural infections (Kaur et al., 1998). Subsequent infec-

tion studies have used plasma samples harvested from SIV-in-

fected sooty mangabeys (Mandl et al., 2008). In other instances,

whether experimental infections of reservoir hosts recapitulate

features of natural infection in the wild remains to be validated.

Infections of bats with Nipah and Hendra viruses resulted in

very few bats with detectable levels of viral replication, although

in some instances seroconversion was seen nonetheless, and it

is unclear whether this very low infection level mimics infections

in the wild (Halpin et al., 2011; Middleton et al., 2007). Experi-

mental rabies infections of bat reservoir hosts led to muscle

weakness, paralysis, and reductions in body weight and were

usually lethal (Turmelle et al., 2010), but it is difficult to extrapo-

late such studies to an understanding of the mortality rate of

rabies in wild bat populations. In fact, epidemiological models

of data gathered in field studies suggest that lethality upon rabies

infection may be a far rarer outcome in wild bat populations than

in the lab (Blackwood et al., 2013). Similarly, whereas LCMV

infection of inbred mouse strains is one of the best-studied sys-

tems for viral immunity, surprisingly little is known about the

immunologic and virologic characteristics of the host-virus inter-

face in wild mouse species that are reservoir hosts for LCMV and

other arenaviruses (Table 1) (Wade et al., 2002). Host genetic dif-

ferences or small changes in the LCMV viral sequence can affect

whether infections are chronic or acute (Ahmed et al., 1988). In

addition, vertical transmission can lead to the establishment of

a life-long viral carrier state with little adaptive immune re-

sponses raised. The dependence on the host-pathogen balance

established on both strain and route of infection means that,

without much information on this, it is currently difficult to extrap-

olate insights from laboratory experiments to infections of mice

in the wild.

Notably, developing an infection model that recapitulates hu-

man disease and can be used to study host responses during

pathogenic infections to perform comparative studies with natu-

ral hosts can also be challenging if laboratory mice are not sus-

ceptible to infection or are resistant to disease. In the former

case, identification of the viral host cell receptor in humans can

enable the development of mouse strains expressing this human

protein on relevant cell types, thus enabling viral replication in

mice. For instance, the expression of human dipeptidyl pepti-

dase 4, the host cell receptor used by MERS coronovirus, in

mice using adenovirus vector-mediated transduction success-

fully rendered mice susceptible to infection with MERS corona-

virus (Zhao et al., 2014). In the case in which mice are permissive

for infection but distinct host responses lead to only mild dis-

ease, the genetic traits contributing to disease susceptibility

differences can be explored using a set of well-defined recombi-

nant inbred mouse strains, the Collaborative Cross (Churchill
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et al., 2004), as was recently done for Ebola virus infection (Ras-

mussen et al., 2014).

Investigating reservoir host immunity has also been hampered

by the paucity of available immunological tools. This includes se-

quences of immunologically important genes, markers for cell

populations of interest, and available monoclonal antibodies

specific for suchmarkers, as well as antibody tools to identify cy-

tokines or chemokines produced by immune cell populations

in vitro or in vivo. The development of such tools will be essential

to increasing the kinds of questions that can be answered.

Despite the difficulties that remain, recent methodological ad-

vances have enormous potential in their application to studies

of immune responses of natural hosts and have opened new av-

enues of research.

First, there has been a rapid expansion in genomes sequenced

for different reservoir host species. These sequences are them-

selves already informative. For instance, they allow insight into

the presence or absence of specific innate receptors or cytokine

mediators and provide clues as to the mechanism of B or T cell

repertoire diversity generation and B cell isotypes present.

Furthermore, comparative analyses can highlight genomic re-

gions with changes of possible relevance to disease outcome

upon infection and can generate hypotheses that can be tested

further. A comparison between the Pteropus alecto and Myotis

davidii bat genomes showed that several innate immune genes,

including TLR7, were under positive selection in bat ancestors

and that both species lack NK cell receptors for MHC-I, KLRs,

andKIRs (Zhang et al., 2013). Genomic approaches complement

the targeted sequencing of specific genes hypothesized to play a

role in viral control and determination of their tissue distribu-

tion—for instance, the sequencing of specific cytokine genes

in deer mice (P. maniculatus) reservoirs of hantavirus (Herbst

et al., 2002) or interferon system genes and innate receptors in

bat species (Baker et al., 2013). In addition, next-generation

sequencing is rapidly emerging as a way to define the viruses

that we may have to worry about as future emerging infections

(Mokili et al., 2012) and when comparing the baseline micro-

biome or virome of different species, as well as documenting

infection-related changes in their composition (Handley et al.,

2012; Virgin, 2014).

Second, unbiased approaches can be used to probe both

quantitative and qualitative changes in the transcriptome or

proteome. The availability of reservoir host genomes or related

species makes the use of microarray technology for gene

expression profiling possible. Furthermore, even in the absence

of a reference genome, next generation sequencing and the de

novo assembly of transcripts, while computationally more chal-

lenging, now allows the assessment of gene expression. Such

methods provide a promising means by which to illuminate

gene expression changes—for instance, in infected versus unin-

fected reservoir hosts—and to allow comparisons with changes

seen in infected humans. This approach has already been suc-

cessfully applied to characterize responses of non-natural hosts

to a number of pathogens, including infection with influenza A,

SARS, and HIV (Cameron et al., 2008; Kash et al., 2006; Moir

et al., 2011). Although such methods applied to bulk tissue sam-

ples may not be able to distinguish between the induction of

genes from changes in cell distribution, theymay identify specific



targets for further study. Eventually, the development of single-

cell transcriptome analyses and computational tools to infer

the presence of specific cell populations and their phenotype

within bulk samples may provide additional insight when flow

cytometric identification of immune cell populations usingmono-

clonal antibodies is not possible.

Lastly, our increased understanding of the various innate

immune receptors and the distinct components of pathogens

that they recognize has resulted in the availability of tools with

which to probe responses to specific receptor agonists in vivo

and in vitro. Our knowledge of innate immunity enables us to

make reasonable guesses as to which types of innate receptors

might be relevant to the host-pathogen interface of particular

viruses. This is particularly useful when the pathogen in question

requires biosafety level 4 laboratories, thus making direct infec-

tion studies challenging. Together with the methods outlined

above, it is now possible to determine which genes change

their expression early on in response to the administration of,

for instance, defined TLR agonists targeting the specific TLRs

involved in innate recognition of the virus of interest. We can

characterize specific gene circuits and their temporal regulation,

comparing responses to what is seen in more well-studied spe-

cies in that regard. It is also possible to measure differences in

basal gene expression levels, as well as quantitative changes

in response to different doses of relevant stimuli to obtain mea-

sures of the dynamic range of the response, the dose at which a

response is initiated, and its duration. In addition, innate immu-

nity can be probed in cross-sectional studies of animals, which

can provide information on how infection itself can modulate im-

mune responsiveness.

Conclusions
Given the threats to human health and economic development

posed by emerging viral diseases, better understanding the na-

ture and diversity of mechanisms responsible for the ability of

reservoir hosts to tolerate viral infections and facilitate transmis-

sion to other host species is critical. Studies to date have

focused primarily on viral detection and diversity, rather than

on illuminating the nature of the host-virus equilibrium extant in

their wild animal reservoirs. Achieving the goal of a holistic

approach to understanding viral emergence will require the inte-

gration of immunological studies with investigations of animal

physiology and metabolism, as well as the synthesis of such

studies with epidemiological, ecological, and evolutionary in-

sights of viral emergence. Cross-disciplinary collaborations

between mechanism-targeted immunology and microbiology

laboratories, veterinarians with experience in establishing col-

onies of wild species, and ecologists able to perform in-country

field studies will be especially important in advancing our knowl-

edge in this field. The enormous value of cross-geographical and

interdisciplinary initiatives in understanding viral emergence has

already been demonstrated by programs such as PREDICT, es-

tablished by the U.S. Agency for International Development to

detect emerging pandemic threats in partnership with local gov-

ernments and scientists (Morse et al., 2012). It is also apparent in

other cross-continental research teams’ efforts, such as the

multinational collaboration that promptly tracked the emergence

and evolution of the Ebola virus variants responsible for the
ongoing outbreak in West Africa (Gire et al., 2014). The develop-

ment of immunological reagents, in addition to the application of

recently developed methods to define host genome sequences

and to characterize patterns of host gene expression following

infection or other experimental intervention, will yield valuable

insights into immune responses elicited by emerging viruses in

their natural hosts. Such studies may identify important path-

ways of pathogenesis in humans by elucidating why these infec-

tions result in such distinct infection outcomes in natural hosts

and may indicate novel approaches for the treatment and pre-

vention of zoonotic infections. They may also establish whether

there are fundamental immunologic reasons—in addition to pro-

posed behavioral, ecological, and evolutionary ones—to explain

why certain animals, including bats, primates, and rodents, are

most often implicated as the reservoir hosts for emerging viral

zoonoses. Finally, studies of reservoir hosts stand to significantly

advance our understanding of fundamental immunological pro-

cesses contributing to host resistance and disease tolerance.
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