Submitted 24 April 2020
Accepted 15 March 2021
Published 9 April 2021

Corresponding author
Xiaohai Tian, xiaohait@sina.com

Academic editor
Tatiana Tatarinova

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.11218

() Copyright
2021 Yan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Detrimental effects of heat stress on grain
weight and quality in rice (Oryza sativa L.)
are aggravated by decreased relative
humidity

Haoliang Yan, Chunhu Wang, Ke Liu and Xiaohai Tian

Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze
University, Jingzhou Hubei, China

ABSTRACT

There is concern over the impact of global warming on rice production due increased
heat stress, coupled with decreased relative humidity (RH). It is unknown how
rice yield and quality are affected by heat stress and decreased RH during the grain
filling stage. We conducted experiments in controlled growth chambers on six rice
cultivars, varying in heat tolerance using 12 combinative treatments of three factors:
two RH levels (75% and 85%), three temperature levels (the daily maximum
temperature at 33 °C, 35 °C, and 37 °C), and two durations (8 d and 15 d after
anthesis). Results showed that RH75% with temperature treatments significantly
reduced grain weight, which was higher than RH85%. The same trend was also
observed for both head rice rate and chalkiness. R168 was the most heat-tolerant
cultivar, but it still had some differences in grain weight, head rice rate, and
chalkiness between the two RH regimes. The lower RH was most detrimental at
35 °C, and to a lesser extent at 33 °C, but had a negligible effect at 37 °C. Our results
provide a better understanding of temperature and RH’s interaction effects on rice
quality during the grain filling stage, suggesting that RH should be considered in heat
tolerance screening and identification to facilitate rice breeding and genetic
improvement.

Subjects Agricultural Science, Plant Science
Keywords Global warming, Rice, Grain filling, High temperature, Relative humidity, Grain weight,
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INTRODUCTION

The average global surface temperature has risen by an estimated 0.85 °C from 1880-2012
(Stocker et al., 2013). Evaporation over land has increased because the rate of warming
is greater on land than in the sea. However, the limitations of soil moisture, water supply,
and crop transpiration cause a decrease in the near-surface relative humidity (RH) over
land. As a result, most land types, except coastal areas, will become drier (Byrne ¢
O’Gorman, 2016; Dai, Zhao & Chen, 2018; Orimoloye et al., 2018; Po-Chedley et al., 2018).
Rice is one of the most important staple cereals, providing food for more than half

of the world’s population (Seck et al., 2012). However, rice yields fluctuate considerably
and are susceptible to climate change (Jagadish, Murty ¢» Quick, 2015; Yan et al., 2017).
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With each 1 °C increment in the whole-season minimum temperature, there is a 10%
loss in yields (Peng et al., 2004). In addition to the detrimental effects of heat stress, heat
can also damage the quality of the grain, leading to considerable economic losses (Lyman
et al, 2013).

The grain filling stage is one of the most critical periods for rice yield and grain quality
formation and is sensitive to environmental stress (Yoshida, 1981). High temperatures
during this period result in an accelerated grain filling rate, a shortened grain filling
duration, lowered grain weight, and/or deteriorated milling quality caused by increased
amounts of chalky and fissured grains forced into maturity by higher temperatures
(Ambardekar et al., 2011; Bao, 2019; Cooper et al., 2006; Zhou, Yun & He, 2019). The early
and middle grain-filling periods are the most susceptible to heat stressors, especially
during the first 15 days (Cooper, Siebenmorgen & Counce, 2008; Cooper et al., 2006;

Wu, Chang ¢ Lur, 2016). It has been suggested that a temperature range of 25-29 °C is
optimal for the first 15-20 d of the grain-filling stage, but it is subject to the response
of different cultivars with their varietal tolerance (Abayawickrama et al., 2017; Morita,
Wada & Matsue, 2016; Wu, Chang & Lur, 2016).

Starch biosynthesis is inhibited at high temperatures in the developing grains
(Yamakawa & Hakata, 2010; Yamakawa et al., 2007), and many immature starch granules
are found in the endosperm cells (Zakaria et al., 2002). Altered expressions of a-amylase
genes and increased enzymatic activity were detected, suggesting that starch was
degraded under elevated temperatures (Hakata et al., 2012). Sucrose transport and
metabolism in the phloem of the leaf, sheath, stem, and grains are also inhibited in a
heat stress-susceptible cultivar in a heat-stressed environment when compared to a heat
stress-tolerant cultivar (Tanamachi et al., 2016; Zhang et al., 2018a). Heat stress may cause
a starch shortage, reduced grain weight, and poor quality.

The panicle is a significant determinant for yield stability and grain quality regarding
heat-induced damage in grain yield. It is affected by high-temperature stress during the
grain filling stage. Physiologically, panicle development is influenced by air temperature
and humidity (Weerakoon, Maruyama & Ohba, 2008). The lower RH conditions (RH15%)
in New South Wales, Australia alleviated heat-induced damage in rice through
transpiration cooling during the flowering stage when compared with the humidity in
Hubei, China (Matsui et al., 2014; Tian et al., 2010; Yoshimoto et al., 2012). Hot and
dry wind conditions can accelerate water loss in panicles and increase the chalky
grain rate during the grain filling stage (Hiroshi et al., 2012; Kang et al., 2003). Oya ¢
Yoshida (2008) found a clear difference in chalky formation among varieties with wind
treatments. It is not well understood how rice yield and quality are affected by heat stress
coupled with different RH during the grain filling stage.

The endosperm cells of rice grains rely on osmotic adjustment to maintain cell turgor
under heat stress (Wada et al., 2019), similar to rice grown under dry wind (Wada
et al., 2014, 2011). This suggests a similar mechanism between the responses to high
temperature and dry wind. A lower RH in the air also reduces head rice yield (Thompson ¢
Mutters, 2006). In northern India, RH showed a significant decline of 1.44% per year,
which significantly affected the yield of most crops (Chakraborty ¢» Hazari, 2017).
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It is estimated that for every 1% decrease in average RH during the growing season in
China, rice yield decreases by 0.75% (Zhang, Zhang ¢ Chen, 2017). These studies indicate
that RH variation during the grain filling stage may impact rice yield and quality, but
whether such a difference is aggravated in cultivars by the interaction of RH with
temperature remains to be tested.

In the Jianghan basin of the middle Yangtze River Valley of Central China, mid-
season indica rice varieties often suffer yield losses due to heat stress (Tian et al., 2010).
Higher summer temperatures are always accompanied by decreased humidity (Gong et al.,
2006; Guo et al., 2016). A maximum temperature of approximately 35 °C or a daily
mean temperature of 30 °C lasting more than 3 days causes RH to decrease from ~85%
to ~70% (Tian et al., 2010). Climate change has resulted in longer periods of higher
temperatures in this region (Liu et al., 2019; Tan ¢ Shen, 2016). This study hypothesized
that high temperatures, coupled with decreased RH, aggravate rice grain quality’s adverse
effects. We conducted experiments in a controlled environment with six rice cultivars
varying in heat stress tolerance. We sought to determine: (1) the effect of RH on high
temperature-induced grain weight and quality loss; (2) varietal differences under
combinations of RH and temperature treatments.

MATERIALS AND METHODS

Plant materials

Six rice cultivars with different heat tolerances at the grain filling stage were sourced from
our previous studies. They include three rice hybrids: Liangyou27 (LY27), Liangyou6
(LY6), and Zhuliangyou47 (ZLY47), and three conventional varieties: 16343, R168, and
IR64. R168 had a smaller grain weight and quality difference between temperature
conditions. IR64 and the other four varieties showed sensitivity to high temperature
(Table S1).

Growth conditions

A pot experiment was conducted in 2017 on Yangtze University experimental farm
(Jingzhou City, 112°09E, 30°21'N, 32 masl) in the western part of the Jianghan Basin in
China.

Seeds were sown on April 8, 2017. Twenty-day-old seedlings were transplanted to each
plastic pot (inner diameter 30 cm, height 30 cm) containing 12.5 kg soil and 8 g N:P:K
compound fertilizer (26:10:15). After transplantation, the soil surface in the pots was kept
submerged until maturity in natural conditions. Tillers were cut off after they emerged,
leaving only the main stem in each plant throughout the entire growth period.

Treatment

Six controlled environments with a combined air temperature and relative humidity (RH)
level were simulated in a growth chamber (AGC-MR, Zhejiang Qiushi Environment Co.,
Ltd., Zhejiang, China). Experimental treatments included two RH levels (i.e., RH75%
and RH85%), three temperature levels (daily maximum temperatures of 33 °C, 35 °C, and
37 °C), and two durations (8 and 15 days after anthesis) (Fig. 1). Hourly temperature

Yan et al. (2021), PeerdJ, DOI 10.7717/peerj.11218 3/22


http://dx.doi.org/10.7717/peerj.11218/supp-1
http://dx.doi.org/10.7717/peerj.11218
https://peerj.com/

Peer/

Al o« |o0e RH/% . .
000 @ Six pots per cultivar for
1 1
175 I 85 each treatment
33 i... ( X X J
1000 000
O I
o 1
~~ .
o i Durations/ days
=)
= ( X X J 000 ~
o ( X X J 000 6
Q.
£ ] A
o i
|_
37 ( X X J
000
304 =l I i 180
1 160
20 Treatment  Tpewn/'C___ Tina/C T/ C RHypean /% ] Treatment  Tipean/'C__ Tuu/C Toin/ C RHypean /%
33°C-75% __20.7270.00_33.0890.00_26.773033 7493155 _ 1 33°C85% _29.7470.06_33.0270.14_26.839025_sa99037_ 140
10' ! ) 1 20
Temperature setting —— RH setting ] 1
Tempearature m r 1
g_) 0 (Ia pea altu e e’flsu e ) RH rqeasure 0
% D E
R S——— ] 180
> (<)
= 1 160 =
£ 20 {Trame Tpew/C Ty /'C  Tyy/°C RHpeon /% Treatment  Tpe/'C  Tpg/'C T/ 'C RHpen /% T
8 35°C-75%  31.8090.09 35.1630.08 28.83F0.34 7497045  {35°C-85%  31.80F0.10 35.19F0.15 28.79F0.19 84.96H0.70 {40 I
£ 10+ | 120
()
—
0 F , — : G ; ; , , 0
30 i ] 180
1 160
20 Treatment Ty /'C_ T /°C T/ C RHyep /% Treatment Ty /'C_ T /°C T/ C RHyep /%
37°C75% _ 33.743010_37.1990_11_30.800026 74204065 _ 1 37°C85% _ 33.7090.07_37.1630.12_30.743021_85.0040.60_ 140
10
| {20

0 . . . . : : . . . . 0
00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 24:00

Time /hh:mm

Figure 1 Diagram of all treatments (A), temperature and RH diurnal variation, maximum
temperature, average temperature, minimum temperature, and average RH in each treatment
(B-G). The measured value was the average of 15 d, and the shading around the measured value
indicates the standard error of the measured values of 15d.  Full-size k&l DOI: 10.7717/peerj.11218/fig-1

changes were recorded daily, and the results are shown in Fig. 1. The RH was kept constant
in each treatment environment.

Panicles heading on the same day were marked for treatments after anthesis. Six pots
of each cultivar were subjected to each combination of the controlled environment
(temperature x RH combinations) for eight and 15 days, respectively. The plants grown
under natural conditions (six pots per cultivar) were used as controls. Temperature and
RH are shown in Table S2.
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Measurements of grain weight, milling quality, and chalkiness

Filled grains were harvested and sun-dried to a moisture content of 13%. We measured
thousand-grain weights with three replications. Samples were stored for 3 months
(15-20 °C, RH: 10-20%) and then the milling quality and chalkiness were measured. Rice
grain samples (30 g for each cultivar per treatment) were dehulled and polished for 30 s
(JDMZ100, Beijing Dongfu Jiuheng Instrument Technology Co., Ltd., Beijing, China)

to obtain milled rice. The head rice was then separated and weighed. The weight of the
head rice to the sample weight (30 g) was calculated as the head rice rate. The chalkiness of
the head rice was evaluated with a rice appearance quality tester JMWT12, Beijing Dongfu
Jiuheng Instrument Technology Co., Ltd., Beijing, China).

Stress tolerance estimation

Stress tolerance was evaluated by the membership function value (MFV) based on the
theory of fuzzy mathematics (Zadeh, 1965). We used a method modified from Chen et al.
(2012) and Liu, Yang ¢» Hu (2015). The heat-tolerant coefficient (HC) was calculated as
the ratio of the value in the combinative treatment of temperature x RH x duration to that
in the control of the same cultivars for individual traits, using the following equation:

Xijk

HC = ok,
Y

where HC;j is the heat-tolerant coefficient of the trait (i) for cultivar (j) in treatment (k),
Xijk is the value of the trait (i) for the cultivar (j) in the treatment (k), CKj; is the value of the
trait (i) for the cultivar (j) under the control condition.

As with HC, MFV for grain weight and head rice rate were calculated, using the
following equation:

Hcijk — MIH(HC,)
Max(HC;) — Min(HGC;)

MFV =

where MFV ;. is the membership function value of heat tolerance of the trait (i) for the
cultivar (j) in treatment (k), HC;j is the same as earlier defined, HC; is the heat-tolerant
coefficient value of the trait (i) over all cultivars and all treatments.

The chalkiness value tends to increase after treatment, which is contrary to the changes
in grain weight and milled rice rate, and the absolute value of chalkiness under control
conditions is usually very small. The MFV for chalkiness was calculated using the following
equation:

Xijk — MIH(X,)
Max(X;) — Min(X;)

MFV = 1

where X; is the value of the trait (i) over all cultivars and all treatments.
For these three traits, MFVs are dimensionless, real number interval [0,1], standing for
individual cultivar’s heat tolerance under treatments.
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Data analysis

We used Microsoft Excel 2019 for data entry and collating and conducted the analysis of
variance (ANOVA) using the R package “agricolae” in R 3.6.0 to determine the effect of
treatment factors on grain weight and quality. We performed comparisons between
treatment means using the least significant difference test (LSD) at P < 0.05.

A full model was established via function “Im” in R package “stats” to evaluate the
treatment factors and their interactions on grain weight, head rice, and chalkiness. Then,
a stepwise backward selection based on the Akaike’s information criterion (AIC) which
performed with function “stepAIC” in R package “MASS” in R 3.6.0 was used to find out
the factors that affected the grain weight, head rice rate, and chalkiness most (Venables,
Ripley ¢ Venables, 2002). The significance of each predictor was tested via a Student’s
t-test, all treatment factors and their interactions left in the model were significant at the
0.01 level.

The full model of multiple linear regression as follow:

Y = B, X1 + By Xo + B3 Xz + BuXy + B XiXo + B3 XiXs + B XoXs + B3 X1 X0 X3 + e

where Y represents grain weight, head rice rate, and chalkiness in each treatment,
respectively; X; represents the max daily temperature in each treatment; X, represents the
relative humidity in each treatment; X; represents the treatment duration days in each
treatment; and X, represents the grain weight, head rice rate, and chalkiness of each
cultivar under controlled conditions to eliminate the differences in the variety; B;, B,
B3, and Py, are linear coefficients, B;,, P13, P23, and Pi,3 represent interaction coefficients,
with e representing the intercept.

RESULTS

Grain weight
The effects of temperature, RH, and temperature x RH on grain weight were significant
among six cultivars (Table 1). The duration of treatment also had a significant effect on
grain weight, except for R168. Grain weight was significantly reduced in cultivars at
RH 75% coupled temperature treatments, and the reduction was higher than that in RH
85% over the same three temperature treatments (Fig. 2). Under the same temperature and
RH conditions, grain weight significantly decreased from 8 d to 15 d of the duration
treatment (Fig. 2). The impact of different RH regime treatments (RH75% vs. RH85%) on
grain weight was smaller at 37 °C than at 33 °C and 35 °C (Fig. 3).
Multiple regression analysis showed that grain weight decreased when temperature
and durations increased, which was the opposite effect when RH increased (Table 2).
MFVs of each trait displayed in Table 3 showed the heat tolerance of each cultivar
under treatments, with the mean value as a comprehensive index for the evaluation of heat
stress tolerance of each cultivar. R168 was found to have the highest mean MFV (0.70),
followed by IR64 (0.55), then LY27, LY6, ZLY47, and 16343 (0.54, 0.50, 0.45, and 0.44,
respectively). R168 also showed the smallest difference of MFVs between RH conditions.
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Table 1 Summary of ANOVA for grain weight, head rice rate, and chalkiness in each cultivar.

Cultivars Factor Grain weight Head rice rate Chalkiness
LY27 T 506.53*** 81.25%** 1,296.53***
RH 55.35%%% 145.727%** 60.147%%
D 77.77%%* 34.40%** 168.07**
TxRH 42.66*** 21.54%% 88.60%**
TxD 3.02 3.62% 7.31%*
RHxD 7.26* 30.11°% 8.44**
TxRHxD 41.25%** 16.27%** 73.24™%*
LY6 T 178.54*** 13.45%** 1,340.38%**
RH 188.26*** 46.68%** 413.12%%*
D 22,827 61.19%** 26.03%**
TxRH 7.45%* 141 11.26***
TxD 2.95 2.63 2.08
RHxD 14.01** 0.01 7.18*
TxRHxD 0.21 1.69 11.90%**
71.Y47 T 23.07%%* 86.81%** 429.42%**
RH 13.24** 23.617%** 147.61°**
D 49.207** 2.95 21.10%**
TxRH 38.45%%* 1.28 50.57%%*
TxD 2.03 4.58* 4.60*
RHxD 18.33%%* 6.63* 0.13
TxRHxD 0.03 3.38 1.59
R168 T 190.41*** 23.13%%* 343.66***
RH 13.46™* 9.86™* 52.80%**
D 1.41 105.14*** 87.47*
TxRH 442* 4.30% 30.89%%
TxD 6.76™* 28.38%** 0.4
RHxD 0.24 13.40%* 0.12
TxRHxD 3.59* 18.31%** 11.08%**
IR64 T 339.68*** 244.91%** 1,541.63***
RH 6.84* 121.39%** 7.47*
D 62.03%% 9.80** 46.94%**
TxRH 11.16™** 1.41 22.227%%%
TxD 11.927** 9.42%** 391*
RHxD 0.73 40.74%** 33.28%%*
TxRHxD 11.53%** 12.01%** 0.15
16343 T 825.017*** 437.00%** 948.33%**
RH 119.69*** 216.44%** 11.84**
D 285.66%** 35.24%% 32
TxRH 4.36* 9.57%** 16.78**
TxD 26,947 7.34** 13.79%**
RHxD 44 35%** 4.63* 0.04
TxRHxD 49.06*** 0.3 5.00*
Note:

Factors: Temperature (T), Relative humidity (RH), Duration days (D). Data are F-values with indication of significance
levels (* P < 0.05; ** P < 0.01; *** P < 0.001).
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Figure 2 Grain weight responses to different treatments. (A) LY27, (B) LY6, (C) ZLY47, (D) R168,
(E) IR64, and (F) 16343. Vertical bars denote standard deviations (n = 3), a different lowercase letter
indicates significant differences among means of different treatments as determined by the LSD test
(p < 0.05). Full-size k&l DOL: 10.7717/peerj.11218/fig-2

The treatment of 35°C by RH75% at 15 days showed the largest mean MFV difference
among the cultivars and could be used to evaluate high-temperature tolerance.

R168 and IR64 were also the two cultivars with the highest mean MFVs of grain weight
and the smallest difference between RH conditions (Table 3). Their grain weight decreased
>2 g at 37 °C (Fig. 2). ZLY47 and 16343 showed high MFVs under temperatures of
33 °C and their grain weight decreased >2 g at 35 °C or 37 °C. LY27 and LY6 showed small
MFVs at RH75% over temperature treatments, and their grain weight decreased >2 g at all
three temperature treatments.
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Table 2 Parameter estimation, r square, and F-value of multiple regression.

Variables Coefficient

Grain weight Head rice rate Chalkiness
X, -0.3918*** —-6.0261%** 40.0446**
X, 0.0837*** 0.4666*** 14.9749%
X;3 -0.0764*** —-0.4154*** 123.0023**
X4 0.91537*** —0.84327%%* 1.8826""*
XX, - - ~0.4405%*
X, X5 - - —3.4569**
X, X5 - - —1.5463%*
X, X,X; - - 0.0438**
e (intercept) 8.4565™** 272.5611%** -1,361.0483**
R 0.8869 0.6513 0.6989
Adjusted R? 0.8862 0.6490 0.6944
F-value 1,260.52*** 283.47%* 155.82***

Note:

The asterisks near the coefficient value indicates significance at ***(P < 0.001), **(P < 0.01), *(P < 0.05). “-” represent the
variable was dropped in the final model. X;: max daily temperature (°C); X,: relative humidity (%); X5: duration days (d);
X4: value of each cultivar under controlled conditions.

Head rice rate

The head rice rate of all cultivars was significantly affected by temperature and RH
(Table 1). Durations also showed a significant detrimental effect on the head rice rate
except in cultivar ZLY47. Interactive effects of temperature x durations and RH x
durations were significant for the head rice rate among cultivars, except LY6. The head rice
rate significantly decreased in cultivars at RH75% over temperature treatments, and the
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Table 3 Membership function values (MFVs) of grain weight, head rice rate, and chalkiness for each
cultivar in each treatment.

Cultivars Temperature/ RH/  Duration MFV of MFV of head MFV of Mean
°C % days grain weight rice rate chalkiness
LY27 33 75 8 0.37 0.89 0.82 0.70
15 0.26 0.79 0.63 0.56
85 8 1.00 0.88 0.74 0.87
15 0.66 0.87 0.73 0.75
35 75 8 0.12 0.68 0.60 0.47
15 0.29 0.49 0.49 0.42
85 8 0.80 0.74 0.71 0.75
15 0.29 0.74 0.75 0.59
37 75 8 0.16 0.50 0.41 0.35
15 0.07 0.49 0.40 0.32
85 8 0.23 0.54 0.49 0.42
15 0.19 0.36 0.32 0.29
LYo6 33 75 8 0.57 0.73 0.63 0.64
15 0.28 0.71 0.49 0.49
85 8 0.68 0.86 0.74 0.76
15 0.50 0.82 0.71 0.68
35 75 8 0.35 0.48 0.48 0.44
15 0.27 0.45 0.42 0.38
85 8 0.55 0.69 0.66 0.64
15 0.40 0.66 0.68 0.58
37 75 8 0.40 0.22 0.37 0.33
15 0.28 0.07 0.27 0.21
85 8 0.52 0.33 0.43 0.43
15 0.35 0.34 0.42 0.37
Z1Y47 33 75 8 0.63 0.66 0.49 0.60
15 0.49 0.63 0.38 0.50
85 8 0.63 0.81 0.59 0.68
15 0.81 0.84 0.57 0.74
35 75 8 0.33 0.32 0.52 0.39
15 0.31 0.25 0.38 0.31
85 8 0.37 0.65 0.53 0.52
15 0.40 0.53 0.47 0.47
37 75 8 0.25 0.31 0.50 0.35
15 0.08 0.22 0.40 0.24
85 8 0.39 0.29 0.38 0.35
15 0.25 0.23 0.38 0.28
R168 33 75 8 0.50 0.96 0.98 0.81
15 0.41 0.88 0.89 0.73
85 8 0.43 0.92 0.95 0.77
15 0.51 0.85 0.92 0.76
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Table 3 (continued)

Cultivars Temperature/ RH/ Duration MFV of MFV of head MFV of Mean
°C % days grain weight rice rate chalkiness
35 75 8 0.47 0.82 0.89 0.73
15 0.38 0.80 0.93 0.70
85 8 0.63 0.96 0.96 0.85
15 0.41 0.85 0.92 0.73
37 75 8 0.55 0.67 0.68 0.63
15 0.18 0.53 0.71 0.47
85 8 0.44 0.73 0.75 0.64
15 0.32 0.70 0.78 0.60
IR64 33 75 8 0.55 0.80 0.96 0.77
15 0.66 0.71 0.94 0.77
85 8 0.76 0.83 1.00 0.86
15 0.71 0.86 0.96 0.84
35 75 8 0.37 0.27 0.74 0.46
15 0.46 0.29 0.55 0.43
85 8 0.63 0.43 0.80 0.62
15 0.47 0.27 0.73 0.49
37 75 8 0.38 0.17 0.61 0.39
15 0.29 0.00 0.52 0.27
85 8 0.47 0.15 0.67 0.43
15 0.39 0.10 0.39 0.29
16343 33 75 8 0.72 0.97 0.76 0.82
15 0.51 1.00 0.61 0.71
85 8 0.82 0.85 0.78 0.82
15 0.68 0.98 0.77 0.81
35 75 8 0.19 0.25 0.39 0.28
15 0.09 0.26 0.21 0.19
85 8 0.44 0.43 0.65 0.51
15 0.43 0.33 0.32 0.36
37 75 8 0.06 0.28 0.11 0.15
15 0.00 0.19 0.05 0.08
85 8 0.29 0.36 0.53 0.39
15 0.26 0.27 0.00 0.18

reduction was higher than that at RH85% over the same temperature treatments when

compared to the control (Fig. 4). The difference in head rice rate between the two RH
treatments (RH75% vs. RH85%) was greatest at 35 °C and lowest at 37 °C (Fig. 3),
suggesting that RH has a pronounced effect on temperature-induced head rice loss at

35 °C. A pronounced difference was found at 33 °C only in cultivars whose head rice rate
was dramatically decreased (LY6 and ZLY47, Fig. 4).

R168 was the most heat-tolerant in terms of head rice rate, except for the treatments of
37 °C x RH 75%, with an MFV of >0.70 (Table 3). In addition, R168 showed a stable and
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Figure 4 Head rice rate responses to different treatments. (A) LY27, (B) LY6, (C) ZLY47, (D) R168,
(E) IR64, and (F) 16343. Vertical bars denote standard deviations (n = 3), a different lowercase letter
indicates significant differences among means of different treatments as determined by the LSD test
(p < 0.05). Full-size k&l DOL: 10.7717/peer;.11218/fig-4

higher head rice rate than other cultivars, even at 37 °C (Fig. 4). The MFVs of head rice rate
for 16343 was 20.85 at 33 °C but dropped sharply at 35 °C in both humidity treatments
(Table 3). For other cultivars, the temperature caused a sharp drop in response to RH.
At RH 75% over temperature treatments, the temperature was 33 °C for LY6 and ZLY47,
or 35 °C for LY27; under RH85%, the temperature was 35 °C for LY6 and ZLY47, or 37 °C
for LY27.
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Figure 5 Chalkiness responses to different treatments. (A) LY27, (B) LY6, (C) ZLY47, (D) R168,
(E) IR64, and (F) 16343. Vertical bars denote standard deviations (n = 3), a different lowercase letter
indicates significant differences among means of different treatments as determined by the LSD test
(p < 0.05). Full-size ka4l DOI: 10.7717/peerj.11218/fig-5

Chalkiness

For all cultivars, the temperatures, RH, and the interaction of temperature x RH had a
significant effect on chalkiness (Table 1). The treatment durations had a significant effect
on chalkiness for cultivars except 16,343. The majority of cultivars had higher levels of
chalkiness at RH75% than at RH85%, even with the same temperature and duration
treatment (Fig. 5). The difference in chalkiness between RH treatments (RH75% vs.
RH85%) was most pronounced at 35 °C, followed by 33 °C (Fig. 3). However, the
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difference was the smallest at 37 °C. Multiple regression analysis showed that chalkiness
was higher when the temperature or durations increased (Table 2).

R168 and IR64 showed the highest MFV's of chalkiness in all treatments (Table 3). R168
also showed the smallest chalkiness difference between RHs (Fig 5). Compared to the
control, the chalkiness of R168 sharply increased (more than 10%) only at 37 °C by the RH
treatments; this was the case for IR64 at 35 °C and 37 °C, or for the remaining cultivars at
all three temperature treatments (Fig. 5).

DISCUSSION

An upward trend of long-term high-temperature stress coupled with decreased RH during
rice grain filling in the Yangtze River basin may occur due to climate change (Guan et al,
2015; Tan ¢ Shen, 2016; Zhang et al., 2018b). Although some studies have shown that
hot, dry winds resulted in lower rice yield and a quality loss (Hiroshi et al., 2012; Wada
et al., 2014), RH’s sole effect remains unknown. Meteorological factors are interrelated
under field conditions; for example, in the Yangtze Valley summer season, which falls
between late July and mid-August, the high temperature is typically coupled with low RH,
rainy or cloudy days come with high RH (Guo et al., 2016). Therefore, it is difficult to
separate the effect of humidity on crop yield from the complex meteorological factors in a
field experiment (Yoshida, 1981; Zhang, Zhang & Chen, 2017; Zhao & Fitzgerald, 2013).
We used controlled environmental conditions to simulate three temperatures with two RH
regimes to evaluate RH’s effects from those of air temperatures on high temperature-
induced rice yield and quality loss during the grain-filling stage. Both temperature

and RH showed pronounced effects on grain weight, head rice rate, and chalkiness;
temperature x RH combination showed significantly interactive effects on grain weight
and chalkiness (Table 1). Temperature treatments at RH75% significantly reduced grain
weight, and the reduction was greater than that at RH85%. The same trend was also
observed for grain quality loss. Our study is consistent with Wada et al. (2011), who found
that grains were losing quality in dry, hot winds.

The interaction effect of temperature and RH

During the flowering stage, panicle temperature rather than air temperature was
curvilinearly related to spikelet fertility (Weerakoon, Maruyama ¢» Ohba, 2008). Rice could
homeostatically adjust panicle temperature via transpiration cooling for optimal growth.
The air-panicle temperature difference was altered under different RH conditions
(Fukuoka, Yoshimoto ¢ Hasegawa, 2012; Yoshimoto et al., 2011). Yan et al. (2008) showed
that at temperatures of 31.5-33.5 °C, the temperature difference between the air and
panicle was about 2 °C under humid atmospheric conditions (~86% RH) or about

5 °C under a dry atmospheric condition (~48% RH). Rice panicles benefit from their
transpiration cooling under heat stress at flowering (Matsui et al., 2014). However, our
results showed decreased RH, coupled with a high temperature at the grain filling stage
reduced grain weight and lowered grain quality. The benefit from the decreased RH by
transpiration cooling may not be the only scenario of RH and temperature interaction.
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Theoretically, there may be a balance between transpiration cooling and a water deficit
in rice panicles exposed to heat. Zhao ¢ Fitzgerald (2013) reported that a daily maximum
temperature ranging from 30 °C to 33 °C and a lower RH led to higher head rice yield
and lower chalkiness. Meanwhile, Wada et al. (2011) showed dry winds at day/night
temperatures of 34/26 °C caused water deficiencies in panicles and restricted starch
accumulation, which led to a decline in the quality of the rice. We found that decreased
humidity coupled with temperature treatments caused grain weight reduction and quality
loss. This effect was most pronounced at 35 °C, and to a lesser extent at 33 °C, and
insignificant at 37 °C. This indicates that transpiration cooling may not be enough to
compensate for the adverse effects of water deficit when rice is exposed to
high-temperature stress (35 °C and 33 °C).

Physiological mechanism of temperature and RH interaction

Water fluctuations for growth and transpiration are linearly superimposed (Nonami ¢
Hossain, 2010), and the impaired ability of stomatal regulation of rice spikelets has a
greater evaporative demand under high temperature (Garrity, Vidal ¢ O'Toole, 1986),
leaving the spikelets and grains at risk of water deficit (Tanaka ¢ Matsushima, 1971).
Water deficiency in the panicle caused by dry, hot winds was detrimental to rice grain
weight and quality formation (Hiroshi et al., 2012; Kang et al., 2003; Wada et al., 2011).
Low relative humidity may reduce the assimilation capacity of leaf photosynthesis
(Tanaka & Matsushima, 1971). The normal maturing process of grains is dependent on a
sufficient water supply (Cochrane, Paterson ¢ Gould, 2000; Ferrise, Bindi & Martre, 2015).
Thus, a higher temperature with lower humidity may induce high temperature-forced
maturity.

Panicle water potential is temporarily reduced during periods of dry, hot wind stress
(Wada et al., 2011). The osmotic adjustment of endosperm cells with increased transport
was activated to maintain kernel growth, but starch biosynthesis was slowed (Wada
et al., 2014). The vacuolar structures in the cytosol were preserved during maturity because
of osmotic adjustments, resulting in ring-shaped chalkiness (Hatakeyama et al., 2018).
High-temperature stress led to substantial solutes to be accumulated in endosperm cells
by osmotic adjustment. This was accompanied by the partial inhibition of amyloplast
development and the formation of protein bodies, which caused air spaces to remain in
endosperm cells during grain dehydration, resulting in a chalky appearance (Wada
et al., 2019). Similar mechanisms of starch synthesis restriction were found under high
temperature and dry wind conditions, meaning that decreased RH may aggravate the high-
temperature effect on grain weight and quality loss.

The osmotic regulation ability of plants is closely related to the heat tolerance during the
vegetative growth period (An, Zhou & Liang, 2014; Jiang & Huang, 2001; Zhou et al.,
2018; Zou et al., 2016), and the study of Wada et al. (2014) suggests that this relationship is
also applicable at the filling stage of rice. We speculate that the differences in variety
performance in this study may be related to osmotic regulation, but further study is
needed.
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Varietal differences under RH in combination with temperature
treatments

A daily mean air temperature over 25 °C during the grain filling stage can cause a loss
of quality in the rice grains (Morita, Wada ¢ Matsue, 2016; Wu, Chang & Lur, 2016).
However, the magnitude of heat stress-induced damage varied by genotype. Cooper,
Siebenmorgen ¢ Counce (2008) reported a reduction in grain quality in susceptible
cultivars at nighttime temperatures of 20 °C, but this effect was not reflected in
heat-tolerant cultivars at the nighttime temperature of 30 °C. We found that grain
weight and quality traits did not change linearly with increasing temperatures and only
changed dramatically at a certain temperature, with varied responses among different
cultivars (Figs. 2, 4, and 5). This was similar to the response of spikelet fertility to high
temperatures during flowering (Jagadish, Craufurd ¢» Wheeler, 2007).

The identification of heat-tolerant rice germplasms (e.g., N22) may present
opportunities to breed heat-tolerant rice at the flowering stage (Gonzdlez-Schain et al.,
2015; Tetsuo & Shouichi, 1978). The mechanism leading to grain quality losses is more
complex than the mechanism of heat-induced yield loss (Jagadish, Murty & Quick, 2015),
which brings more challenges for screening and identifying tolerant varieties. Previous
studies paid closer attention to temperatures in controlled environments when
investigating rice heat tolerance at the grain filling stage (Chen et al., 2017; Shiraya et al.,
2015; Tanamachi et al., 2016). We showed that changes in grain weight and quality are
affected by interactions between temperature and humidity and found that humidity is
important in evaluating varietal heat tolerance. We suggest that the effect of humidity
should be considered in multi-variety tolerance screening and identification. The optimum
combination of 35 °C by RH75% by 15 days should be recommended to screen for
heat tolerance of rice. Our results bring attention to the detrimental interactive effects
of high temperature and humidity on rice yield and quality and are of interest to breeders
and agronomists to adjust breeding targets. R168, the most heat-tolerant cultivar used
in this study, showed smaller differences in grain weight and quality between two RH
regimes. This variety may be selected as a heat-tolerance variety to improve rice yield and
quality under climate change.

CONCLUSION

We found that decreased RH aggravated the detrimental effects of high temperature on
grain weight and quality. These effects were the most pronounced at 35 °C, less
pronounced at 33 °C, and were not significant at 37 °C. Heat tolerant cultivars were
identified and determined to be less affected by the treatments.
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