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Gaze-Stabilizing Central Vestibular Neurons Project
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Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A
major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the
populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for
a genetically defined population of central vestibular neurons in rhombomeres 5–7 of larval zebrafish. First, we found that neurons within
this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of
asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional
correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down
body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In
addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer
whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular
neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate repre-
sentation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up
postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior
requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular
system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior.
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Introduction
Neural circuits use populations of interneurons to relay sensation
to downstream effectors that in turn generate behavior. The an-

atomical composition of interneuron populations has provided
insight into its function. For example, interneuron populations
are often organized into maps composed of nonuniformly sized
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Significance Statement

Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined
how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the
computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons
that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up
sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim
bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural
circuits to represent relevant features of the environment without compromising behavior.
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sets of neurons similarly sensitive to particular features (Kaas,
1997). Such visual topography in the thalamus (Connolly and
Van Essen, 1984) and cortex (Daniel and Whitteridge, 1961)
magnifies the input from the central visual field. This magnifica-
tion is thought to underlie enhanced perceptual acuity (Duncan
and Boynton, 2003). Preferential anatomical organization is thought
to facilitate adaptive olfactory (Hansson and Stensmyr, 2011), visual
(Barlow, 1981; Xu et al., 2006), somatosensory (Adrian, 1941;
Catania and Remple, 2002), and auditory (Knudsen et al., 1987;
Bendor and Wang, 2006) computations. However, little is known
about how these anatomical asymmetries within populations of
sensory interneurons determine the activity of their target motor
effectors. Motor anatomy shares a similar uneven organization
(Kuypers, 2011), but the complex spatiotemporal encoding of
muscle synergies has made comparable dissection of motor cir-
cuits more challenging (Levine et al., 2012; Shenoy et al., 2013;
Harrison and Murphy, 2014). Even where descending cortical
(Lemon, 2008) or brainstem (Esposito et al., 2014) neurons syn-
apse directly on motoneurons, the complexity of most behaviors
makes it difficult to relate anatomy to function. Data relating the
anatomical projections of interneuron populations to their func-
tion are needed to address this problem.

By virtue of their defined connectivity, interneurons within
central reflex circuits offer the opportunity to explore the rela-
tionship between population-level anatomical properties and
function in a simpler framework. Vestibular interneurons, an
ancient and highly conserved population, transform body/head
destabilization into commands for compensatory behaviors, such as
posture and gaze stabilization (Szentágothai, 1964; Straka and
Baker, 2013; Straka et al., 2014). Gaze-stabilizing vestibular
brainstem neurons receive innervation from peripheral balance
afferents (Uchino et al., 2001) and use highly stereotyped axonal
projections to particular extraocular motoneuron targets that
produce directionally specific eye movements (Uchino et al.,
1982; McCrea et al., 1987; Iwamoto et al., 1990b). One anatomi-
cal and physiological characterization of up/down-sensitive ves-
tibular neurons in the cat suggested a potential 3:1 bias toward
neurons responsible for downward eye movements (Iwamoto et
al., 1990a) However, extracellular recording experiments may be
subject to selection bias. Further, as selective activation has been
impossible, whether there are functional correlates of putative
anatomical specialization remains unknown.

To study the relationship between the anatomical specializa-
tions of interneuron populations and their functions, we investi-
gated a genetically defined population of vestibular brainstem
neurons in a model vertebrate, the larval zebrafish. Larval ze-
brafish face well-defined challenges that necessitate control of

body orientation in the vertical/pitch axis (i.e., nose-up/nose-
down). First, larval zebrafish rely on vestibular sensation to guide
upward swimming to the water’s surface to gulp air and inflate
their swim bladders, a vital organ necessary to maintain buoyancy
(Goolish and Okutake, 1999; Riley and Moorman, 2000). Fur-
ther, fish actively maintain a nose-up posture (Ehrlich and Schoppik,
2017), permitting them to efficiently maintain their position in
the water column despite being slightly denser than their sur-
roundings (Aleyev, 1977; Stewart and McHenry, 2010). Larval
zebrafish use vestibular brainstem neurons to stabilize gaze by
performing torsional and vertical eye movements (Bianco et al.,
2012). These same neurons project to nuclei responsible for
movement initiation and pitch tilts (Pavlova and Deliagina, 2002;
Severi et al., 2014; Thiele et al., 2014; Wang and McLean, 2014).

We leveraged known properties of the gaze stabilization cir-
cuit to relate the anatomy of a genetically defined population of
vestibular brainstem neurons and their function. Our study
reports three major findings. First, we discovered that central
vestibular neurons in rhombomeres 5–7 (r5–r7) project prefer-
entially to extraocular motoneurons that move the eyes down.
Ablation of these neurons eliminates counter-rotation of the eyes
following body tilts, establishing a role in gaze stabilization. Sec-
ond, modeling revealed that asymmetrically projecting neurons
could enhance the capacity to represent nose-up stimuli without
compromising gaze stabilization. Third, we discovered that fish
do not inflate their swim bladders following ablation of these
interneurons. Together, our data suggest that the anatomical spe-
cialization we observe permits sensory specialization while main-
taining reflexive capabilities.

Materials and Methods
Fish care. All protocols and procedures involving zebrafish were ap-
proved by the Harvard University Faculty of Arts and Sciences Standing
Committee on the Use of Animals in Research and Teaching (Institu-
tional Animal Care and Use Committee). All larvae were raised at 28.5°C,
on a standard 14/10 h light/dark cycle at a density of no more than 20 –50
fish in 25– 40 ml of buffered E3 (1 mM HEPES added). When possible,
experiments were done on the mitfa �/� background to remove pigment;
alternatively, 0.003% phenylthiourea was added to the medium from
24 hpf onwards and changed daily. Larvae were used from 2 d post
fertilization (dpf) to 11 dpf. During this time, zebrafish larvae have not
determined their sex.

Behavior. Torsional eye movements were measured following step tilts
delivered using an apparatus similar in design to Bianco et al. (2012). All
experiments took place in the dark. Larval fish were immobilized com-
pletely in 2% low-melting temperature agar (Thermo Fisher 16520), and
the left eye was freed. The agar was then pinned (0.1 mm stainless minu-
tien pins, FST) to a 5 mm 2 piece of Sylgard 184 (Dow Corning), which
was itself pinned to Sylgard 184 at the bottom of a 10 mm 2 optical glass
cuvette (Azzota, via Amazon). The cuvette was filled with 1 ml of E3 and
placed in a custom holder on a 5-axis (X, Y, Z, pitch, roll) manipulator
(ThorLabs MT3 and GN2). The fish was aligned with the optical axes of
two orthogonally placed cameras such that both the left utricle and two
eyes were level with the horizon (front camera).

The eye-monitoring camera (Guppy Pro 2 F-031, Allied Vision Tech-
nologies) used a 5� objective (Olympus MPLN, 0.1 NA) and custom
image-forming optics to create a 100 � 100 pixel image of the left eye of
the fish (6 �m/pixel), acquired at 200 Hz. The image was processed
online by custom pattern matching software to derive an estimate of
torsional angle (LabView, National Instruments), and data were ana-
lyzed using custom MATLAB scripts (The MathWorks). A stepper motor
(Oriental Motors AR98MA-N5–3) was used to rotate the platform hold-
ing the cameras and fish. The platform velocity and acceleration were
measured using integrated circuits (IDG500, Invensense and ADXL335,
Analog Devices) mounted together on a breakout board (Sparkfun SEN-
09268). Fish were rotated stepwise for 10 cycles: from 0° to �60°, where
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positive values are nose-down, then from �60° to 60°, and then back to
0° in 10° increments, with a peak velocity of 35°/s. The interstep interval
was 5 s, and the direction of rotation was then reversed for the next
sequence of steps.

The eye’s response across the experiment was first centered to remove
any offset introduced by the pattern-matching algorithm. Data were then
interpolated with a cubic spline interpolation to correct for occasional
transient slowdowns (i.e., missed frames) introduced by the pattern-
matching algorithm. The eye’s velocity was estimated by differentiating
the position trace; high-frequency noise was minimized using a 4-pole
low-pass Butterworth filter (cutoff � 3 Hz). Each step response was
evaluated manually; trials with rapid deviations in eye position indicative
of horizontal saccades or gross failure of the pattern-matching algorithm
were excluded from analysis. The response to each step for a given fish
was defined as the mean across all responses to that step across cycles. The
gain was estimated by measuring the peak eye velocity occurring over the
period 375–1000 ms after the start of the step. The steady-state response
was estimated by measuring the mean eye position over the final 2 s of the
step; the range was the difference between the most eccentric nose-up
and nose-down steady-state angles.

Gain was evaluated over the range from 30° to �30° (i.e., the first three
steps away from the horizontal meridian). We chose this interval for
three reasons: (1) Fish spend the overwhelming majority of their time
with a body orientation in this range (Ehrlich and Schoppik, 2017).
(2) The responses here were the strongest, allowing us confidence in the
dynamic capacity of the system without encountering the biophysical
limits imposed by orbital structure. (3) Because the utricle conveys in-
formation both about static and dynamic changes in orientation, the eyes
adopt an increasingly eccentric rotation as the stimulus progresses, po-
tentially constraining dynamic range.

Transgenic lines. Tg(�6.7FRhcrtR:gal4VP16):-6.7FRhcrtR was ampli-
fied the using a nested PCR strategy. First, a 6775 bp DNA fragment
immediately upstream of the Fugu rubripes hcrtr2 start site was ampli-
fied from genomic DNA, using a high-fidelity polymerase (PfuUltra II
Fusion, Stratagene) with primers 5�-AATCCAAATTCCCAGTGACG-3�
and 5�-CCAGATACTCGGCAAACAAA-3�, 56°C annealing tempera-
ture, 1:45 elongation time. The PCR product was TOPO cloned into a TA
vector (Thermo Fisher). Using the resulting plasmid as a template, a 6732
bpfragmentwasamplifiedusingprimers5�-AATCCAAATTCCCAGTGA
CG-3� and 5�-CCAGATACTCGGCAAACAAA-3� 55°C annealing tem-
perature, 1:45 elongation and similarly TOPO cloned into a GATEWAY-
compatible vector (PCR8/GW, Thermo Fisher). The resulting entry
vector was recombined into a destination vector upstream of gal4-VP16,
between Tol2 integration arms (Urasaki et al., 2006). Tg(UAS-E1b:
Kaede)s1999t embryos were injected at the one-cell stage with 0.5 nl of
50 ng/�l plasmid and 35 ng/�l Tol2 transposase mRNA in water, and
their progeny screened for fluorescence. One founder produced three
fluorescent progeny; one survived. To identify transgenic fish without
using a upstream activating sequence (UAS) reporter, potential carriers
were genotyped using the following primers to generate a 592 bp product
spanning the upstream Tol2 arm and the start of the Fugu sequence:
5�-CAATCCTGCAGTGCTGAAAA-3� and 5�-TGATTCATCGTGGCA
CAAAT-3� 57°C annealing temperature, 0:30 elongation time. The com-
plete expression pattern has been described previously (Lacoste et al.,
2015) and is part of the Z-brain atlas (Randlett et al., 2015).

Tg(14�UAS-E1b:hChR2(H134R)-EYFP):hChR2(H134R)-EYFP (Zhang et
al., 2007) was subcloned downstream of 14 copies of a UAS element and
an E1b minimal promoter in a vector containing an SV40 polyA se-
quence and Tol2 recognition arms (Urasaki et al., 2006). This vector was
coinjected with tol2 transposase mRNA into TLAB embryos at the single-
cell stage. Potential founders were screened by crossing to Tg(isl1:Gal4-
VP16,14�UAS:Kaede) (Pan et al., 2012) and monitoring tail movements
in response to blue light from an arc lamp on a stereomicroscope (Leica
MZ16) at 30 hpf.

The following transgenic lines were used: Tg(UAS-E1b:Kaede)s1999t

(Scott et al., 2007), Tg(isl1:GFP) (Higashijima et al., 2000), Tg(UAS:
KillerRed) (Del Bene et al., 2010), Tg(UAS-E1b:Eco.NfsB-mCherry)
(Pisharath et al., 2007), atoh7th241/th241 (Kay et al., 2001), Tg(atoh7:

gap43-RFP) (Zolessi et al., 2006), Tg(5�UAS:sypb-GCaMP3) (Nikolaou
et al., 2012), and Et(E1b:Gal4-VP16)s1101t (Scott et al., 2007).

Anatomy. To generate mosaically labeled fish, 0.5 nl of 30 ng/�l plas-
mid DNA (14�UAS-E1b:hChR2(H134R)-EYFP) (Douglass et al., 2008)
or UAS-Zebrabow (Pan et al., 2013) was injected in water at the one-cell
stage into Tg(�6.7FRhcrtR:gal4VP16); Tg(isl1:GFP) fish. Embryos were
screened at 24 – 48 hpf. The majority (80%) of injected fish were excluded
due to deformities or developmental arrest. The remaining fish were
screened at 72 hpf under a fluorescent stereoscope (Leica MZ16) with a
high-pass GFP emission filter for YFP fluorescence or a Cy3 emission
filter for dTomato. As Tg(�6.7FRhcrtR:gal4VP16) will label the skin and
notochord early (36 – 48 hpf), and fluorescence in either structure is
relatively easy to visualize, embryos with mosaic labeling (usually 1–10
cells) in these structures were selected. On average, 1%–2% of injected
embryos were retained for high-resolution screening. Larvae were anes-
thetized (0.016% w/v tricaine methane sulfonate, Sigma A5040), mounted
dorsally at 5–7 dpf, and imaged on a confocal microscope (Zeiss 510, 710,
or 780, using either a 20� 1.0 NA, a 40� 1.1 NA, or a 63� 1.0 NA
objective with Zen 2010, 8-bit acquisition) with excitation of 488 nm
(GFP) and 514 nm (EYFP), and emission for the two channels was either
separated at 550 nm by a glass dichroic filters or a tunable filter. The two
channels could reliably be separated provided the level of EYFP was
strong relative to GFP.

Most of the fish selected for confocal imaging had some neurons la-
beled in the brain, but on average, only 0.5%–2% (i.e., 5–20 for every
1000) of injected embryos would have vestibular nucleus neurons that
were both bright and sufficiently isolated enough to trace. Neurons were
only included in the study if their axon could be traced unambiguously
throughout its entirety to a distinct cell body; qualitatively, the asymme-
try persisted among excluded fish. Neurons were traced manually with
the assistance of the ImageJ plugin Simple Neurite Tracer (Longair et al.,
2011). Cell bodies of the oculomotor and trochlear nuclei were localized
manually using the Fiji/ImageJ ROI functionality (Schindelin et al.,
2012). Superior oblique motoneurons were found in nIV and superior
rectus motoneurons were the most ventral somata in nIII (Greaney et al.,
2017). All images were adjusted linearly, using the Brightness and Con-
trast functionality in Fiji/ImageJ (Schindelin et al., 2012). For display
purposes, a nonlinear histogram adjustment (� � 0.5) was applied to the
maximum intensity projection (MIP) in Figures 1B and Figure 2A to
increase the relative brightness of thin axonal arbors, and, for Figure 2A,
to make clear the sparse nature of the label.

Retrograde labeling of the ocular motor nuclei was done as previously
described (Ma et al., 2010; Greaney et al., 2017). In brief, crystals of
fluorescently conjugated dextrans (10,000 molecular weight, Thermo
Fisher D-1824 or D-22914) were placed in the left orbit of anesthetized
5–7 dpf fish. In fish, the superior eye muscles receive projections from the
contralateral motor nuclei, making the relevant neurons in nIV (superior
oblique) and nIII (superior rectus) easy to discriminate, as they were
exclusively labeled on the contralateral (right) side.

Focal electroporations were done as detailed previously (Tawk et al.,
2009; Bianco et al., 2012). Briefly, anesthetized larvae (2 dpf) were
immobilized in low-melting temperature agarose. Micropipettes (tip di-
ameter of 1–2 mm) were filled with a solution containing 1 mg/ml gap43-
EGFP plasmid DNA in distilled water. To target the vestibular nucleus
neurons, the pipette was placed at the lateral limit of rhombomere 5,
using the decussation of the Mauthner axon midline crossing as a land-
mark. A Grass SD9 stimulator (Grass Technologies) was used to deliver
three trains of voltage pulses in succession, with 1 s interval between
trains. Each train was delivered at 200 Hz for 250 ms, 2 ms on time, with
an amplitude of 30 V. Larvae were imaged at 5 dpf on a custom multipho-
ton microscope at 790 nm.

Lesions. Single-cell ablations were performed using a pulsed infra-
red laser (SpectraPhysics MaiTai HP) at 820 nm (80 MHz repetition
rate, 80 fs pulse duration) at full power: 200 mW (2.5 nJ) measured at
the specimen with a power meter (ThorLabs S130C). Fish were
mounted dorsally in 2% low-melt agarose in E3 under a 20� 0.95 NA
objective (Olympus) and anesthetized as described above. Cell bodies
were targeted for ablation based on anatomical location, starting with
the most ventrolateral neurons in the tangential nucleus and then
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Figure 2. Projections from singly labeled vestibular nucleus neurons. A, Horizontal MIP of a single vestibular neuron labeled with UAS-ChR2(H134R)-EYFP (purple) in Tg(�6.7FRhcrtR:gal4VP16);
Tg(isl:GFP) (green). � � 0.5 to highlight the sparse label. Scale bar, 100 �m. Pink triangle represents the data in Figure 7D. Twenty-three of 27 neurons studied projected similarly. B, Sagittal MIP
of the neuron in A highlighting nIII (cyan arrow), nIV (magenta arrow), and projection to nIV (white arrow). Scale bar, 20 �m. C, Horizontal MIP of nIV (green cell bodies in dotted magenta outline)
from A. Vestibular neuron projection (purple, white arrow). Scale bar, 10 �m. D, Horizontal MIP of nIII (green cell bodies in dotted cyan outline) with no proximal vestibular neuron projection
(purple). E, Sagittal MIP of a single axon expressing 14�UAS-E1b:hChR2(H134R)-EYFP (purple) in Tg(�6.7FRhcrtR:gal4VP16);Tg(isl1:GFP) (green); Tg(atoh7:gap43-RFP) (cyan) fish. Expression of
bright GFP bleeds into the purple channel, making the cell bodies white. nIV (magenta arrow), nIII (cyan arrow), and the vestibular neuron projection to SR motoneurons in nIII (white arrow). Scale
bar, 20�m. Four of 27 neurons projected similarly, exclusively to nIII. F, Horizontal MIP of nIII (cells in blue outline) from E, purple projections from vestibular neuron (white arrow). Scale bar, 10�m.
G, Horizontal MIP of nIV (cells in magenta outline) from E with no purple vestibular neuron projection. Scale bar, 10 �m.

Figure 1. Vestibular nucleus neurons labeled in Tg(�6.7FRhcrtR:gal4VP16). A, The expression pattern of Tg(�6.7FRhcrtR:gal4VP16); Tg(UAS-E1b:Kaede)s1999t (purple) is shown as a horizontal
MIP, with one vestibular neuron, colabeled by focal electroporation of gap43-EGFP (white). Arrows point to the tangential (TVN) and medial vestibular nuclei (MVN) and the MLF. Inset, Schematic of
a dorsal view of a larval zebrafish. Magenta rectangle represents the location of the image. Scale bar, 50 �m. Horizontal (B) and sagittal (C) MIP of vestibular neurons in Tg(�6.7FRhcrtR:gal4VP16);
Tg(UAS-KillerRed) (purple);Tg(isl1:GFP) (green, image � � 0.5) showing cranial motoneuron somata from nIII/nIV, nV, and nVII (green text). Arrows indicate neurons in the vestibular nuclei (VN)
and the MLF. Scale bar, 50 �m. D–F, Close-up of white boxed region in C, showing major branch patterns of vestibular neuron axon fascicle (purple) relative to extraocular motoneurons (green). D,
Motoneurons from Tg(isl1:GFP) (green) in nIV (magenta arrow), superior rectus motoneurons of nIII (cyan arrow), and the midbrain/hindbrain boundary (white dotted line). E, Branches of the
vestibular neuron axon fascicle (purple), emerging from the MLF (white arrow) in Tg(�6.7FRhcrtR:gal4VP16);Tg(UAS-KillerRed), projecting to nIV (magenta arrow) and nIII (cyan arrow). F, Merge
of D and E. Scale bar, 20 �m. G–I, Broad and close-up views of vestibular neuron axonal projection (purple) to nIII cell bodies (green), taken at the horizontal plane delineated by the cyan dotted
line in F, SR motoneurons (nIII) encircled in cyan. G, Cyan arrows localize close-ups in H and I. Scale bar, 10 �m. J–L, Broad and close-up view of vestibular neuron axonal projection
(purple) to nIV cell bodies (green), taken at the horizontal plane delineated by the magenta dotted line in F, SO motoneurons (nIV, green) encircled in magenta. J, Arrows point to close-up
in K and L. Scale bar, 10 �m.
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moving dorsomedially through the tangential and medial vestibular
nucleus. Each cell was exposed to the pulsed infrared laser light for a
brief period of time (35–50 ms), whereas the resulting fluorescent
emissions were measured; usually, there was a brief pulse of light that
saturated the detection optics which was used to shutter the laser. Five
to 10 neurons/plane were targeted bilaterally, resulting in either loss
of fluorescence (Tg(UAS-E1b:Kaede)s1999t and Tg(isl1:GFP)) or in-
creased diffuse fluorescence at the cell body (Tg(UAS-ChR2-E134R-
EYFP)). Fish were imaged immediately and 24 h after ablation to
confirm the extent of the lesion; 15% of lesioned fish were excluded
because they did not survive a full 24 h after the lesion. Fish were
observed under a stereomicroscope in a Petri dish after lesion to
ensure the presence of spontaneous horizontal saccades and normal
jaw movements; all lesioned fish showed both. Fish for lesions were
4 –5 dpf, as preliminary experiments showed that plasma formation
was more effective in younger fish, and were selected to be the bright-
est in the clutch (likely doubly homozygous for UAS-E1b:Kaede and
�6.7FRhcrtR:gal4VP16).

As previously described (Bianco et al., 2012), the eye movements in
younger fish are of lower gain, and 3 of 17 fish were excluded from
analysis because their total range was �10°. Behavior was always mea-
sured at least 4 h and no more than 8 h after lesions. The decrease in gain
was reported as a percentage of prelesion gain, defined as the difference
between the median prelesion gain and median after lesion gain normal-
ized by the median prelesion gain. To activate KillerRed, green light (Zeiss
set 43, 545 nm/25) from an arc lamp was focused through a 63 1.0 NA
objective stopped down to fill a 200 �m diameter region for 15 min. Fish
were mounted dorsally and anesthetized as described above. The focal plane
was at the level of the decussation of the Mauthner axons, measured under
brightfield illumination. Because of equipment replacement, the precise
power of the arc lamp could not be measured, but 20 min of exposure under
identical conditions was fatal to the fish. Postlesion behavior was measured at
least 4 h after the light exposure. To induce apoptosis with nitroreductase,
fish were placed in E3 with 7.5 mM of metrodinazole (Sigma M1547) in 0.2%
v/v DMSO and behavior was measured 24 h later (Curado et al., 2007). The
presence of mCherry fluorescence was assayed after behavior to determine
genotype.

Optical activation and analysis. Channelrhodopsin-induced eye move-
ments were monitored using the same apparatus used for measuring
tilt-induced behavior, with the addition of a fiber-coupled laser on an
independent micromanipulator (Arrenberg et al., 2009; Schoonheim et
al., 2010). Fish were immobilized and mounted as before, and agar was
removed above the head as well as the left eye. Stimulus was generated by
a 100 mW 473 nm diode laser (Shanghai DreamLasers SDL-473–
100MFL) coupled by the manufacturer to a 50 �m inner diameter 0.22
NA multimode fiber (ThorLabs AFS50/125Y) that itself was butt-
coupled to a 10 mm cannula made from the same diameter fiber (Thor-
Labs AFS50/125YCANNULA). Power at the cannula tip was 30 – 60 mW,
measured with a power meter (ThorLabs S130C). The fiber tip was
placed above the ear, evenly centered between the eyes, and 1 mm above
the skin of the fish. Stimuli ranged in duration from 1 �s to 100 ms and
were presented every 5 s. Eye movements were tracked and processed as
before, including manual analysis; only fish with at least 25 analyzable
responses to a given stimulus were included in the analysis. The response
to a given stimulus was quantified by taking the peak angular rotation
reached over the first 2 s.

By microinjecting plasmid DNA at the single-cell stage, we generated
embryos as above with somatic expression of ChR2-EYFP in random
subsets of vestibular neurons, on a blind background, atoh7th241/th241

(Kay et al., 2001). As with anatomical experiments, between 5 and 20 fish
for each 1000 injected had acceptable expression. Of these, only 1 of 4
were homozygous for atoh7th241, and only 1 of 4 of those expressed the
allele necessary to confirm blindness by visualizing the absence of retinal
ganglion cell axons Tg(atoh7:gap43-RFP). The large number of alleles
required and the low success rate limited the number of fish available to
test. Tracing individual axonal projections to quantify the absolute num-
ber of VNs labeled in a given fish was not possible, except in the most
sparsely labeled fish. Further, as expected with somatic expression,
ChR2-EYFP levels varied considerably across vestibular neurons. To

measure the relationship between expression levels/number of la-
beled neurons and the magnitude of the evoked eye movement, we
quantified EYFP fluorescence. Vestibular neurons are the only neu-
rons with rostral medial longitudinal fasciculus (MLF) projections
labeled in Tg(�6.7FRhcrtR:gal4VP16). As such, the total intensity of
the MLF projection for a given fish was measured from the rostral-
most point behind nIV, stopping caudally where the projection nar-
rows to the midline (rhombomere 4). A single image that summed the
intensity of all slices in the confocal stack that contained the MLF
projection was used for our measurements. To correct for differences
in acquisition parameters, MLF fluorescence was normalized by a
measure of acquisition noise. Noise was estimated by measuring the
summed fluorescence of a region between the branches of the MLF,
which did not contain any neuropil. A value of 1 indicates no MLF
fluorescence differentiable from background noise, a value of 2 indi-
cates MLF fluorescence twice that of the background, etc. Ocular
responses to blue light were evaluated and reported as above. Re-
sponses were evaluated for significance by comparing the median
activity 200 ms after the stimulus to the baseline (200 ms before the
stimulus).

Model. Our model estimated the collective activity of 80 postsyn-
aptic neurons generated by integrating activity from a set of presyn-
aptic neurons. We evaluated two free parameters: the number of
presynaptic neurons in the set (30, 42, 70, 105, 140, 168, 180) and the
number of inputs on to a given postsynaptic neuron (2–30). Presyn-
aptic activity was generated by translating a rate function, derived
from the velocity profile of the steps used in the behavioral experi-
ment, into a Poisson train of activity. Step velocity was scaled to
match the reported velocity sensitivity (2 spikes/°/s) of second-order
vestibular neurons (Iwamoto et al., 1990a) to generate a rate function for
Poisson spikes. The velocity reached a peak of 35°/s and lasted 1 s; the
model was run at 1 kHz. Poisson trains were subjected to an imposed 2
ms refractory period. The spikes were then convolved with a decaying
exponential with � � 1.5 s to represent an excitatory postsynaptic poten-
tial. A random subset of presynaptic neurons were selected from the set
and summed together to create an input to a postsynaptic neuron. Post-
synaptic activity was determined by thresholding the input, subject to a 2
ms refractory period. The threshold for the postsynaptic neuron was
defined as the minimum of an input of 1.8% or 95% of the cumulative
distribution of presynaptic input strength. One input spike had a value of
1; after convolution, a threshold of 1.8 was reached if at least four spikes
were present across all inputs over a 4 ms period. Changing the threshold
ensured that the postsynaptic response would not saturate as the number
of inputs increased; the specific threshold did not change the relation-
ships we observed and is expected from the basic properties of extraoc-
ular motoneurons (Torres-Torrelo et al., 2012). We generated 80 distinct
spike trains, reflecting the number of motoneurons in a given motoneu-
ron pool (Greaney et al., 2017). The total postsynaptic response was
defined as the average activity, evaluated where the rate function was
positive. The strength of the relationship between the presynaptic rate
function and the summed post-synaptic response was defined as the
coefficient of determination.

Experimental design and statistical analysis. As data were not normally
distributed, expected values are reported as the median, variability as the
median absolute deviation, and nonparametric tests of significance were
used. Potential differences between groups (e.g., up tilts vs down) were
evaluated using the Wilcoxon rank sum test, and the Wilcoxon signed
rank test was used to test whether a distribution had a median different
from zero (e.g., change in performance after lesion). Significance was
determined at p � 0.05.

Results
A genetically defined population of brainstem neurons
projects preferentially to extraocular motoneurons that move
the eyes downward
We adopted a molecular approach to characterize a subset of
vestibular brainstem neurons in the larval zebrafish. We used a
transgenic line of zebrafish, Tg(�6.7FRhcrtR:gal4VP16) that
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drives expression of a transcription factor
(Gal4) in a restricted subset of neurons,
including those in r5–r7 (Lacoste et al.,
2015; Randlett et al., 2015). When crossed
with other transgenic lines that contain an
upstream activating sequence (UAS),
Gal4 induces selective expression of par-
ticular genes useful for visualization, and
for chemical or light-mediated manipula-
tion. We first crossed the Tg(�6.7FRhcrtR:
gal4VP16) to the Tg(UAS-E1b:Kaede)s1999t

line to selectively drive a red fluorescent pro-
tein. In addition, we performed these experi-
ments on a transgenic background, Tg(isl1:
GFP), which constitutively labeled cranial
motoneurons, including extraocular mo-
toneurons, with GFP.

Within r5–r7 (delineated by the
rostro-caudal extent of the facial nucleus;
Fig. 1B), we observed expression in �200
neurons that, in aggregate, comprise a subset of two bilateral
vestibular nuclei. The first was the previously characterized utri-
cle signal recipient tangential nucleus (Bianco et al., 2012), lo-
cated adjacent to the ear. The second was the medial vestibular
nucleus (Highstein and Holstein, 2006) separated from the tan-
gential nucleus by the lateral longitudinal fasciculus. Figure 1A–C
shows the gross morphology of these neurons and their axonal
projections to the extraocular motor nuclei. In aggregate, we ob-
served that the axon bundle from these vestibular neurons crosses
the midline, ascends rostrally along the MLF, and projects to
extraocular motor nuclei nIII and nIV (Fig. 1D–F).

The utricular vestibulo-ocular reflex uses two independent
“channels,” or defined neural pathways from peripheral sensa-
tion to motor output, to stabilize gaze following pitch and roll
tilts. At the level of the extraocular motoneurons, in the larval
zebrafish, the two channels are segregated along the dorsoventral
axis. First, the ventral-most extraocular motoneurons in nIII
project to the inferior oblique (IO) and superior rectus (SR) mo-
toneurons. Together, IO/SR move the eyes up following nose-down
pitch tilts. Second, the dorsal-most extraocular motoneurons in nIII
project to the inferior rectus (IR), and the dorsally located nucleus
nIV projects exclusively to the superior oblique (SO). Together,
IR/SO move the eyes down following nose-up pitch tilts. The
somatic organization of nIII and nIV is stable after 5 dpf (Greaney
et al., 2017). Finally, previous electromyographic recordings
demonstrates that the SR (nIII) and SO (nIV) muscles are exclu-
sively active during either the nose-down or nose-up phase of
pitch-tilts supporting the independence of the two channels
(Favilla et al., 1983).

Complementarily, pitch-sensitive vestibular nucleus neurons
split into two subtypes, each projecting to only one pair of extraoc-
ular motoneurons (Uchino et al., 1982). The first group arborizes
exclusively in nIII, innervating IO/SR. The second arborizes in both
nIII and nIV, innervating SO/IR. Because nIV is comprised only of
extraocular motoneurons that innervate SO, a collateral projection
to nIV differentiates vestibular interneurons that respond to
nose-up pitch tilts from those that respond to nose-down.

To determine whether vestibular neurons labeled in
Tg(�6.7FRhcrtR:gal4VP16) comprise both nose-up and nose-
down subtypes, we examined their collective projections. We ob-
served that their projection terminated near the ventral-most
extraocular motoneurons in nIII (Fig. 1G, wide view; Fig. 1H, I,
close-up). The second prominent projection from vestibular

neurons goes to extraocular motoneurons in nIV (Fig. 1J, wide
view; Fig. 1K,L, close-up). We conclude that the vestibular neu-
rons labeled in r5–r7 in Tg(�6.7FRhcrtR:gal4VP16) are poised to
respond during both nose-up and nose-down pitch tilts.

To test whether the vestibular neurons labeled in Tg(�6.7FRhcrtR:
gal4VP16) projected symmetrically to extraocular motoneurons,
we examined the axon collaterals of singly labeled neurons. To
differentiate nose-up from nose-down vestibular neurons, we
manually traced the axons of vestibular neurons and used the
labeled cranial motor nuclei to categorize their projections, based
on the presence/absence of a collateral projection to nIV. We
labeled stochastic subsets of vestibular neurons by injecting a
plasmid encoding a fluorescent protein into one-cell embryos,
Tg(�6.7FRhcrtR:gal4VP16). Experiments were performed on the
Tg(isl1:GFP) background to colabel extraocular motoneurons.
The majority of labeled neurons (25 of 27) had only an ascending
collateral; the remaining two had a bifurcated axon that both
ascended and descended along the MLF. We found that the over-
whelming majority (23 of 27) of labeled vestibular neuron axons
had a dorsal collateral projecting to nIV (i.e., nose-up/eyes-down

Figure 3. Tracings of two vestibular nucleus neurons from a single fish at two developmental time points. A, Horizontal (top)
and sagittal (bottom) projections of two traced neurons taken from the same fish imaged at 5 dpf. Magenta trace represents the
characteristic projection to the nIV motoneuron pool (magenta arrows), whereas the green neuron does not. B, Same two neurons
traced in the same fish, at 11 dpf. The same projection to nIV is visible in the magenta tracing (magenta arrow). Scale bars, 100�m.

Figure 4. Vestibular nucleus neurons show synaptophysin-positive puncta on their mo-
toneuron targets. A, Sagittal MIP of a labeled SO motoneuron (magenta arrow) in green and the
purple synaptic puncta labeled in Tg(�6.7FRhcrtR:gal4VP16); Tg(5�UAS:sypb-GCaMP3).
Dotted lines indicate the planes in B, C. Scale bar, 20 �m. B, C, Close-up slice of the motoneuron
somata in A with puncta (magenta arrow). Scale bar, 10 �m. D, Close-up of a retrogradely
labeled SR motoneuron soma (green) with visible purple puncta (cyan arrow). Scale bar,
10 �m. E, Close-up of the dendrites of SR motoneurons (green) with visible purple puncta (cyan
arrow). Scale bar, 10 �m.
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vestibular neurons). One example neuron from the majority
population is shown projecting to nIV in Figure 2A–D and recon-
structed as a schematic in Figure 2-1 (available at 10.1523/
JNEUROSCI.1711-11.2017.f2-1). In contrast, one example
neuron from the minority population, projecting exclusively to
nIII with a collateral to the superior rectus motoneurons, is
shown in Figure 2E–G and reconstructed in Figure 2-2 (available
at 10.1523/JNEUROSCI.1711-11.2017.f2-2). Somata of neurons
projecting exclusively to nIII were intermingled with those with
projections to nIV. By examining labeled neurons at two time
points (5 and 11 dpf) we found that the characteristic collateral
projection to nIV in traced vestibular neurons remained unal-
tered (Fig. 3).

Our genetically based labeling technique is limited to neurons
within the population labeled in Tg(�6.7FRhcrtR:gal4VP16). To
complement our initial characterization with an unbiased sample
of vestibular neurons in r5–r7, we examined the projections of
vestibular neurons that had been electroporated with a mem-
brane-targeted fluorescent protein in wild-type animals. Of 20
electroporated animals with singly labeled neurons in the vestib-
ular nuclei, 15 neurons had an ascending branch along the medial
longitudinal fasciculus. Twelve of these (80%) had a prominent
projection to nIV. Together, our data support the conclusion that
vestibular neurons in the larval zebrafish project preferentially to
extraocular motoneurons that move the eyes down.

To determine whether there was an-
atomical evidence that the axonal collat-
erals contained synapses, we labeled
presynaptic puncta in Tg(�6.7FRhcrtR:
gal4VP16) by crossing to Tg(5�UAS:
sypb-GCaMP3) to selectively express a
fluorescent protein fused to the presynap-
tic protein synaptophysin (Nikolaou et
al., 2012). We then labeled the extraocular
motoneurons by retro-orbital dye fill.
We confirmed the presence of presynaptic
puncta proximal to the soma and dend-
rites of SO and SR motoneurons (Fig. 4).
Recent expansion microscopy work
together with anti-synaptotagmin2b stain-
ing confirmed the presence of synaptic
puncta between vestibular neurons labeled
in Tg(�6.7FRhcrtR:gal4VP16) and extra-
ocular motoneuron somata and den-
drites (L. Freifeld and E. Boyden,
unpublished observations). These re-
sults suggest that the axon collaterals
from vestibular neurons labeled in
Tg(�6.7FRhcrtR:gal4VP16) likely con-
tain functional synapses.

Labeled vestibular neurons are
collectively necessary for gaze
stabilization following both nose-up
and nose-down body rotations
To determine whether the transgenically
labeled vestibular neurons constitute a
complete set necessary for both upward
and downward eye movements follow-
ing body tilts, we measured gaze stabiliza-
tion (the vestibulo-ocular reflex) before
and after their removal. We ablated single
vestibular neurons individually with a

pulsed infrared laser in Tg(�6.7FRhcrtR:gal4VP16). These fish had
been crossed to Tg(UAS-E1b:Kaede)s1999t to express a fluorescent
protein in vestibular neurons. Further, experiments were per-
formed on the Tg(isl1:GFP) background that labeled adjacent
motoneurons in nVII for control ablations (Fig. 5A). Following ab-
lation, qualitative observation revealed that horizontal eye saccades
and spontaneous jaw movements were present as in normal fish.
Ablations eliminated nearly the entire response to body tilts
(both nose-up and nose-down): the median decrease in
vestibulo-ocular reflex gain was 94.5 	 3.5% (n � 14, p � 1.2 �
10�4; Fig. 5B).

We saw no difference (p � 0.77) in the postlesion gain for
nose-up (0.0165 	 0.0135) and nose-down (0.02 	 0.0135) body
rotations. In contrast, control lesions of somata in the adjacent
facial nucleus (nVII) produced no systematic change in the gain
(n � 5, 38.5 	 24.5%, p � 0.41) or the range (31 	 52%, p � 0.44;
Fig. 5C) of the vestibulo-ocular reflex.

To confirm the finding that the labeled neurons in
Tg(�6.7FRhcrtR:gal4VP16) were necessary for the normal
vestibulo-ocular reflex following pitch tilts, we used two addi-
tional ablation techniques to target neurons labeled in
Tg(�6.7FRhcrtR:gal4VP16). First, by crossing to Tg(UAS-E1b:
Eco.NfsB-mCherry), we selectively expressed a protein, nitrore-
ductase (nfsb) that caused neurons to die on exposure to a
prodrug, metronidazole (Curado et al., 2007; Pisharath et al., 2007).

Figure 5. Vestibular nucleus neurons labeled in Tg(�6.7FRhcrtR:gal4VP16) are necessary for both nose-up and nose-down
gaze stabilization. A, Horizontal MIP of vestibular and control neurons (nVII) in rhombomeres 4 – 8 in Tg(�6.7FRhcrtR:gal4VP16);
Tg(UAS-E1b:Kaede)s1999t; Tg(isl1:GFP) fish before and after targeted photo-ablation of vestibular neuron cell bodies. � � 0.5
highlights dim signal. Colors represent depth over �150 �m. White arrows indicate the general region of targeted cell bodies in
either the vestibular nuclei (top row) or the facial nucleus (nVII). Scale bar, 150 �m. For anatomical localization, compare with the
right side of Figure 1B. B, Vestibulo-ocular reflex gain preablation and postablation of vestibular neurons. C, Vestibulo-ocular reflex
gain preablation and postablation of facial nucleus neurons. D, Vestibulo-ocular reflex gain wild-type siblings (WT) and fish with
pharmacogenetic (nitroreductase, “nfsb”) and optogenetic ablation (Killer-Red [KR]) of neurons in Tg(�6.7FRhcrtR:gal4VP16).
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After exposure to metronidazole, the vestibulo-ocular reflex was sig-
nificantly impaired in larvae that expressed nfsb compared with their
siblings that did not (n � 5, p � 0.008; Fig. 5C). Next, we crossed
Tg(�6.7FRhcrtR:gal4VP16) to Tg(UAS-KillerRed) to selectively ex-
press a protein, Killer Red, that causes neurons to die on exposure to
green light (Del Bene et al., 2010). After exposing the hindbrain to
green light, the vestibulo-ocular reflex was significantly impaired
in larvae that expressed Killer Red compared with similarly ex-
posed siblings (n � 5, p � 0.008; Fig. 5C). We conclude that vestib-
ular neurons labeled in Tg(�6.7FRhcrtR:gal4VP16) are necessary for
compensatory eye movements following either nose-up or nose-
down body pitch tilts.

Labeled vestibular neurons, collectively activated, rotate the
eyes down
The circuit that enables correct gaze stabilization following pitch and
roll body tilts (Fig. 6) permits a specific prediction about the eye
movements that might follow collective activation. Three key fea-
tures of this circuit enable this prediction: (1) two distinct channels
selectively sensitive to nose-up and nose-down rotations; (2) excit-
atory central neurons that all cross the midline; and (3) superior
extraocular motoneurons that cross back. Figure 6C, D shows the
torsional response to nose-up and nose-down body tilts. There,
utricular hair cells in both the left and right ear sense the same
pitch tilts. The projection patterns ensure that inputs from a
given ear contacts the correct superior eye muscle on the ipsilat-
eral side, and the correct inferior eye muscle on the contralateral
side. In contrast, when the fish rolls, both nose-up and nose-
down channels ipsilateral to the roll are activated. The two supe-
rior muscles are then activated ipsilaterally, whereas the two
inferior muscles are activated contralaterally. In this way, a single
circuit can respond appropriately to the two cardinal directions
of body rotation sensed by the utricle, the sole source of vestibular
sensation in young zebrafish (Beck et al., 2004; Mo et al., 2010;
Bianco et al., 2012; Roberts et al., 2017).

Collectively activating all utricle signal recipient vestibular
neurons is therefore equivalent to the fish rolling both leftward

and rightward simultaneously. Consequentially, all four eye mus-
cles on both sides would be expected to contract together. If no
eye movement were to result, we would conclude that, despite the
anatomical asymmetry, the nose-up and nose-down vestibular
neuron pools were functionally equivalent. In contrast, a net
downward rotation reflects stronger activation of the SO/IR mo-
toneurons (nose-up, Fig. 6C) and weaker activation of the SR/IO
motoneurons (nose-down, Fig. 6D). A net upward rotation re-
flects the opposite. Any vertical component (SO/SR vs IO/IR) to
the eye movement would reflect uneven activation of neurons in
the left versus right hemisphere (Fig. 6B) and would be disso-
ciable from the torsional component. We hypothesized that the
gaze stabilization circuit predicts that any systematic eye move-
ment observed along the nose-up/nose-down axis following col-
lective activation of vestibular brainstem neurons must reflect a
functional bias in the set of activated neurons.

To determine whether the asymmetry among the population
of neurons we observed is functional, we measured eye rotations
following collective activation of brainstem neurons labeled in
Tg(�6.7FRhcrtR:gal4VP16). We expressed the light-sensitive
cation channel, channelrhodopsin-2 (ChR2) and used a fiberop-
tic cannula (Arrenberg et al., 2009) to target blue light to labeled
vestibular neurons in Tg(�6.7FRhcrtR:gal4VP16); Tg(UAS:
ChR2(H134R)-EYFP) fish. Because blue light evoked eye move-
ments in wild-type fish, we performed all activation experiments
using a blind mutant lacking retinal ganglion cells: atoh7th241/th241;
Tg(atoh7:gap43-RFP) (Kay et al., 2001). Strikingly, in every trans-
genic fish tested, the eyes rotated downward in response to blue
light flashes, as if the nose of the fish had moved up. We observed
no systematic vertical component to the eye’s rotation. Across
fish (n � 10), the amplitude of eye rotation (Fig. 7A, black line)
scaled with the duration of the light flash, with a peak response of
45°/s. Crucially, control siblings (n � 3) not expressing ChR2 did
not respond to light flashes (Fig. 7A, gray line). Laser-mediated
ablation of vestibular neurons abolished the light-evoked eye ro-
tation (n � 10, Fig. 7B). Activation of the population of vestibular
neurons is therefore sufficient to rotate the eyes downward, con-
sistent with the asymmetric distribution of anatomical projec-
tions.

We extended our test of sufficiency by activating all of the
neurons in the region of the vestibular nucleus using a line re-
ported (Scott et al., 2007) to drive expression in all neurons,
Et(E1b:Gal4-VP16)s1101t. In all fish tested (n � 6), we evoked
downward eye rotations in the torsional plane corresponding
to nose-up tilts (Figs. 7C, 7-1 [available at 10.1523/
JNEUROSCI.1711-11.2017.f7-1], and 7-2 [available at 10.1523/
JNEUROSCI.1711-11.2017.f7-2], note the corruptive horizontal
component present in one trace). Both genetically restricted and
unbiased activation of vestibular neurons produced net down-
ward eye rotations, and thus the gaze-stabilizing population of
vestibular neurons is functionally asymmetric.

To test whether selective activation of vestibular neurons is
sufficient to rotate the eyes, and to estimate the variability across
neurons, we expressed ChR2 stochastically in subsets of neu-
rons in Tg(�6.7FRhcrtR:gal4VP16) fish on a blind background
(atoh7th241/th241; Tg(atoh7:gap43-RFP). Of 27 sparsely labeled
fish, 12 had expression in vestibular neurons. As expected from the
uneven anatomy, all 12 had neurons with axon collaterals to nIV.
Consistent with our categorization of nIV-projecting neurons as
“nose-up/eyes-down,” we could evoke significant downward eye
movements in 10 of 12 fish (0.23 	 0.16°, p � 0.05 relative to base-
line for each fish; Fig. 7D). Across all fish, the intensity of the projec-
tion in the MLF, an estimate of ChR2 expression, predicted the

Figure 6. The simplified neural circuit underlying the ocular response to pitch and roll tilts.
Cyan represents nose-down. Magenta represents nose-up channels. A, Wiring diagram of one
hemisphere of the excitatory vestibulo-ocular circuit showing utricular hair cells (cyan/ma-
genta), stato-acoustic ganglion (SAG), central vestibular neurons (VN, cyan and magenta),
extraocular motoneuron pools in nIII (SR, IR, IO) and nIV (SO). B, During a roll tilt to the fish’s left,
the left utricle hair cells (cyan/magenta) are activated, causing cocontraction of superior (SO/
SR) eye muscles ipsilateral to the activated utricle, and inferior (IO/IR) muscles contralateral to
the activated utricle. C, Utricular hair cells sensitive to nose-up pitch tilts (magenta) ultimately
activate only vestibular neurons that project to both nIII and nIV, activating SO (contralateral)
and IR (ipsilateral). D, Utricular hair cells sensitive to nose-down pitch tilts (cyan) ultimately
activate vestibular neurons that project to exclusively to nIII, activating SR (contralateral) and IO
(ipsilateral).
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magnitude of the evoked response (Spearman’s rank correlation co-
efficient�0.45, p�0.02, n�27). These results reveal that subsets of
nIV-projecting vestibular neurons are sufficient but vary in their
ability to generate downward eye rotations.

A simple model shows how biased vestibular populations can
better represent nose-up sensations without compromising
motor performance
Our data support the hypothesis that labeled premotor vestibular
neurons are asymmetrically distributed, over-representing nose-up
body tilts, and capable of producing downward eye rotations. To
infer whether such an asymmetry might impact motor output
and/or sensory encoding, we built a simple model of the synapse
between vestibular and extraocular motoneurons. We simulated
the ability of differently sized populations to relay a step-in body
tilt (encoded by vestibular neuron activity) across a single syn-
apse to produce an eye movement command (encoded by extra-
ocular motoneuron activity). We constrained model parameters
and assumptions to reflect known anatomical and electrophysi-
ological properties (see Materials and Methods). For this model,
we assume that the activity of the vestibular neurons is a function
of body tilt. We systematically varied two free parameters: the size
of the vestibular population and the number of vestibular neu-
rons that contact a single extraocular motoneuron. As nose-up
and nose-down neurons function during distinct phases of pitch
tilts (Fig. 6), we simulated a single generic population. We eval-
uated two features of simulated motoneuron activity. First, as a
measure of output strength, we report the average activity (re-
flecting the strength of ocular muscular contraction). Next, as a

measure of encoding fidelity, we report the correlation between
vestibular input and motoneuron output.

We observed that the magnitude of motoneuron activity
could be independent of the number of vestibular neurons up-
stream (Fig. 8C, vertical axis). This dissociation derives from the
fact that vestibular neurons encoding nose-up and nose-down
body rotations converge on to distinct pools of motoneurons.
Consequentially, the key variable that determines the magni-
tude of motoneuron activity is the number of inputs per mo-
toneuron, not the size of the vestibular population from which
it is derived.

As expected, increasing the number of vestibular inputs onto a
single motoneuron increased its firing rate asymptotically (Fig.
8C, horizontal axis). We conclude that when downstream effec-
tors are distinct, as for eye movements, a larger pool of premotor
neurons does not necessarily predict differences in the magnitude
of motoneuron output. For our system, an asymmetric vestibular
circuit could maintain comparable behavioral responses along
the eyes-up/eyes-down axis.

In contrast, we observed that the size of the vestibular neuron
pool could impact the ability of motoneurons to represent the
dynamics of a step-in body position. Temporal structure
emerges in the activity patterns of postsynaptic neurons derived
from small population sizes (Fig. 8B). This similarity across mo-
toneuron activity patterns reflected the coincidence of a limited
set of inputs sufficient for a motoneuron spike at a particular
time. To test whether this limitation constrains the ability of
motoneurons to represent the input function, we measured the
variance in the input rate function explained by 2 the summed
motoneuron activity (R). Larger populations were indeed better
than smaller populations, and performance varied with the pre-
cise number of presynaptic inputs (Fig. 8D). Adding a basal level
of activity equal to 15% of the peak response decreased R 2 but did
not change the finding that larger populations were better at
representing the input function. We infer from our model that
the anatomical asymmetry we observe could permit better en-
coding of nose-up sensations without compromising gaze stabi-
lization. If sensory statistics were similarly biased, asymmetric
projections from vestibular neurons might therefore be adaptive.

Premotor vestibular neurons are necessary for a vital and
asymmetric postural behavior
To maintain buoyancy, larval zebrafish, whose gills do not yet
function (Rombough, 2007), must swim to and maintain a
nose-up posture at the water’s surface, where they gulp air, in-
flating their swim bladder (Goolish and Okutake, 1999). Vestib-
ular sensation is necessary: larval zebrafish without functional
utricles fail to inflate their swim bladder and die (Riley and Moor-
man, 2000). In contrast, vision is not required for this behavior,
as blind fish develop normal swim bladders. Gaze-stabilizing ves-
tibular neurons send a second projection to a spinal premotor
nucleus, the nucleus of the MLF (Fig. 1), indicating a potential
postural role (Bianco et al., 2012).

To test whether vestibular neurons are necessary for swim-
bladder inflation, we focally ablated vestibular neurons at 72 hpf,
before fish had inflated their swim bladder, in Tg(�6.7FRhcrtR:
gal4VP16);Tg(14�UAS-E1b:hChR2(H134R)-EYFP) fish. We evalu-
ated the fish at 144 hpf (Fig. 9). Only 1 of 9 lesioned fish (example
in Fig. 9-1 [available at 10.1523/JNEUROSCI.1711-11.2017.f9-
1]) had an inflated swim bladder, compared with 40
of 42 control siblings (example in Fig. 9-2 [available at 10.1523/
JNEUROSCI.1711-11.2017.f9-2]).

Figure 7. Activating vestibular nucleus neurons generates downward eye rotations. A, Peak
eye rotation as a function of blue light duration. Positive values indicate eyes-down rotations
(magenta arrow). Negative values indicate eyes-up (cyan arrow). Black represents ChR2
 fish.
Gray represents ChR2� siblings. Points are median 	 median absolute deviation. B, Evoked
eye rotation in time. Gray lines indicate individual fish. Black lines indicate the median of
prelesion data. Red lines indicate the same fish after photoablation of ChR2
 vestibular neu-
rons. Blue represents stimulus (100 ms). C, Gray lines indicate the average responses from
individual fish with pan-neuronal expression. Black represents the median across fish. Blue
represents stimulus (100 ms). The trace with a downward lobe indicates a nontorsional com-
ponent; video of this fish is shown as Figures 7-1 (available at 10.1523/JNEUROSCI.1711-
11.2017.f7-1) and 7-2 (available at 10.1523/JNEUROSCI.1711-11.2017.f7-2). D, Evoked ocular
rotations from sparsely labeled fish as a function of ChR2
 expression (MLF fluorescence).
Black dots represent fish with discriminable vestibular neurons. Green dots represent fish with-
out discriminable vestibular neurons. Pink triangle corresponds to the fish in Figure 2A.
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To confirm these results, we chemoge-
netically ablated vestibular neurons at 72
hpfinTg(�6.7FRhcrtR:gal4VP16);Tg(UAS-
E1b:Eco.NfsB-mCherry) fish. As with the
targeted lesions, only 1 of 36 double-trans-
genic fish inflated their swim bladder and
survived, whereas 36 of 36 of their nonex-
pressing siblings did. We note that, in
contrast, fish with postinflation loss of
vestibular neurons (e.g., Fig. 5) maintain
normal swim bladders. These results de-
fine a novel role for vestibular neurons la-
beled in Tg(�6.7FRhcrtR:gal4VP16) in
swim-bladder inflation.

Discussion
We investigated how the anatomical com-
position of a genetically defined popula-
tion of vestibular interneurons in the
larval zebrafish could constrain its func-
tion. We first discovered that genetically
labeled neurons project preferentially to motoneurons that move
the eyes downward. Ablation of these neurons eliminated the eye
movements normally observed following nose-up/nose-down
body tilts, establishing their necessity for gaze stabilization. Next, we
found that activation produced downward eye rotations, estab-
lishing a functional correlate of the anatomical asymmetry. We
modeled similar populations with asymmetric projections and
inferred that such architecture could permit better representa-
tion of nose-up stimuli while maintaining gaze stabilization per-
formance. Finally, we discovered that early ablation of these
neurons impaired swim bladder inflation, a vital postural task
requiring nose-up stabilization. Together, we propose that pref-
erential allocation of vestibular resources may improve sensory
encoding, potentially enabling larval zebrafish to meet ethologi-
cally relevant challenges without compromising behavior.

Our study used a transgenic line, Tg(�6.7FRhcrtR:gal4VP16), to
reliably access a genetically defined set of neurons in rhombom-
eres 5–7 in the medial and tangential vestibular nuclei. The
rhombomeric and mediolateral location of these neurons is con-
sistent with the neurons that receive utricular input in the adult
frog (Straka et al., 2003) and chick (Popratiloff and Peusner,
2007) and comprises a subset of neurons that project to extraoc-
ular motoneurons in the larval frog (Straka et al., 2001), juvenile
zebrafish/goldfish (Suwa et al., 1996), and chick (Gottesman-
Davis and Peusner, 2010). Tg(�6.7FRhcrtR:gal4VP16) does not
label neurons within the superior vestibular nucleus in the rostral
hindbrain (Cambronero and Puelles, 2000). This absence is no-
table in light of our ablation experiments that implicate only the
neurons labeled in Tg(�6.7FRhcrtR:gal4VP16) as necessary for
the torsional vestibulo-ocular reflex. Neurons in the superior ves-
tibular nucleus receive input predominantly from the anterior
canal and the lagena (Straka et al., 2003), and from the anterior
canal in monkeys (Yamamoto et al., 1978). Larval zebrafish do
not have functional semicircular canals (Beck et al., 2004), nor
has the lagena developed (Bever and Fekete, 2002) at the ages we
studied here. Therefore, superior vestibular nucleus neurons
would not be expected to respond to body rotations, consistent
with our observation that the eyes no longer counter-rotate after
lesions of Tg(�6.7FRhcrtR:gal4VP16)-positive neurons. Further,
the superior vestibular nucleus contains predominantly ipsilater-
ally projecting, likely inhibitory inputs in adult rays (Puzdrowski
and Leonard, 1994), goldfish (Torres et al., 1992, 1995), frog (Mont-

gomery, 1988), rabbit (Wentzel et al., 1995), cat (Carpenter and
Cowie, 1985), and monkey (Steiger and Büttner-Ennever, 1979). In
the adult goldfish, such inhibitory inputs to extraocular motoneu-
rons were found to be less effective relative to their excitatory coun-
terparts. If the vestibular circuit were similarly constrained in larval
zebrafish, it could explain the smaller downward eye movement we
saw after collective activation of all neurons. There, the normal
downward eye rotation would be compromised, although not
eliminated, by inhibition derived from superior vestibular nu-
cleus neurons not labeled in Tg(�6.7FRhcrtR:gal4VP16) but
activated in a pan-neuronal line. We therefore propose that the
inputs and output of superior vestibular nucleus neurons not
labeled in Tg(�6.7FRhcrtR:gal4VP16) render them unlikely to
play a major role in the larval zebrafish torsional vestibulo-ocular
reflex.

Previous work in larval zebrafish identified the tangential
nucleus as the locus of neurons responsible for the utricle-
dependent torsional vestibulo-ocular reflex (Bianco et al., 2012).
Here, we show similarly profound impairment of the torsional

Figure 8. A, Model schematic. B, One simulation of the model for two different population sizes, 180 neurons (magenta) and 30
neurons (cyan). First column represents the vestibular neuron activity as a spike raster plot and the input function (black). Second
column represents the motoneuron spikes. For display, half the generated spikes are shown in each raster. C, The “Output strength”
(average firing rate) of the postsynaptic neurons as a function of the population size (rows) and number of inputs per motoneuron
(columns). D, The “Encoding fidelity” (variance explained, R) in the input rate function by the summed postsynaptic output.

Figure 9. Early ablations of vestibular neurons leave fish unable to inflate their swim blad-
ders. A, Tg(�6.7FRhcrtR:gal4VP16); Tg(14�UAS-E1b:hChR2(H134R)-EYFP); mitfa �/� fish
swimming in a cuvette in the dark at 144 hpf. Red arrows point to swim bladders. B, Sibling fish
where the vestibular neurons in these fish were photoablated at 72 hpf, before swim bladder
inflation. Note the absence of a swim bladder, evaluated here at 144 hpf. Images are taken from
Figures 9-1 (available at 10.1523/JNEUROSCI.1711-11.2017.f9-1) and 9-2 (available at
10.1523/JNEUROSCI.1711-11.2017.f9-2).
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vestibulo-ocular reflex after targeted ablation of a subset of ves-
tibular interneurons in the tangential and medial vestibular
nuclei that are labeled in Tg(�6.7FRhcrtR:gal4VP16) larvae.
Therefore, we propose that the set of tangential nucleus neurons
labeled in Tg(�6.7FRhcrtR:gal4VP16) are responsible for the
utricle signal-mediated torsional vestibulo-ocular reflex, as those
were ablated both here and in Bianco et al. (2012).

Similarly, previous single-cell fills of tangential nucleus neurons
revealed three classes of projection neurons: those projecting to the
contralateral tangential nucleus, those with a single ascending collat-
eral to nIII/nIV and the nucleus of the MLF, and those with both an
ascending and descending branch. Ascending and ascending/de-
scending neurons were represented approximately equally (7 of 16
and 6 of 16) in the tangential nucleus (Bianco et al., 2012). However,
we found that the labeled neurons in Tg(�6.7FRhcrtR:gal4VP16)
were almost exclusively of the ascending type (25 of 27). We there-
fore propose a further refinement: the neurons responsible for the
utricle-mediated torsional vestibulo-ocular reflex are likely the sub-
population of ascending neurons within the tangential nucleus la-
beled in Tg(�6.7FRhcrtR:gal4VP16). This proposal is consistent
with anatomical and functional work in juvenile and adult gold-
fish, where tangential nucleus neurons with ascending processes
were shown to respond to nose-up/nose-down tilts (Suwa et al.,
1999) Together, our molecular approach permits strong hypoth-
eses that define the essential subset of vestibular neurons respon-
sible for a particular behavior.

The muscles that generate torsional eye movements in fish are
responsible for vertical eye movements in frontal-eyed animals
(Simpson and Graf, 1981). The behavioral literature is unclear
with respect to whether nose-up/nose down gaze stabilization is
asymmetric. Cats may produce stronger downward eye rotations
(Darlot et al., 1981; Tomko et al., 1988; Maruyama et al., 2004),
but the literature is conflicted as to whether or not such an asym-
metry exists in primates: downward (Benson and Guedry, 1971;
Baloh et al., 1983; Matsuo and Cohen, 1984) or no biases (Baloh
et al., 1986; Demer, 1992; Marti et al., 2006) have both been
reported. In foveate vertebrates, the vestibular brainstem con-
tains the final premotor nuclei for smooth pursuit eye move-
ments. Despite similar abilities to perceive both directions of
vertical motion (Churchland et al., 2003), both juvenile and ma-
ture monkeys (Grasse and Lisberger, 1992; Akao et al., 2007) and
humans (Ke et al., 2013) show a stronger downward response.
Our model points a way forward: while common laboratory stim-
uli may elicit largely similar vertical eye movements, an asymmet-
ric population should better encode dynamic variability, such as
experienced in natural settings (Carriot et al., 2014). We propose
that characterizing the variation in response to more complex
body rotations and target tracking paradigms could uncover be-
havioral signatures of an anatomically biased circuit.

We found that larval zebrafish do not inflate their swim blad-
ders after early but not late ablation of vestibular neurons. As
autonomic neurons are thought to determine swim bladder vol-
ume (Smith and Croll, 2011), we propose that the failure to in-
flate the swim bladder is secondary to postural impairments that
follow loss of vestibular neurons labeled in Tg(�6.7FRhcrtR:
gal4VP16). In addition to extraocular motor nuclei, these neu-
rons project to the nucleus of the medial longitudinal fasciculus
(nMLF) (Bianco et al., 2012). Recent work has established the
necessity and sufficiency of spinal-projecting neurons in the lar-
val zebrafish nMLF for postural control and swim initiation
(Severi et al., 2014; Thiele et al., 2014; Wang and McLean, 2014).

By virtue of their direct projections, and their necessity for
swim bladder inflation, we propose that neurons labeled in

Tg(�6.7FRhcrtR:gal4VP16) may affect posture by modulating
activity of neurons in the nMLF. As such, our work thus estab-
lishes a new molecularly accessible avenue to explore neural
mechanisms underlying postural stabilization.

Zebrafish engage in postural behaviors across their lifespan that
are well suited to nose-up sensory specialization. First, as larvae, they
swim along a trajectory dictated by the long axis of their body
(Aleyev, 1977). Their bodies are denser than water (Stewart and
McHenry, 2010), which ought to cause them to sink. Instead, they
adopt a nose-up bias to their posture (Ehrlich and Schoppik, 2017),
which introduces a vertical component to their swims, enabling
them to maintain elevation. Second, larval zebrafish must swim to
the surface to gulp air necessary to inflate their swim bladder (Gool-
ish and Okutake, 1999). Finally, most adult teleosts engage in aquatic
surface respiration throughout life (Kramer and McClure, 1982), a
response to low oxygen saturation that necessitates a continuous
nose-up posture at the water’s surface. Our model shows how the
anatomical makeup of the vestibular circuits could better encode the
nose-up bias in the statistics of behavior. Our findings thus provide a
premotor complement to the “efficient coding” framework used to
relate the makeup of sensory systems to the statistics of the environ-
ment (Simoncelli, 2003).

Asymmetrically organized populations of interneurons are
common throughout nervous systems. Asymmetric organization
within sensory areas is thought to reflect afferent adaptations
(Adrian, 1941; Barlow, 1981; Knudsen et al., 1987; Catania and
Remple, 2002; Simoncelli, 2003; Bendor and Wang, 2006; Xu et
al., 2006; Hansson and Stensmyr, 2011), but the complexity of
most neural circuits makes it challenging to link encoding capac-
ity to adaptive behavior. For asymmetric motor populations,
links to behavior are more direct (Pasqualetti et al., 2007; Lemon,
2008; Rathelot and Strick, 2009; Esposito et al., 2014), but the
natural sensations that drive these areas are often difficult to
define. Our study of vestibular interneurons that play both sen-
sory and premotor roles illustrates how the asymmetric anatomy
could better encode nose-up sensations while maintaining the
ability to stabilize gaze. As asymmetric populations of interneu-
rons are common, we propose that other circuits may use similar
strategies to meet ethological demands without compromising
motor control.
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