V = 2774.5 (9) Å<sup>3</sup>

Mo  $K\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ 

 $0.20 \times 0.18 \times 0.17~\mathrm{mm}$ 

8377 measured reflections 2876 independent reflections

2419 reflections with  $I > 2\sigma(I)$ 

Z = 4

T = 293 K

 $R_{\rm int} = 0.102$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Ethyl ent-15a-[(2-methoxybenzyloxy)methyl]-16-oxobeyeran-20-oate

### Ya Wu,<sup>a</sup>\* Xia Wang,<sup>a</sup> Jian-hong Gong,<sup>a</sup> Chang-yong Wei<sup>b</sup> and Jing-chao Tao<sup>b</sup>

<sup>a</sup>Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and <sup>b</sup>Department of Chemistry, New Drug Research & Development Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China

Correspondence e-mail: wuya0723@126.com

Received 9 January 2012; accepted 15 January 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.065; wR factor = 0.172; data-to-parameter ratio = 8.8.

The title compound, C<sub>31</sub>H<sub>44</sub>O<sub>5</sub>, was synthesized from isosteviol (systematic name: ent-16-ketobeyeran-19-oic acid). In the molecule, the three six-membered rings adopt chair conformations and the stereochemistry of the A/B and B/C ring junctions are *trans*. The five-membered ring D adopts an envelope conformation with the methylene C atom as the flap.

### **Related literature**

For background to isosteviol derivatives, see: Kinghorn et al. (1984); Yasukawa et al. (2002); Lin et al. (2004); Roy et al. (2007); Li et al. (2011). For a related structure, see: Shi (2010).



#### **Experimental**

#### Crystal data

| $C_{31}H_{44}O_5$          |
|----------------------------|
| $M_r = 496.66$             |
| Orthorhombic, $P2_12_12_1$ |
| a = 8.7047 (17)  Å         |
| b = 10.749 (2) Å           |
| c = 29.653 (6) Å           |

#### Data collection

| Rgaku R-AXIS-IV diffractometer             |
|--------------------------------------------|
| Absorption correction: multi-scan          |
| (RAXIS; Rigaku, 2004)                      |
| $T_{\rm min} = 0.984, T_{\rm max} = 0.987$ |

## Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.065$ | 326 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.172$               | H-atom parameters constrained                              |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$  |
| 2876 reflections                | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |

Data collection: RAXIS (Rigaku, 2004); cell refinement: RAXIS; data reduction: RAXIS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the Doctoral Research fund of Henan University of Traditional Chinese Medicine for financial support (No. BSJJ2009-41).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6600).

#### References

- Kinghorn, A. D., Soejarto, D. D., Nanayakkara, N. P. D., Compadre, C. M., Makapugay, H. C., Hovanec, J. M., Medon, P. J. & Kamath, S. K. (1984). J. Nat. Prod. 47, 439-444.
- Li, J., Zhang, D.-Y. & Wu, X.-M. (2011). Bioorg. Med. Chem. Lett. 21, 130-132.
- Lin, L.-H., Lee, L.-W., Sheu, S.-Y. & Lin, P.-Y. (2004). Chem. Pharm. Bull. 52, 1117-1122
- Rigaku (2004). RAXIS. Rigaku Corporation, Tokyo, Japan.
- Roy, A., Roberts, F. G., Wilderman, P. R., Zhou, K., Peters, R. J. & Coates, R. M. (2007). J. Am. Chem. Soc. 129, 12453-12460.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, H. (2010). Acta Cryst. E66, 0154.
- Yasukawa, K., Kitanaka, S. & Seo, S. (2002). Biol. Pharm. Bull. 25, 1488-1490.

Acta Cryst. (2012). E68, 0495 [doi:10.1107/S1600536812001833]

## Ethyl ent-15a-[(2-methoxybenzyloxy)methyl]-16-oxobeyeran-20-oate

## Y. Wu, X. Wang, J. Gong, C. Wei and J. Tao

#### Comment

Isosteviol (*ent*-16-ketobeyeran-19-oic acid 1) is a tetracyclic diterpenoid with a beyerane skeleton, obtained by acid hydrolysis of stevioside (Kinghorn *et al.*, 1984). In recent years, isosteviol derivatives have attracted scientific attention because of their remarkably broad spectrum of biological activities including anti-inflammatory, glucocorticoid agonist, antihypertension, antitumor, antiproliferation and inhibition of *ent*-kaurene synthase (Roy *et al.*, 2007; Li *et al.*, 2011; Yasukawa, *et al.*, 2002). Especially, Lin and co-workers reported that isosteviol amide dimers had favorable antibacterial effects and cytotoxicity (Lin, *et al.*, 2004), which prompted us to study new isosteviol derivatives to develop novel stronger antibacterial agents for therapeutic use. The title compound was synthesized from isosteviol. The molecule structure of the compound contains a fused four-ring system A/B/C/D and an aromatic ring (Fig. 1). The A/B ring and B/C junction are *trans*-fused, and C/D is *cis*-fused. The three six-membered rings adopt chair conformations, and the five-membered ring D adopts an envelope conformation with atom C14 displaced from the C8/C15/C16/C13 plane by 0.173 (5) Å. The C—C—C angles within the aromatic moiety cover a range 118.9 (4) - 121.4 (5) °.

#### Experimental

The title compound was synthesized *via* esterification, Tollens reaction, 1,5-hydride shift from isosteviol, a kind of tetracyclo-diterpene, which has the skeleton of beyrane. To a stirred solution of ethyl-*ent*-15 $\alpha$ -hydroxymethyl-16 $\beta$ -hydroxybeyeran-20-oate (0.378 g, 1 mmol) and o-methoxybenzaldehyde (0.150 g, 1.1 mmol) in acetonitrile (10 mL) was added sulfuric acid (0.1 mmol). After stirring for 4 h at room temperature, the mixture was concentrated under vacuum and extracted with CHCl<sub>3</sub> and H<sub>2</sub>O, at last the organic was washed with saturated NaCl aqueous solution, dried with MgSO<sub>4</sub> and concentrated under vacuum. The residue was purified by column chromatography on silica (petroleum ether/ethyl acetate = 7:1,  $\nu/\nu$ ) to give product (0.397 g, 80%). Colourless prisms were obtained by slow evaporation of an acetone solution.

#### Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. H atoms were generated geometrically and refined as riding atoms with C-H = 0.93Å and Uiso(H) = 1.2 times Ueq(C).

#### **Figures**



Fig. 1. View of the title compound, showing 30% probability ellipsolids.

# $Ethyl\ ent-15 \alpha - [(2-methoxybenzyloxy)methyl] - 16 - oxobeyeran - 20 - oate$

 $D_{\rm x} = 1.189 {\rm Mg m}^{-3}$ 

 $\theta = 2.0 - 25.1^{\circ}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K

Prism, colorless

 $0.20\times0.18\times0.17~mm$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 398 reflections

## Crystal data

 $C_{31}H_{44}O_5$   $M_r = 496.66$ Orthorhombic,  $P2_12_12_1$  a = 8.7047 (17) Å b = 10.749 (2) Å c = 29.653 (6) Å  $V = 2774.5 (9) Å^3$  Z = 4F(000) = 1080

#### Data collection

| Rgaku R-AXIS-IV<br>diffractometer                          | 2876 independent reflections                                              |
|------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                   | 2419 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                   | $R_{\rm int} = 0.102$                                                     |
| Detector resolution: 0 pixels mm <sup>-1</sup>             | $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ |
| Oscillation frames scans                                   | $h = -10 \rightarrow 10$                                                  |
| Absorption correction: multi-scan<br>(RAXIS; Rigaku, 2004) | $k = -13 \rightarrow 0$                                                   |
| $T_{\min} = 0.984, \ T_{\max} = 0.987$                     | $l = -35 \rightarrow 35$                                                  |
| 8377 measured reflections                                  |                                                                           |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                                                                                     |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                                                                                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.065$                                | H-atom parameters constrained                                                                                                                            |
| $wR(F^2) = 0.172$                                              | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0776P)^{2} + 0.8183P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                                                      |
| <i>S</i> = 1.08                                                | $(\Delta/\sigma)_{max} < 0.001$                                                                                                                          |
| 2876 reflections                                               | $\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$                                                                                                      |
| 326 parameters                                                 | $\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$                                                                                                   |
| 0 restraints                                                   | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.023 (3)                                                                                                                        |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$  $\boldsymbol{Z}$ х y C1 0.0701 (13) 0.6951 (6) 1.1089 (5) -0.18318(14)H1A 0.6694 1.0227 -0.18920.084\* H1B 0.084\* 0.5999 1.1531 -0.1775C2 0.7708(7)1.1638 (5) -0.22472(15)0.0803 (16) H2A 0.096\* 0.7039 1.1526 -0.2506H2B 1.2523 0.096\* 0.7862 -0.2203C3 0.9233(7)1.1021 (6) -0.23378(15)0.0860(17)H3A 0.9714 1.1433 -0.25920.103\* H3B 0.9047 1.0164 0.103\* -0.2424C4 1.0369 (6) 1.1032 (4) -0.19387(14)0.0654 (13) C5 0.9523 (6) 1.0518 (4) -0.15150(13)0.0550(11) H5A 0.9242 0.9668 0.066\* -0.1601C6 1.0479 (5) 1.0346 (4) -0.10860(13)0.0571 (11) 0.9987 H6A 1.1468 -0.1163 0.068\* -0.09460.068\* H6B 1.0657 1.1148 C7 0.9642 (5) 0.9495 (4) -0.07574(13)0.0535 (10) H7A 0.9506 0.064\* 0.8687 -0.0898H7B 0.9380 0.064\* 1.0278 -0.0492C8 0.8081 (5) 0.9983 (3) -0.06108(12)0.0455 (9) C9 0.7129 (5) 1.0364 (4) -0.10343 (13) 0.0520 (10) H9A 0.6891 0.9574 -0.11830.062\* C10 0.7951 (5) 1.1146 (4) -0.14039(12)0.0524 (10) C11 0.5552 (6) 1.0883 (5) -0.08938 (16) 0.0675 (12) H11A 0.5689 1.1719 0.081\* -0.0778H11B 0.4902 1.0935 -0.11590.081\* C12 0.4735 (6) 1.0101 (6) 0.0787 (15) -0.05366(19)H12A 0.4295 0.9371 -0.06790.094\* H12B 0.3900 1.0583 0.094\* -0.0409C13 -0.01536 (16) 0.5823 (5) 0.9684 (5) 0.0644 (12) C14 0.7142 (5) 0.8984 (4) -0.03641(15)0.0609 (11) H14A 0.6770 0.8361 -0.05740.073\* H14B 0.7758 0.8578 -0.01350.073\* C15 0.8105 (5) 1.1029 (3) -0.02504(12)0.0477 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H15A | 0.8071     | 1.1837     | -0.0403       | 0.057*      |
|------|------------|------------|---------------|-------------|
| C16  | 0.6624 (5) | 1.0851 (4) | 0.00128 (14)  | 0.0560 (11) |
| C17  | 0.4945 (7) | 0.9018 (7) | 0.0217 (2)    | 0.102 (2)   |
| H17A | 0.5646     | 0.8766     | 0.0450        | 0.153*      |
| H17B | 0.4446     | 0.8297     | 0.0094        | 0.153*      |
| H17C | 0.4188     | 0.9569     | 0.0342        | 0.153*      |
| C18  | 0.8167 (6) | 1.2505 (4) | -0.12605 (14) | 0.0586 (11) |
| H18A | 0.7184     | 1.2867     | -0.1195       | 0.088*      |
| H18B | 0.8648     | 1.2960     | -0.1501       | 0.088*      |
| H18C | 0.8804     | 1.2539     | -0.0997       | 0.088*      |
| C19  | 1.1743 (7) | 1.0177 (5) | -0.20565 (17) | 0.0872 (17) |
| H19A | 1.2266     | 1.0499     | -0.2317       | 0.131*      |
| H19B | 1.1375     | 0.9353     | -0.2120       | 0.131*      |
| H19C | 1.2441     | 1.0148     | -0.1806       | 0.131*      |
| C20  | 1.1039 (7) | 1.2327 (5) | -0.18884 (16) | 0.0714 (14) |
| C21  | 1.2797 (9) | 1.3612 (6) | -0.1511 (2)   | 0.104 (2)   |
| H21A | 1.3269     | 1.3646     | -0.1215       | 0.125*      |
| H21B | 1.2007     | 1.4248     | -0.1523       | 0.125*      |
| C22  | 1.3986 (7) | 1.3888 (7) | -0.1861 (3)   | 0.107 (2)   |
| H22A | 1.4410     | 1.4700     | -0.1808       | 0.160*      |
| H22B | 1.3523     | 1.3865     | -0.2154       | 0.160*      |
| H22C | 1.4789     | 1.3278     | -0.1844       | 0.160*      |
| C23  | 0.9449 (5) | 1.1021 (4) | 0.00794 (13)  | 0.0568 (11) |
| H23A | 1.0414     | 1.1025     | -0.0084       | 0.068*      |
| H23B | 0.9413     | 1.1755     | 0.0269        | 0.068*      |
| C24  | 1.0648 (5) | 0.9751 (5) | 0.06169 (15)  | 0.0675 (13) |
| H24A | 1.0982     | 1.0544     | 0.0739        | 0.081*      |
| H24B | 1.1475     | 0.9418     | 0.0434        | 0.081*      |
| C25  | 1.0298 (5) | 0.8865 (4) | 0.09980 (13)  | 0.0531 (10) |
| C26  | 1.1467 (6) | 0.8589 (4) | 0.12974 (14)  | 0.0591 (11) |
| C27  | 1.1178 (8) | 0.7817 (5) | 0.16676 (16)  | 0.0742 (15) |
| H27A | 1.1955     | 0.7641     | 0.1873        | 0.089*      |
| C28  | 0.9741 (8) | 0.7323 (5) | 0.17255 (18)  | 0.0797 (16) |
| H28A | 0.9548     | 0.6803     | 0.1970        | 0.096*      |
| C29  | 0.8599 (7) | 0.7585 (5) | 0.14303 (18)  | 0.0794 (15) |
| H29A | 0.7626     | 0.7245     | 0.1471        | 0.095*      |
| C30  | 0.8885 (6) | 0.8363 (4) | 0.10678 (15)  | 0.0628 (12) |
| H30A | 0.8094     | 0.8545     | 0.0868        | 0.075*      |
| C31  | 1.4097 (7) | 0.8958 (7) | 0.1493 (2)    | 0.107 (2)   |
| H31A | 1.4990     | 0.9357     | 0.1370        | 0.160*      |
| H31B | 1.4302     | 0.8088     | 0.1535        | 0.160*      |
| H31C | 1.3848     | 0.9328     | 0.1779        | 0.160*      |
| 01   | 1.0710 (5) | 1.3189 (4) | -0.21179 (17) | 0.1141 (16) |
| 02   | 1.2094 (5) | 1.2413 (3) | -0.15713 (12) | 0.0875 (11) |
| O3   | 0.6178 (5) | 1.1533 (4) | 0.03115 (11)  | 0.0841 (11) |
| O4   | 0.9339 (3) | 0.9930 (3) | 0.03482 (9)   | 0.0578 (8)  |
| O5   | 1.2847 (4) | 0.9107 (4) | 0.11943 (11)  | 0.0820 (11) |
|      |            |            |               |             |

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-----------------|--------------|--------------|--------------|
| C1  | 0.095 (3)   | 0.067 (3)   | 0.048 (2)       | 0.006 (3)    | -0.029 (2)   | 0.004 (2)    |
| C2  | 0.110 (4)   | 0.087 (3)   | 0.045 (2)       | 0.020 (3)    | -0.023 (3)   | 0.003 (2)    |
| C3  | 0.130 (5)   | 0.091 (4)   | 0.037 (2)       | 0.012 (4)    | -0.007 (3)   | -0.002 (2)   |
| C4  | 0.097 (3)   | 0.060 (3)   | 0.040 (2)       | 0.017 (3)    | 0.003 (2)    | 0.001 (2)    |
| C5  | 0.081 (3)   | 0.046 (2)   | 0.038 (2)       | 0.009 (2)    | 0.000 (2)    | -0.0034 (17) |
| C6  | 0.068 (3)   | 0.061 (2)   | 0.042 (2)       | 0.014 (2)    | 0.001 (2)    | 0.005 (2)    |
| C7  | 0.067 (3)   | 0.048 (2)   | 0.045 (2)       | 0.010 (2)    | -0.011 (2)   | 0.0031 (18)  |
| C8  | 0.061 (2)   | 0.0369 (18) | 0.0387 (19)     | -0.0005 (19) | -0.0095 (18) | 0.0003 (15)  |
| C9  | 0.064 (2)   | 0.045 (2)   | 0.047 (2)       | 0.001 (2)    | -0.015 (2)   | -0.0057 (17) |
| C10 | 0.077 (3)   | 0.044 (2)   | 0.0363 (19)     | 0.004 (2)    | -0.014 (2)   | -0.0018 (16) |
| C11 | 0.063 (3)   | 0.077 (3)   | 0.062 (3)       | 0.002 (3)    | -0.018 (2)   | 0.009 (2)    |
| C12 | 0.063 (3)   | 0.096 (4)   | 0.077 (3)       | -0.006 (3)   | -0.012 (3)   | 0.008 (3)    |
| C13 | 0.057 (3)   | 0.071 (3)   | 0.065 (3)       | -0.008 (2)   | -0.008 (2)   | 0.014 (2)    |
| C14 | 0.079 (3)   | 0.048 (2)   | 0.056 (2)       | -0.011 (2)   | -0.014 (2)   | 0.006 (2)    |
| C15 | 0.066 (2)   | 0.0367 (18) | 0.0406 (19)     | -0.001 (2)   | -0.0022 (19) | 0.0032 (16)  |
| C16 | 0.060 (2)   | 0.063 (3)   | 0.045 (2)       | 0.012 (2)    | -0.0022 (19) | 0.009 (2)    |
| C17 | 0.076 (3)   | 0.129 (5)   | 0.100 (4)       | -0.024 (4)   | 0.000 (3)    | 0.040 (4)    |
| C18 | 0.081 (3)   | 0.046 (2)   | 0.049 (2)       | 0.009 (2)    | -0.001 (2)   | 0.0032 (18)  |
| C19 | 0.122 (5)   | 0.081 (3)   | 0.059 (3)       | 0.032 (3)    | 0.030 (3)    | -0.003 (3)   |
| C20 | 0.089 (4)   | 0.068 (3)   | 0.058 (3)       | 0.014 (3)    | 0.007 (3)    | 0.016 (2)    |
| C21 | 0.146 (6)   | 0.072 (3)   | 0.093 (4)       | -0.019 (4)   | -0.001 (4)   | -0.007 (3)   |
| C22 | 0.094 (4)   | 0.090 (4)   | 0.137 (6)       | 0.006 (4)    | -0.010 (4)   | -0.002 (4)   |
| C23 | 0.071 (3)   | 0.054 (2)   | 0.045 (2)       | -0.021 (2)   | -0.002 (2)   | 0.0006 (19)  |
| C24 | 0.063 (3)   | 0.090 (3)   | 0.050 (2)       | -0.013 (3)   | -0.012 (2)   | 0.015 (2)    |
| C25 | 0.064 (3)   | 0.055 (2)   | 0.040 (2)       | 0.002 (2)    | 0.000 (2)    | 0.0003 (18)  |
| C26 | 0.071 (3)   | 0.065 (3)   | 0.041 (2)       | 0.008 (2)    | -0.003 (2)   | -0.006 (2)   |
| C27 | 0.112 (4)   | 0.064 (3)   | 0.047 (2)       | 0.023 (3)    | -0.010 (3)   | -0.001 (2)   |
| C28 | 0.110 (4)   | 0.071 (3)   | 0.058 (3)       | 0.013 (3)    | 0.019 (3)    | 0.016 (3)    |
| C29 | 0.093 (4)   | 0.068 (3)   | 0.078 (3)       | 0.001 (3)    | 0.024 (3)    | 0.013 (3)    |
| C30 | 0.071 (3)   | 0.062 (2)   | 0.055 (2)       | -0.002 (2)   | 0.004 (2)    | 0.007 (2)    |
| C31 | 0.097 (4)   | 0.124 (5)   | 0.099 (4)       | 0.009 (4)    | -0.051 (4)   | -0.005 (4)   |
| 01  | 0.114 (3)   | 0.094 (3)   | 0.134 (4)       | -0.007 (3)   | -0.024 (3)   | 0.064 (3)    |
| O2  | 0.128 (3)   | 0.067 (2)   | 0.067 (2)       | 0.001 (2)    | -0.009 (2)   | 0.0072 (17)  |
| O3  | 0.099 (3)   | 0.095 (2)   | 0.0579 (19)     | 0.024 (2)    | 0.0141 (19)  | -0.0073 (19) |
| O4  | 0.0654 (17) | 0.0623 (17) | 0.0456 (15)     | -0.0147 (15) | -0.0147 (13) | 0.0140 (13)  |
| O5  | 0.072 (2)   | 0.115 (3)   | 0.0582 (19)     | -0.008 (2)   | -0.0214 (17) | 0.011 (2)    |

# Atomic displacement parameters $(Å^2)$

# Geometric parameters (Å, °)

| C1—C2  | 1.516 (7) | C15—H15A | 0.9800    |
|--------|-----------|----------|-----------|
| C1—C10 | 1.540 (5) | C16—O3   | 1.213 (5) |
| C1—H1A | 0.9700    | С17—Н17А | 0.9600    |
| C1—H1B | 0.9700    | С17—Н17В | 0.9600    |
| C2—C3  | 1.508 (7) | С17—Н17С | 0.9600    |
| C2—H2A | 0.9700    | C18—H18A | 0.9600    |

| C2—H2B     | 0.9700    | C18—H18B      | 0.9600    |
|------------|-----------|---------------|-----------|
| C3—C4      | 1.542 (7) | C18—H18C      | 0.9600    |
| С3—НЗА     | 0.9700    | C19—H19A      | 0.9600    |
| С3—Н3В     | 0.9700    | C19—H19B      | 0.9600    |
| C4—C20     | 1.517 (8) | С19—Н19С      | 0.9600    |
| C4—C19     | 1.549 (7) | C20—O1        | 1.184 (6) |
| C4—C5      | 1.558 (6) | C20—O2        | 1.317 (6) |
| C5—C6      | 1.531 (6) | C21—O2        | 1.438 (7) |
| C5—C10     | 1.560 (6) | C21—C22       | 1.495 (9) |
| С5—Н5А     | 0.9800    | C21—H21A      | 0.9700    |
| C6—C7      | 1.522 (6) | C21—H21B      | 0.9700    |
| С6—Н6А     | 0.9700    | C22—H22A      | 0.9600    |
| С6—Н6В     | 0.9700    | С22—Н22В      | 0.9600    |
| С7—С8      | 1.520 (6) | C22—H22C      | 0.9600    |
| С7—Н7А     | 0.9700    | C23—O4        | 1.422 (5) |
| С7—Н7В     | 0.9700    | C23—H23A      | 0.9700    |
| C8—C14     | 1.534 (6) | С23—Н23В      | 0.9700    |
| C8—C15     | 1.552 (5) | C24—O4        | 1.403 (5) |
| C8—C9      | 1.560 (5) | C24—C25       | 1.509 (6) |
| C9—C11     | 1.538 (7) | C24—H24A      | 0.9700    |
| C9—C10     | 1.556 (6) | C24—H24B      | 0.9700    |
| С9—Н9А     | 0.9800    | C25—C30       | 1.359 (6) |
| C10—C18    | 1.533 (6) | C25—C26       | 1.382 (6) |
| C11—C12    | 1.527 (7) | C26—O5        | 1.359 (6) |
| C11—H11A   | 0.9700    | C26—C27       | 1.398 (7) |
| C11—H11B   | 0.9700    | C27—C28       | 1.369 (8) |
| C12—C13    | 1.545 (7) | С27—Н27А      | 0.9300    |
| C12—H12A   | 0.9700    | C28—C29       | 1.354 (8) |
| C12—H12B   | 0.9700    | C28—H28A      | 0.9300    |
| C13—C14    | 1.508 (7) | C29—C30       | 1.384 (7) |
| C13—C16    | 1.518 (7) | С29—Н29А      | 0.9300    |
| C13—C17    | 1.518 (7) | C30—H30A      | 0.9300    |
| C14—H14A   | 0.9700    | C31—O5        | 1.413 (6) |
| C14—H14B   | 0.9700    | C31—H31A      | 0.9600    |
| C15—C16    | 1.519 (6) | C31—H31B      | 0.9600    |
| C15—C23    | 1.525 (6) | C31—H31C      | 0.9600    |
| C2C1C10    | 114.1 (4) | H14A—C14—H14B | 108.9     |
| C2—C1—H1A  | 108.7     | C16—C15—C23   | 108.7 (3) |
| C10-C1-H1A | 108.7     | C16—C15—C8    | 104.5 (3) |
| C2—C1—H1B  | 108.7     | C23—C15—C8    | 116.6 (3) |
| C10-C1-H1B | 108.7     | C16-C15-H15A  | 108.9     |
| H1A—C1—H1B | 107.6     | C23—C15—H15A  | 108.9     |
| C3—C2—C1   | 110.9 (4) | C8—C15—H15A   | 108.9     |
| C3—C2—H2A  | 109.5     | O3—C16—C13    | 126.1 (4) |
| C1—C2—H2A  | 109.5     | O3—C16—C15    | 124.8 (4) |
| C3—C2—H2B  | 109.5     | C13—C16—C15   | 109.1 (4) |
| C1—C2—H2B  | 109.5     | C13—C17—H17A  | 109.5     |
| H2A—C2—H2B | 108.1     | С13—С17—Н17В  | 109.5     |
| C2—C3—C4   | 115.1 (4) | H17A—C17—H17B | 109.5     |

| С2—С3—НЗА                 | 108.5     | С13—С17—Н17С                     | 109.5     |
|---------------------------|-----------|----------------------------------|-----------|
| С4—С3—НЗА                 | 108.5     | H17A—C17—H17C                    | 109.5     |
| С2—С3—Н3В                 | 108.5     | H17B—C17—H17C                    | 109.5     |
| С4—С3—Н3В                 | 108.5     | C10-C18-H18A                     | 109.5     |
| НЗА—СЗ—НЗВ                | 107.5     | C10-C18-H18B                     | 109.5     |
| C20—C4—C3                 | 109.2 (4) | H18A—C18—H18B                    | 109.5     |
| C20—C4—C19                | 105.7 (5) | C10-C18-H18C                     | 109.5     |
| C3—C4—C19                 | 108.5 (4) | H18A—C18—H18C                    | 109.5     |
| C20—C4—C5                 | 115.3 (4) | H18B-C18-H18C                    | 109.5     |
| C3—C4—C5                  | 108.2 (4) | C4—C19—H19A                      | 109.5     |
| C19—C4—C5                 | 109.7 (4) | C4—C19—H19B                      | 109.5     |
| C6—C5—C4                  | 117.1 (4) | H19A—C19—H19B                    | 109.5     |
| C6—C5—C10                 | 110.7 (3) | С4—С19—Н19С                      | 109.5     |
| C4—C5—C10                 | 115.6 (3) | H19A—C19—H19C                    | 109.5     |
| С6—С5—Н5А                 | 103.8     | H19B—C19—H19C                    | 109.5     |
| С4—С5—Н5А                 | 103.8     | O1—C20—O2                        | 121.6 (5) |
| C10—C5—H5A                | 103.8     | O1—C20—C4                        | 124.6 (5) |
| C7—C6—C5                  | 110.2 (4) | 02-C20-C4                        | 113.7 (4) |
| C7—C6—H6A                 | 109.6     | 02-C21-C22                       | 112.8 (6) |
| C5-C6-H6A                 | 109.6     | 02-021-H21A                      | 109.0     |
| C7—C6—H6B                 | 109.6     | $C_{22} = C_{21} = H_{21}A$      | 109.0     |
| C5-C6-H6B                 | 109.6     | 02-C21-H21B                      | 109.0     |
| H6A—C6—H6B                | 108.1     | $C^{22} = C^{21} = H^{21}B$      | 109.0     |
| C8-C7-C6                  | 113.8 (3) | $H_{21}A = C_{21} = H_{21}B$     | 107.8     |
| C8—C7—H7A                 | 108.8     | C21—C22—H22A                     | 109.5     |
| C6—C7—H7A                 | 108.8     | $C_{21} = C_{22} = H_{22}B$      | 109.5     |
| C8—C7—H7B                 | 108.8     | $H_{22}A - C_{22} - H_{22}B$     | 109.5     |
| C6—C7—H7B                 | 108.8     | $C_{21} - C_{22} - H_{22}C_{22}$ | 109.5     |
| H7A—C7—H7B                | 107.7     | $H_{22}A - C_{22} - H_{22}C$     | 109.5     |
| C7—C8—C14                 | 111 8 (3) | H22B-C22-H22C                    | 109.5     |
| C7 - C8 - C15             | 1158(3)   | $04-C^{2}$                       | 109.2     |
| C14-C8-C15                | 100 7 (3) | 04-C23-H23A                      | 110.1     |
| C7—C8—C9                  | 109.6 (3) | C15—C23—H23A                     | 110.1     |
| C14-C8-C9                 | 106.6 (3) | 04—C23—H23B                      | 110.1     |
| C15-C8-C9                 | 111 8 (3) | C15—C23—H23B                     | 110.1     |
| $C_{11} - C_{9} - C_{10}$ | 113.9 (3) | $H_{23}A - C_{23} - H_{23}B$     | 108.4     |
| C11-C9-C8                 | 110.6 (3) | 04-024-025                       | 110 3 (4) |
| C10-C9-C8                 | 1177(3)   | 04—C24—H24A                      | 109.6     |
| C11-C9-H9A                | 104 3     | $C_{25}$ $C_{24}$ $H_{24A}$      | 109.6     |
| C10—C9—H9A                | 104.3     | 04-C24-H24B                      | 109.6     |
| C8—C9—H9A                 | 104.3     | C25-C24-H24B                     | 109.6     |
| C18-C10-C1                | 109.6 (3) | $H_{24A} - C_{24} + H_{24B}$     | 108.1     |
| C18-C10-C9                | 112.1 (3) | $C_{30}$ $C_{25}$ $C_{26}$       | 118 9 (4) |
| C1—C10—C9                 | 107.4 (3) | C30—C25—C24                      | 123.2 (4) |
| C18-C10-C5                | 111.3 (4) | C26—C25—C24                      | 117.9 (4) |
| C1C10C5                   | 107.7 (3) | 05-C26-C25                       | 114.7 (4) |
| C9—C10—C5                 | 108 6 (3) | 05-026-027                       | 125 3 (5) |
| C12-C11-C9                | 113.8 (4) | $C_{25} - C_{26} - C_{27}$       | 119.9 (5) |
| C12-C11-H11A              | 108.8     | C28—C27—C26                      | 119.5 (5) |
|                           |           |                                  |           |

| C9—C11—H11A   | 108.8     | C28—C27—H27A  | 120.2     |
|---------------|-----------|---------------|-----------|
| C12—C11—H11B  | 108.8     | С26—С27—Н27А  | 120.2     |
| C9—C11—H11B   | 108.8     | C29—C28—C27   | 120.6 (5) |
| H11A—C11—H11B | 107.7     | C29—C28—H28A  | 119.7     |
| C11—C12—C13   | 112.6 (4) | C27—C28—H28A  | 119.7     |
| C11—C12—H12A  | 109.1     | C28—C29—C30   | 119.7 (5) |
| C13—C12—H12A  | 109.1     | С28—С29—Н29А  | 120.2     |
| C11—C12—H12B  | 109.1     | C30—C29—H29A  | 120.2     |
| C13—C12—H12B  | 109.1     | C25—C30—C29   | 121.4 (5) |
| H12A—C12—H12B | 107.8     | С25—С30—Н30А  | 119.3     |
| C14—C13—C16   | 101.3 (3) | С29—С30—Н30А  | 119.3     |
| C14—C13—C17   | 116.6 (4) | O5-C31-H31A   | 109.5     |
| C16—C13—C17   | 112.7 (4) | O5—C31—H31B   | 109.5     |
| C14—C13—C12   | 107.9 (4) | H31A—C31—H31B | 109.5     |
| C16—C13—C12   | 106.3 (4) | O5-C31-H31C   | 109.5     |
| C17—C13—C12   | 111.2 (4) | H31A—C31—H31C | 109.5     |
| C13—C14—C8    | 104.7 (3) | H31B—C31—H31C | 109.5     |
| C13—C14—H14A  | 110.8     | C20—O2—C21    | 116.6 (4) |
| C8—C14—H14A   | 110.8     | C24—O4—C23    | 112.1 (3) |
| C13-C14-H14B  | 110.8     | C26—O5—C31    | 119.5 (4) |
| C8—C14—H14B   | 110.8     |               |           |



Fig. 1