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Abstract. Background: The epithelial 
immune regulation is an essential and pro-
tective feature of the barrier function of 
the mucous membranes of the airways. 
Damage to the epithelial barrier can result 
in chronic inflammatory diseases, such as 
chronic rhinosinusitis (CRS) or bronchial 
asthma. Thymic stromal lymphopoietin 
(TSLP) is a central regulator in the epithelial 
barrier function and is associated with type 
2 (T2) and non-T2 inflammation. Materials 
and methods: The immunology of chronic 
rhinosinusitis with polyposis nasi (CRSwNP) 
was analyzed in a literature search, and the 
existing evidence was determined through 
searches in Medline, Pubmed as well as the 
national and international study and guide-
line registers and the Cochrane Library. Hu-
man studies or studies on human cells that 
were published between 2010 and 2020 and 
in which the immune mechanisms of TSLP 
in T2 and non-T2 inflammation were exam-
ined were considered. Results: TSLP is an 
epithelial cytokine (alarmin) and a central 
regulator of the immune reaction, especially 
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in the case of chronic airway inflamma-
tion. Induction of TSLP is implicated in the 
pathogenesis of many diseases like CRS and 
triggers a cascade of subsequent inflamma-
tory reactions. Conclusion: Treatment with 
TSLP-blocking monoclonal antibodies could 
therefore open up interesting therapeutic 
options. The long-term safety and effective-
ness of TSLP blockade has yet to be investi-
gated.

Introduction

An intact mucosal barrier is crucial for 
the maintenance of tissue homeostasis as it 
protects the organism from infections, envi-
ronmental toxins, pollutants, and allergens 
[1]. A disrupted epithelial barrier has been 
demonstrated in allergic and autoimmune 
diseases such as allergic rhinitis and chronic 
rhinosinusitis (CRS), but also in similar dis-
eases such as atopic dermatitis, asthma, 
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eosinophilic esophagitis, celiac disease, and 
inflammatory bowel disease [1].

Some authors even suggest that the in-
crease in epithelial barrier-damaging agents 
associated with industrialization, urbaniza-
tion, and the associated “modern life” un-
derlies the rise in allergic, autoimmune, and 
other chronic mucosal diseases [1].

It seems to be proven that, in addition 
to the epithelial barrier, an intact mucosal 
immune system is a prerequisite for the pre-
vention of chronic inflammatory mucosal 
diseases, and mucosal immune dysfunction 
is also involved in the development of dis-
eases such as allergic rhinitis and CRS [1, 2, 
3, 4].

Thymic stromal lymphopoietin (TSLP) 
is a cytokine primarily expressed by airway 
epithelium and released in response to envi-
ronmental factors, triggering various inflam-
matory processes [5].

TSLP expression is increased in the 
airways of asthma patients compared to 
healthy individuals and correlates with dis-
ease severity and lung function. Polymor-
phisms in the TSLP gene have been associ-
ated with asthma.

Evidence suggests that TSLP is an impor-
tant factor in the pathophysiology of chronic 
inflammatory airway diseases, promoting 
eosinophilic (allergic and non-allergic) in-
flammation, non-eosinophilic inflammation, 
and airway structural changes through its 
effects on a variety of adaptive and innate 
immune cells and epithelial cells [5].

Clinical trials of TSLP blockade with 
monoclonal antibodies in patients with 
chronic inflammatory airway disease have 
been highly successful [5].

Chronic rhinosinusitis with 
polyposis nasi and bronchial 
asthma

CRS is an inflammatory disease of the 
mucous membranes of the nose and sinuses 
[6, 7, 8, 9]. Globally, CRS affects ~ 5 – 12% 
of the general population, and the cost to 
healthcare systems and national economies 
is substantial [6, 7, 8, 10]. CRS is divided into 
a phenotype with (CRSwNP) and one with-
out the development of nasal polyps (CRSs-
NP) [9, 10, 11, 12]. CRSwNP is also referred 
to as polyposis nasi et sinuum and is asso-

ciated with endoscopic and/or radiologic 
evidence of polypoid hyperplastic tissue in 
the nasal cavity and/or paranasal sinuses. 
CRSwNP is an immunologically triggered 
chronic inflammatory disease of the mucosa 
and subepithelial tissues for which specific 
endotype-based immunologic therapies 
have been developed only in the last decade 
[4, 13, 14, 15, 16], whereas immunothera-
pies [17, 18, 19, 20, 21] or avoidance mea-
sures [22, 23] for exogenous allergic nasal 
mucosal diseases have been a therapeutic 
standard for a long time.

The inflammation associated with CRS 
is heterogeneous and has been associated 
with different inflammatory endotypes. 
Among the most common endotypes is type 
2 (T2) inflammation [15]. As in asthma, the 
majority of CRS patients in Europe have a T2 
endotype of inflammation [24, 25, 26, 27, 
28, 29, 30, 31, 32]. It is due to this similarity 
to the pathophysiology of asthma that most 
of the biologics approved for asthma thera-
py have also been shown to be effective in 
CRSwNP [4, 15, 28, 33].

Alternatively, non-T2 inflammation may 
be present (for example, neutrophilic) [34, 
35, 36]. In patients with severe respiratory 
disease that cannot be adequately con-
trolled by inhaled therapies, knowledge 
of the patient’s inflammatory endotype(s) 
helps to select the optimal biologics therapy 
[32, 37, 38].

Immunoglobulin (Ig) E, eosinophils in 
sputum and blood, interleukin (IL)-4, IL-5, 
and IL-13 are considered indicative biomark-
ers. Because there may be evidence of mul-
tiple upregulated inflammatory pathways in 
each individual patient, it may be difficult to 
identify a single predominant endotype in 
individual cases [4]. Five biologics have been 
approved for patients with moderate-to-
severe allergic and/or eosinophilic asthma, 
and all have shown greater efficacy in pa-
tients with T2 inflammation than in patients 
without T2 inflammation [39, 40, 41, 42, 43]. 
Currently, there are no approved biologics 
for non-T2 inflammation.

The immunologic significance of the epi-
thelial cytokine TSLP offers the possibility for 
a new approach to the treatment of chronic 
airway inflammation. Epithelial cytokines 
are commonly referred to as alarmins, which 
include IL-25 and IL-33. TSLP is released by 
airway epithelial cells in response to vari-
ous environmental agents, such as viral and citation
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bacterial infections, in response to allergens 
and chemical irritants, and injury [44, 45]. 
Functionally, TSLP is a key substance in the 
initiation of immune response to environ-
mental agents, which initiates a series of 
downstream inflammatory processes [5]. 
While TSLP initiates a distinct T2 inflamma-
tory response [46, 47, 48], there is increas-
ing evidence for TSLP involvement in non-T2 
processes involving interactions with both 
immune cells and epithelial cells. The con-
siderable extent of TSLP-mediated effects 
is illustrated by the broad spectrum of cell 
types expressing the TSLP receptor (TSLPR): 
eosinophils, basophils, mast cells, airway 
smooth muscle cells (ASMCs), innate lym-
phoid cells group 2 (ILC2s), lymphocytes, 
dendritic cells, hematopoietic progenitor 
cells, and monocytes/macrophages [49, 50]. 
In addition, TSLP appears to act as a me-
diator between different immune cell types 
and epithelial cells in the airways [5]. TSLP 
production seem to be increased in chronic 
inflammatory diseases of the airways (asth-
ma, CRS) and skin (atopic dermatitis) [5]. 
TSLP expression is significantly increased in 
asthma patients compared to healthy indi-
viduals in the inner and outer epithelial lay-
ers of airway biopsies [51, 52, 53, 54, 55, 56, 
57, 58] as well as in serum samples [59, 60], 
sputum [61], exhaled breath condensate 
[62], and bronchoalveolar lavage fluid [57, 
63]. Moreover, TSLP expression has been 
shown to correlate with airway obstruc-
tion and disease severity in asthma patients 
[56, 58, 61, 63, 64]. Several elements of the 
pathophysiology of chronic inflammatory 
airway diseases, including airway hyperre-
sponsiveness, hypersecretion, and airway 
remodeling, are thought to be controlled, 
at least in part, by the proinflammatory ac-
tions of TSLP involving cytokines such as 
IL-4, IL-5, and IL-13 [65]. At least in asthma, 
the role of TSLP is further underscored by 
genome-wide association studies that have 
found associations between asthma risk and 
single nucleotide polymorphisms (SNPs) in 
the TSLP gene [66, 67, 68]. Interestingly, this 
includes rs1837253 [69, 70], which regulates 
TSLP production in nasal epithelial cells [71] 
and is significantly positively correlated with 
the manifestation of asthma in CRS patients 
[72]. TSLP has also been associated with N-
ERD (nonsteroidal anti-inflammatory drug-
exacerbated respiratory disease) syndrome, 
also known as aspirin-exacerbated respira-

tory disease (AERD) or aspirin intolerance 
syndrome (AIS) in Europe. N-ERD is char-
acterized by the triad of bronchial asthma, 
CRSwNP, and intolerance to aspirin or other 
nonsteroidal anti-inflammatory drugs (cy-
clooxygenase-1 inhibitors). Examination of 
nasal polyp tissue from individuals with N-
ERD/AERD and those with CRS without N-
ERD/AERD showed that TSLP mRNA expres-
sion was significantly increased in N-ERD/
AERD [73, 74].

The role of TSLP in the pathogenesis of 
chronic inflammatory airway disease has led 
to the development of anti-TSLP monoclonal 
antibodies as a therapeutic option for these 
patients. In asthma, the results of clinical tri-
als of anti-TSLP therapy are very convincing 
[75].

Materials and methods

For the present publication, a selective 
literature search was performed in Medline, 
Pubmed, and the national and international 
trials and guidelines registries and the Co-
chrane Library, and on the World Wide Web. 
Human studies or human cell studies pub-
lished from 2010 to 2020 that investigated 
the immune mechanisms of TSLP in T2 and 
non-T2 inflammation were considered. In 
addition, current publications in literature 
databases of available German-language 
journals were analyzed. This literature 
search considered original and review pa-
pers in German or English language. The aim 
of this review is to summarize the available 
data on the mechanisms of action of TSLP 
in CRS across the spectrum of inflammatory 
endotypes to illustrate the therapeutic po-
tential of novel TSLP-blocking therapies.

Deliberately, only human studies were 
considered here because although the bi-
ology of the TSLP pathway appears to be 
similar in humans and rodents, the ability to 
use rodent models is limited by the gener-
ally poor transferability of rodent models to 
complex, heterogeneous human diseases 
[76, 77].

Search terms used were TSLP OR thy-
mic stromal lymphopoietin AND asthma* 
or AND CRS* or AND CRSwNP*, using the 
species filter “Humans”. Review articles 
were also considered. The results of these 
searches were reviewed for relevance, that 
is, whether they contained information on citation
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sites of TSLP expression, TSLP effector cells, 
or physiological or clinical effects of TSLP, 
and were supplemented with other relevant 
articles known to the authors.

Immunological mechanisms 
of action of TSLP in T2 
inflammation

Several local effector cells play a role in 
the development of T2 inflammation. The 
interaction between airway epithelium and 
these cells is an important process driving 
eosinophilic inflammation. TSLP acts directly 
on immune cells involved in T2 inflammato-
ry processes in CRS.

TSLP and eosinophils

Eosinophilic inflammation contributes 
significantly to the physiological changes 
and airway remodeling in chronic inflamma-
tory airway disease. Eosinophils are present 
in airways altered due to T2 inflammation 
but also in T2 inflammation of the skin (e.g., 
atopic dermatitis) and are subsequently lo-
cally activated [78, 79, 80, 81, 82, 83, 84].

In uncontrolled [85] or severe [86] asth-
ma, there are locally increased eosinophils, 
while they may decrease in controlled asth-
ma [87].

Few studies have examined the direct 
effect of TSLP on mature human eosino-
phils, and cross-sectional comparisons with 
cells from asthma patients compared with 
healthy controls are also lacking. Human 
eosinophils express both TSLPR and IL-7Rα 
subunits, and their expression is enhanced 
by tumor necrosis factor (TNF)-α and IL-3 
[88, 89]. TSLP promotes eosinophil viabil-
ity by attenuating apoptosis and induces 
significant production of IL-6, an eosino-
phil-derived neurotoxin, and chemokines, 
including chemokine (C-X-C motif) ligand 
(CXCL)8, CXCL1, and chemokine (C-C motif) 
ligand (CCL) 2 [88, 89]. TSLP increases the 
expression of intercellular adhesion mole-
cule (ICAM)-1 and CD18, but suppresses the 
expression of surface L-selectin, suggesting 
that it plays a role in promoting eosinophil 
transmigration and accumulation in tissues 
[89]. The effects of TSLP on eosinophils are 

mediated through the extracellular signal-
regulated kinase (ERK), p38 mitogen-acti-
vated protein kinase (MAPK), and nuclear 
factor κ light chain enhancer of activated B 
cells (NF-κB) signaling pathways [88, 89]. In 
addition, TSLP can induce the formation of 
eosinophil extracellular traps composed of 
mitochondrial deoxyribonucleic acid (DNA) 
in association with eosinophil cationic pro-
teins, which play an important role in innate 
immune responses to infectious agents that 
subsequently lead to tissue damage in asth-
matic airways [90]. Here, TSLP promotes eo-
sinophilia in the airways. Anti-TSLP therapy 
can significantly reduce the number of eo-
sinophils in blood and sputum in asthma in 
association with a reduction in bronchial ob-
struction following allergen exposure [75].

This is supported by correlation studies 
in patients with atopic asthma, in which the 
level of immunopositive staining for TSLP in 
bronchial biopsies correlated with airway 
eosinophilia 24 hours after allergen expo-
sure [51]. In contrast, the concentration of 
TSLP in the induced sputum of asthma pa-
tients during virus-induced exacerbations 
was inversely related to the number of eo-
sinophils, suggesting different mechanisms 
of action of TSLP in acute exacerbations 
compared with chronic eosinophilic inflam-
mation [64].

TSLP and hematopoietic 
progenitor cells 
(eosinophil progenitor cells)

There is evidence of a link between al-
lergic respiratory reactions and the mobili-
zation of bone marrow-derived eosinophil 
progenitor cells (EoPs). Affected tissues 
support local differentiation, proliferation, 
maturation, and activation of EoPs that mi-
grate to the site of allergen exposure in the 
mucosa during allergic airway disease. TSLP 
has been shown to promote activation, mi-
gration, and local differentiation of EoPs in 
the airways. Cord blood-derived hemato-
poietic progenitor cells cultured with TSLP 
at nanomolar concentrations upregulate 
IL-5Rα expression and then, in combination 
with IL-3 or granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF), stimulate 
significant growth of eosinophil/basophil 
colony-forming units (Eo/Bo-CFUs) [91].citation
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In addition, increased eosinophil activity 
was detected in bronchial epithelial super-
natants from patients with severe eosino-
philic asthma compared with patients with 
mild asthma and healthy controls. This ac-
tivity was attenuated by a receptor-blocking 
antibody to TSLP [92]. In picogram amounts, 
TSLP additively stimulated the growth of Eo/
Bo CFUs through IL-5 [92]. At the messen-
ger ribonucleic acid (mRNA) level, a syner-
gistic increase in nuclear transcription fac-
tor GATA-2 and CCAAT/enhancer-binding 
protein (CEBP)-α was observed in CD34+ 
cells in the presence of TSLP and IL-5 [92]. 
Collectively, these results suggest that eo-
sinophilopoiesis is not driven by IL-5 alone, 
but rather is a complex process involving the 
interaction between local and systemically 
produced growth factors, including TSLP.

Migration of progenitor cells into the 
airways is an important component in trig-
gering local eosinophilic inflammation. Prior 
exposure to TSLP and IL-33 stimulates pro-
genitor cell migration toward the chemoat-
tractant stromal cell-derived factor (SDF)-
1α (CXCL12) [93]. This implies that airway 
epithelium can locally release alarmin cyto-
kines that increase the migratory propensity 
of CD34+ progenitor cells. Moreover, CD34+ 
primitive progenitor cells express TSLPR, 
and stimulation with TSLP results in a dose-
dependent release of IL-5, IL-13, GM-CSF, 
and chemokines such as CCL22, CXCL8, and 
CCL1 [93, 94]. This suggests that TSLP not 
only drives local maturation of eosinophil 
lineage progenitor cells but can also pro-
mote proinflammatory function and migra-
tion of primitive progenitor cells.

TSLP and ILC2s

ILC2s produce substantial amounts of T2 
cytokines such as IL-5, IL-13, and IL-9 after 
activation by alarmin cytokines such as TSLP, 
IL-25, and IL-33 [95, 96, 97]. This effect is 
enhanced by the presence of IL-2 and IL-7 
[98]. TSLP, in synergy with IL-25 or IL-33, can 
promote the production of IL-5 and IL-13 by 
ILC2s [95] and prolong the survival of ILC2s 
[98]. Activation of ILC2s by IL-33 and TSLP 
leads to upregulation of surface receptor ex-
pression of tyrosine kinase c-KIT and down-
regulation of IL-7Rα and chemoattractant 
receptor homologous molecule expressed 
on Th2 cells (CRTH2), suggesting that alar-

min cytokines can generate heterogeneous 
populations of ILC2s [98]. The functions of 
the different populations remain to be elu-
cidated.

For inflammatory airway diseases, Chen 
et al. [99] reported that mild asthmatics had 
a rapid and significant increase in sputum 
ILC2s within 24 hours of allergen inhala-
tion, expressing large amounts of IL-5 and 
IL-13. Phenotypic analysis of ILC2s in this 
study showed upregulation of TSLPR on IL-
33 receptor-expressing ILC2s, suggesting 
that increased responsiveness of ILC2s to 
TSLP in the airways may contribute to the 
spread of eosinophilic inflammation. Oth-
er studies have shown that the number of 
ILC2s is increased in patients with severe 
asthma and persistent eosinophilia com-
pared to patients with mild asthma, with 
the greatest number of IL-5+IL-13+ILC2s in 
the airways observed in patients with un-
controlled disease and high eosinophilia 
despite treatment with high-dose oral corti-
costeroids [100, 101, 102]. In endobronchial 
biopsies from prednisone-treated patients 
with severe asthma, ILC2s were colocalized 
in TSLP-immunopositive regions [56]. Simi-
larly, the number of ILC2s in nasal biopsies 
was shown to positively correlate with TSLP 
levels in nasal tissues of patients with severe 
asthma and chronic rhinosinusitis [55]. Liu 
et al. [103] reported that dexamethasone 
treatment resulted in inhibition of IL-5 pro-
duction by ILC2s after in vitro stimulation of 
peripheral blood cultures from patients with 
severe asthma with Aspergillus or IL-2/IL-33. 
In contrast, dexamethasone had no effect on 
airway ILC2s, indicating compartmental dif-
ferences in steroid resistance of ILC2s [103]. 
This was attributed to higher TSLP levels in 
the airways. Specifically, the study showed 
that the inhibitory effect of dexamethasone 
on ILC2s in the airways was reduced in the 
presence of TSLP and IL-7. Furthermore, this 
was found to be dependent on mitogen-
activated protein kinase kinases (MEK) and 
signal transduction and activator of tran-
scription factor 5 (STAT5) signaling [103]. 
Three genes, CBX7, MEK2, and TRL2, have 
been identified in TSLP-stimulated lymphoid 
cells resistant to dexamethasone treatment 
[104]. TSLP itself can induce the expression 
of MEK2, which translocates to the nucle-
us and interacts with chromobox protein 
homolog 7 (CBX7), suggesting a positive 
feedback regulatory pathway [103]. Thus, citation
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dexamethasone appears to attenuate the 
proinflammatory activity of ILC2s triggered 
by IL-33, and TSLP appears to induce steroid 
resistance in ILC2s.

TSLP and mast cells

Mast cells play an important role in trig-
gering eosinophilic airway inflammation 
through IgE-FcεR1 cross-linking, leading to 
the release of histamine, leukotrienes, and 
many other cytokines/chemokines. Alar-
min cytokines may affect mast cell function. 
Mast cells express TSLPR and, upon stimula-
tion with TSLP alone or together with IL-1β 
and TNF-α, produce T2 cytokines and che-
mokines CXCL8 and CCL1, with no effect on 
mast cell proliferation or survival [46, 54, 
105]. Interestingly, mast cells can produce 
substantial amounts of TSLP themselves fol-
lowing IgE cross-linking or priming with IL-4 
[106, 107]; and crosstalk between smooth 
muscle cells of the respiratory tract (ASMCs) 
and mast cells has been reported, as evi-
denced by chronically activated mast cells 
triggering the release of TSLP via a TNF-α-
dependent pathway. In turn, TSLP derived 
from ASMCs induced T2 cytokine production 
by mast cells [108]. Taken together, these 
studies demonstrate that TSLP can directly 
interact with mast cells to promote eosino-
philic inflammation through the production 
of T2 cytokines.

TSLP and monocytes/
macrophages

Macrophages are leukocytes found 
throughout the respiratory tract. There are 
few studies on the effect of TSLP on airway 
macrophages in humans. Herein, TSLP was 
shown to increase the expression of the ac-
tivation marker CD80 in CD14+ monocytes/
macrophages, suggesting a role in promot-
ing differentiation into mature macrophages 
[109]. In addition, cDNA from human mono-
cytes cultured with TSLP and IL-7 showed 
upregulation of CCL17, CCL18, and CCL22, 
suggesting that TSLP is a promoter for migra-
tion of these effector cells into the airways 
[110]. In bronchial biopsy tissues, TSLP ex-
pression has been shown to colocalize with 
epithelial CD68+ macrophages in the tissue, 

with a greater number of macrophages de-
tected in asthma patients compared with 
control subjects or healthy individuals [56, 
57, 58].

TSLP and basophils

Basophils play an important role in 
chronic inflammatory airway disease as a 
significant source of T2 cytokines, including 
IL-4, IL-13, and pro-inflammatory mediators 
such as histamine and leukotrienes. Baso-
phil development, homeostasis, and func-
tion are largely regulated by IL-3, but there 
is increasing evidence that TSLP also affects 
basophil differentiation.

Peripheral blood-derived CD34+ cells 
incubated with IL-3 and TNF-α prior to in-
cubation have increased sensitivity to TSLP-
mediated basophil differentiation [91]. In 
addition, bone marrow mesenchymal stro-
mal cells produce TSLP. These are activated 
by mast cells and promote the differentia-
tion of CD34+ progenitor cells into Eo/Bo 
CFUs [111]. Mature basophils express TSL-
PR, which is upregulated in the presence of 
IL-3 [112]. In comparison, TSLP-stimulated 
basophils show greater expression of the IL-
33 receptor ST2, indicating the existence of 
heterogeneous basophil populations [112]. 
Allergen stimulation of peripheral blood 
mononuclear cells in patients with atopic 
dermatitis resulted in upregulation of TSLPR 
on basophils and myeloid dendritic cells, 
which was further enhanced by IgE-FcεR1 
cross-linking [113].

In blood samples from patients with aller-
gic asthma, significant upregulation of TSLPR 
on basophils was found after direct stimula-
tion with anti-IgE antibodies, which corre-
lated with total serum IgE [114]. However, 
another study in asthma patients reported 
that stimulation with anti-IgE increased 
the expression of IL-25 and IL-33 receptors, 
but not TSLPR [115]. These studies suggest 
that there may be both IgE-dependent and 
IgE-independent mechanisms that increase 
basophil responsiveness to TSLP. Basophil 
TSLPR expression is significantly increased 
after respiratory allergen exposure [116]. 
In addition, TSLP stimulation of periph-
eral basophils increased activation marker 
(CD203 c) expression, T2 cytokine produc-
tion, histamine release, and eotaxin-induced 
cellular migration responses [116]. Stimula-citation
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tion of basophils with TSLP also increases 
IL-25 receptor (IL-17RB) and ST2 expression, 
suggesting that TSLP may increase basophil 
response to other alarmin cytokines [117].

Thus, TSLP is an important mediator of 
the basophil inflammatory response.

TSLP and dendritic cells

Human myeloid dendritic cells express 
TSLPR [118], and stimulation with TSLP can 
directly upregulate the expression of major 
histocompatibility complex class II and co-
stimulatory molecules CD40, CD86, CD54, 
CD90, CD83, and dendritic cell lysosome-
associated membrane protein (DC-LAMP), 
as well as chemokines CXCL8, CCL24, CCL17, 
CCL22, and CCL1 [48, 119, 120, 121]. Inter-
estingly, monocyte-derived dendritic cells 
can themselves produce TSLP upon stimula-
tion by microbial products, suggesting that 
TSLP may act in an autocrine manner to fur-
ther drive T2 inflammation [122, 123]. TSLP 
is also an important driver of dendritic cell-
mediated T-cell differentiation [124]. Even 
in the absence of IL-12, TSLP can induce the 
expression of OX40 ligand (OX40 L) [120]. 
OX40 L is expressed by TSLP-induced den-
dritic cells and leads to the differentiation of 
naive CD4+ T cells into TNF-α+IL-10 T helper 
cells (Th2 cells) [120]. OX40 L can convert IL-
10-producing regulatory Th1 cells, into TNF-
α-producing Th2 cells, thus OX40 L can act 
as a Th2-polarizing signal [120, 125]. A com-
bination of TSLP and allergen stimulates pe-
ripheral myeloid dendritic cells of patients 
with inhalant allergy to induce differentia-
tion of CD4+ T cells into Th2 cells, whereas 
TSLP alone promotes polarization into Th9 
cells [126]. Expression of OX40 L is required 
for induction of Th2 polarization but not for 
Th9 polarization (Th9 cells require the pres-
ence of transforming growth factor (TGF)-β1 
[126]. Exosomes produced by TSLP-activat-
ed dendritic cells express OX40 L, which 
promotes CD4+ T-cell proliferation and IL-4 
production [127]. TSLP has a priming ef-
fect on myeloid dendritic cell-mediated ex-
pansion and function of CRTH2+ and CD4+ 
memory Th2 cells and inhibits the devel-
opment of forkhead box protein-3 (FOXP3) 
positive regulatory T cells (Treg) [128, 129]. 
These studies demonstrate that the interac-
tion between dendritic cells and TSLP is an 
important triggering event leading to the 

promotion of naïve T-cell differentiation and 
polarization and downstream T2 inflamma-
tion, which is mediated in part by OX40 L.

TSLP and lymphocytes

Most studies on the influence of TSLP 
on lymphocytes referred to the indirect ef-
fect of TSLP through dendritic cells on T-cell 
differentiation [120, 124, 126]; however, 
evidence exists that TSLP can directly modu-
late human T lymphocytes. In resting CD4+ 
T cells, TSLPR is minimally expressed; how-
ever, upon their activation, TSLPR expres-
sion increases significantly [130]. TSLP can 
promote proliferation and differentiation of 
naive CD4+ T cells into Th2 cells or memo-
ry T cells in the presence of T-cell receptor 
(TCR) stimulation or IL-4 [130, 131]. Similar 
effects are observed in CD8+ T cells, whose 
proliferation TSLP can activate through TCR 
stimulation [132].

The direct effects of TSLP on Tregs have 
not been well studied. Tregs express TSLPR, 
and stimulation with TSLP impairs IL-10 
production [128]. Immunosuppressive Treg 
activity is reduced in patients with allergic 
airway disease in both adults and children 
[60, 128]. These findings suggest that TSLP 
may reduce the anti-inflammatory function 
of Tregs and thus further increase T2 inflam-
mation. Overall, these data suggest that 
TSLP can directly modulate T lymphocytes, 
leading to downstream T2 inflammation and 
airway eosinophilia.

Mechanisms of action of TSLP 
in non-T2 inflammation

Non-T2 inflammation in CRS is often me-
diated by Th17 cells and neutrophils. IL-17A 
produced by Th17 cells stimulates airway 
epithelial cells to produce neutrophilia-
promoting cytokines such as CXCL8 (IL-8) 
and GM-CSF [133] and promotes airway re-
modeling by altering the function of ASMCs 
[134].

TSLP enhances Toll-like receptor (TLR) 3 
ligand-induced production of IL-23 by den-
dritic cells and induces programming of 
naïve CD4+ T cells into Th17 cells [135]. In 
addition, TSLP stimulates dendritic cells to 
Th2 and Th17 polarization, as evidenced by citation
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an increase in IL-4+/IL-17A+ T cells and up-
regulation of IL-4/IL-17A protein levels such 
as IL-6 and IL-23 in cell culture supernatant 
[136]. These results suggest that TSLP and 
TLR3 ligands promote Th17 cell differen-
tiation under Th2-polarizing conditions by 
activating dendritic cells. TSLP can also acti-
vate neutrophils by directly interfering with 
the C5 complement system and modulating 
neutrophil production of reactive oxygen 
species [137].

In chronic inflammatory airway disease, 
levels of IL-33 and TSLP, but not IL-25, were 
significantly elevated compared to control 
subjects [63]. Previous studies had shown 
that neutrophils are a source of TSLP in bron-
chial biopsy tissue [57, 58, 138]. In this light, 
it seems interesting that anti-TSLP monoclo-
nal antibody therapy reduced exacerbations 
in patients with severe asthma with non-T2 
inflammation, and thus TSLP may play a role 
in patients with little or no T2 inflammation 
[139]. The prevalence of TSLP in other respi-
ratory diseases, such as chronic obstructive 
pulmonary disease [57], also suggests that 
TSLP may be involved in other T2-indepen-
dent inflammatory pathways.

Epithelial mechanisms of action 
of TSLP

In addition to its effects on specific im-
mune cells, there is now ample evidence 
that TSLP serves as a mediator between 
immune cells and epithelial cells in the air-
ways. Dysregulation of the epithelium leads 
to characteristic airway changes known as 
airway remodeling, which include reticu-
lar basement membrane thickening, gob-
let cell hyperplasia, subepithelial fibrosis, 
and ASMC hyperplasia and/or hypertrophy 
[140].

TSLP and ASMCs

Numerous reports indicate that TSLP is 
an important modulator of ASMC activity. 
Human ASMCs express TSLPR [54], and stim-
ulation with TSLP leads to the expression 
of IL-6, CCL11, and CXCL8, as well as migra-
tion through STAT3 signaling [141, 142, 143, 
144]. ASMCs are a significant source of TSLP 
[54, 144, 145], which is enhanced in the 

presence of TNF-α and IL-1β via the p38 and 
MAPK signaling pathways [142, 146]. TNF-α 
and IL-1β can promote TSLP expression in 
ASMCs in healthy individuals, and activated 
mast cells can induce TSLP release in ASMCs 
[108]. These results suggest that TSLP can 
promote airway inflammation through an 
interaction between mast cells and airway 
epithelial cells [46, 57, 108].

TSLP and fibroblasts

TSLP can promote airway remodeling 
in chronic inflammatory airway diseases 
through activation of fibroblasts [147] in 
terms of significant production of collagen 
and α-smooth muscle actin via a p38 MAPK- 
and STAT3-dependent pathway [148, 149]. 
Furthermore, TSLP expression in bronchial 
biopsy tissue has been shown to be restrict-
ed to fibroblasts [138, 145, 150]. Specifically, 
TSLP has been shown to increase the pro-
duction of TGF-β1 and arginase 1 by fibro-
blasts at the mRNA and protein levels [151].

What is the benefit of TSLP 
blockade in patients with 
chronic respiratory disease? 
Clinical trial data

The TSLPR complex has been associ-
ated with a number of chronic inflamma-
tory airway diseases [152]. Two monoclonal 
antibodies designed to block TSLP and thus 
inhibit signaling through TSLPR are being in-
vestigated in clinical trials as drugs for the 
treatment of asthma. Tezepelumab was ini-
tially tested as an intravenous formulation 
and subsequently also tested in the subcu-
taneous dosage form.

CSJ117 is a fully human neutralizing Fab 
fragment (antibody-antigen binding frag-
ment: Fab) belonging to the IgG1/λ isotype 
subclass. CSJ117 was developed as an in-
haled formulation for targeted administra-
tion to the lung to bind to TSLP released 
from airway epithelial cells [44, 45].

GSK2618960 is a humanized IgG1 mono-
clonal antibody directed against the alpha 
component (IL-7Rα; CD127) of TSLPR [153] 
and is being developed for the treatment of 
autoimmune diseases (including multiple 
sclerosis) [154].citation
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In patients with severe eosinophilic air-
way inflammation [155], blocking IL-7Rα 
may be helpful. Intravenous administration 
of GSK2618960 resulted in more than 95% 
receptor occupancy on CD3+ T cells and ef-
fectively blocked IL-7 receptor signaling as 
measured by STAT5 phosphorylation [154].

Tezepelumab treatment resulted 
in positive outcomes in asthma in 
two clinical trials

In a double-blind placebo-controlled 
phase 1b study to demonstrate the efficacy 
of tezepelumab in an allergen provocation 
chamber [75], tezepelumab was adminis-
tered intravenously at a dose of 700 mg ev-
ery 4 weeks for 3 months in adults with al-
lergic asthma. In the actively treated group, 
blood eosinophil counts began to decrease 
after 2 weeks and reached normal values af-
ter 4 weeks. Sputum eosinophils showed sig-
nificant improvement into the normal range 
(< 2%) by the first measurement time point 
6 weeks after the first dose. Remarkably, 
fractional exhaled nitric oxide (FeNO) values 
improved significantly as early as 1 week af-
ter the first dose. On days 42 and 84, inhaled 
allergen challenge was performed to elicit 
eosinophilic inflammation in the airways; 
tezepelumab significantly inhibited allergen-
induced early and late asthmatic responses, 
as well as post-challenge inflammation lev-
els, including FeNO, and blood and sputum 
eosinophils. Systemic treatment was found 
to be effective in regulating both circulating 
and local inflammatory levels.

The second completed study in asthma 
(PATHWAY) was a large, multicenter, ran-
domized, parallel-group, double-blind, 
placebo-controlled phase 2 trial [139]. The 
study evaluated the efficacy and safety of 
tezepelumab as an add-on therapy for pa-
tients with moderate-to-severe asthma and 
a history of exacerbations and uncontrolled 
disease who were receiving inhaled cortico-
steroids and long-acting β2-agonists with or 
without oral corticosteroids and additional 
asthma controllers. Three tezepelumab 
dosing regimens were studied: low (70 mg 
every 4 weeks), medium (210 mg every 4 
weeks), and high (280 mg every 2 weeks), 
administered subcutaneously for 1 year. 
The study found significant reductions in an-

nual exacerbation rates of 62, 71, and 66%, 
respectively, in the low, medium, and high 
tezepelumab dose groups compared with 
placebo, along with significant improve-
ments in lung function and inflammatory 
markers (blood FeNO and eosinophils) in all 
active treatment groups. Interestingly, these 
improvements were observed regardless of 
patient phenotype and independent of pe-
ripheral blood eosinophil counts, IgE levels, 
and FeNO levels, suggesting that tezepe-
lumab has similar efficacy in patients with 
T2-related and non-T2-related disease. In 
addition, proinflammatory biomarkers and 
the proteome were examined. In the cohort 
receiving tezepelumab at 210 mg every 4 
weeks (the dose chosen for the phase 3 tri-
als), serum IL-5 and IL-13 levels and blood 
eosinophil counts decreased by at least 50% 
at 1 year compared to baseline, along with 
25 and 20% reductions in FeNO and total 
IgE, respectively [156]. Proteomic analyses 
revealed a reduction in proteins associated 
with matrix remodeling (MMP-10 and peri-
ostin), demonstrating a broad biological ef-
fect of TSLP blockade [157].

In addition to the studies with tezepe-
lumab, a multinational proof-of-concept 
study of CSJ117 in the allergen challenge 
model was conducted in patients with mild 
allergic asthma to evaluate safety, tolerabili-
ty, pharmacokinetics, and pharmacodynam-
ics. 28 participants completed the study, 
which included daily inhalation of CSJ117 
and bronchial allergen challenges at 6 and 
12 weeks. The study was completed in 2019; 
results are pending [158].

Additional clinical trials evaluating the ef-
ficacy, mechanisms of action, and long-term 
safety of tezepelumab are ongoing. Two piv-
otal phase 3 trials (NAVIGATOR and SOURCE) 
are being conducted in patients with severe 
asthma receiving inhaled corticosteroids/
long-acting β-agonists with or without oral 
corticosteroids for maintenance therapy and 
additional asthma controllers [159, 160]. 
The primary endpoints were reduction in 
asthma exacerbation rate or daily oral cor-
ticosteroids. Another bronchoscopy study 
(CASCADE) aims to better understand the 
mechanisms of TSLP blockade by investigat-
ing the effects of tezepelumab on the num-
ber of inflammatory cells in endobronchial 
biopsies from adults with inadequately con-
trolled moderate-to-severe asthma [161]. 
Data on long-term safety and tolerability citation
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will be important and are currently being in-
vestigated in a tezepelumab extension study 
[162]. Taken together, these studies will pro-
vide much needed information on the ben-
efits of TSLP blockade in asthma.

Tezepelumab is also tested in a phase III 
study for CRSwNP. The WAYPOINT study re-
cently started recruiting patients. However, 
the first study results are not expected until 
2024.

Discussion and conclusion

Two biologics have now been approved 
in Germany (dupilumab and omalizumab) 
as an add-on treatment for severe, uncon-
trolled chronic rhinosinusitis with nasal pol-
yps. Based on positive study data, it is likely 
that two additional compounds will also re-
ceive approval in the future (mepolizumab 
and benralizumab) [4, 163]. All of these bio-
logics are targeting T2 inflammation.

TSLP plays a central role in chronic airway 
mucosal inflammation. TSLP is also mostly 
involved in T2 inflammation, but quite pos-
sibly also in non-T2 inflammation, and has 
multiple effects on a variety of cell types 
including ILC2s, hematopoietic progeni-
tor cells, eosinophils, basophils, mast cells, 
monocytes/macrophages, dendritic cells, 
lymphocytes, neutrophils, smooth muscle 
cells, and fibroblasts [5].

Treatment options for chronic inflamma-
tory airway diseases have improved signifi-
cantly in recent years with the introduction 
of T2-targeting biologics.

They act on different targets of T2 in-
flammation, for example IgE, IL-5, IL-4/
IL-13. By activating several downstream in-
flammatory pathways, TSLP affects airway 
inflammation more comprehensively than 
the targets of previously approved biologics, 
which is why anti-TSLP-targeted biologics 
can sustainably improve epithelial immune 
regulation in chronic inflammatory airway 
disease [5].

TSLP blockade has shown promise in 
treating both T2-related and non-T2-related 
(i.e., non-allergic, non-eosinophilic) inflam-
mation in asthma when administered over 
a period of up to 1 year. For patients with 
non-T2-related inflammation, this would be 
the first therapeutic option with monoclonal 
antibodies.

As with other biologics, it will be impor-
tant to find biomarkers that identify patients 
with a good chance of success with anti-
TSLP therapy. Blood eosinophils, serum IgE, 
and FeNO have been used as biomarkers to 
analyze treatment with anti-IL-5/IL-5Rα, an-
ti-IgE, and anti-IL-4/IL-13 monoclonal anti-
bodies. While TSLP itself could hypothetical-
ly be used as a biomarker, this has not been 
shown to be effective, primarily because of 
the difficulty in measuring low concentra-
tions of this cytokine [5].

In addition, TSLP has been shown to be 
cleaved in nasal polyp tissue by endogenous 
proteases, resulting in bioactive peptides 
[164, 165], making anti-TSLP antibodies un-
detectable in ex vivo studies and possibly 
underestimating actual TSLP production [5].

The clinical relevance of systemic TSLP 
detection is also unclear, as there are large 
variations in peripheral blood independent 
of disease activity in the airways [5].

Attempts to quantify TSLP in patient 
samples are also complicated by the fact 
that there are two isoforms of the protein: 
a long-form TSLP (lfTSLP), in which the pro-
tein is full-length, and a form that is approxi-
mately half amino acid length (63 amino 
acids), often referred to as short-form TSLP 
(sfTSLP) [166, 167, 168, 169]. It is currently 
unknown whether anti-TSLP therapies in 
clinical development bind to lfTSLP, sfTSLP, 
or both. While the role of lfTSLP is well char-
acterized, the function of sfTSLP remains 
unclear. It is thought to be constitutively ex-
pressed in human tissues but not in rodents 
[170, 171]. In addition, it does not bind to 
the TSLPR complex [170, 172], suggesting 
a different biological function than lfTSLP. 
The relative ratio of lfTSLP to sfTSLP has 
not yet been determined in patients with 
chronic respiratory disease, in part because 
no research reagents to distinguish the two 
forms of TSLP are available. Currently, lfT-
SLP and sfTSLP can only be distinguished 
at the mRNA level using specific primers. 
Such studies examining the two isoforms 
in human tissues have shown that the long 
isoform of TSLP is proinflammatory and ex-
pressed in inflammation [173], and that the 
ratio of TSLP isoforms may be altered in dif-
ferent inflammatory diseases [172]. Further 
research is needed to better understand the 
role of the two TSLP isoforms, their regula-
tion by SNPs, and their expression under dif-
ferent pathological conditions.citation
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Although TSLP is primarily expressed by 
epithelial cells at barrier surfaces (nose, na-
sal sinuses, lung, intestine, skin), TSLP can 
also be produced by a variety of immune 
cells; therefore, systemic administration of 
anti-TSLP also has the potential to disrupt 
other homeostatic functions of TSLP [172, 
174]. The long-term safety and efficacy 
of anti-TSLP treatment must therefore be 
evaluated, ideally considering not only T2-
related and non-T2-related inflammation, 
but also TSLP variants, gene polymorphisms, 
and ethnically diverse populations. In addi-
tion, inhaled TSLP blockade, which directly 
targets TSLP produced in the airways, is an 
interesting alternative route that could be 
important for the safety and tolerability of 
anti-TSLP therapy.

This is especially true in situations such 
as the current COVID-19 pandemic, where 
continuing or reinitiating biologic therapy 
for CRSwNP is recommended even during 
SARS-CoV-2 virus infection or in the setting 
of a planned COVID-19 vaccination [175]. 
The timing of vaccination should be chosen 
to be midway between two biologic injec-
tions. Depending on the dosing interval and 
preparation, this corresponds to 1 – 2 weeks 
(for dupilumab and omalizumab), with a 
minimum interval of 1 week recommended 
[175]. Recommendations have also been 
developed for potential adverse effects of 
biologics therapy in the setting of COVID-19 
vaccination [176] and for the management 
of patients at risk of anaphylaxis [177].

Take-home messages

 – Because of the common T2 endotype, 
most of the biologics developed for asth-
ma are also suitable for CRSwNP.

 – TSLP expression in asthma patients cor-
relates with both airway obstruction and 
the severity of the disease.

 – TSLP promotes eosinophilia in the air-
ways.

 – The migration of progenitor cells into the 
airway is an important component in the 
process triggering local eosinophilic in-
flammation.

 – TSLP interacts directly with mast cells 
to promote eosinophilic inflammation 
through the production of T2 cytokines.

 – TSLP is also a key mediator of the baso-
philic inflammatory response.

 – There is also evidence that TSLP can di-
rectly modulate human T lymphocytes.

 – The expression of TSLP in bronchial bi-
opsy tissue is limited to fibroblasts.

 – There is evidence that tezepelumab has 
similar effectiveness in patients with T2-
related and those with non-T2 disease.

 – TSLP is involved in both T2 inflammation 
and non-T2 inflammation and shows ef-
fects on a wide variety of cell types.
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