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The evolution of viral sensors is likely to be shaped by the

constraint imposed through high conservation of viral

Pathogen-Associated Molecular Patterns (PAMPs), and by the

potential for ‘arms race’ coevolution with more rapidly evolving

viral proteins. Here we review the recent progress made in

understanding the evolutionary history of two types of viral

sensor, RNA helicases and Toll-like receptors. We find

differences both in their rates of evolution, and in the levels of

positive selection they experience. We suggest that positive

selection has been the primary driver of the rapid evolution of

the RNA helicases, while selective constraint has been a

stronger influence shaping the slow evolution of the Toll-like

receptors.
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Introduction
Pathogens reduce host fitness, and thereby exert a strong

and ubiquitous selective pressure on hosts that has led to

the evolution of a range of immune responses. Immune

responses are elicited when sensors detect the presence

of pathogens through Pathogen-Associated Molecular

Patterns (PAMPs) or through markers of pathogen-

associated damage. However, viruses may be uniquely

difficult to sense because they use the host’s own machin-

ery to replicate, and therefore present fewer exogenous

elicitors to immune surveillance mechanisms. Innate

antiviral responses are therefore often triggered by con-

served signatures of viral nucleic acids, such as dsRNA or

CpG dinucleotides, which lead to the activation of

multiple downstream immune responses, such as the
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RNA interference pathway or the vertebrate interferon

response.

The conserved nature of these viral PAMPs leads to

contrasting predictions regarding the evolution of anti-

viral genes. On the one hand, sensing these ancient and

conserved molecular signatures might be expected to

constrain the evolution of viral sensors. On the other

hand, viral suppression of the antiviral immune system

may lead to rapid evolution of viral sensors, as is seen in

some antiviral genes of Drosophila [1]. Such rapid evolu-

tion may be driven by a host-virus arms race, as viruses

escape the host immune response by cleaving or blocking

antiviral genes [2]. Mechanisms of viral sensing have

recently been reviewed elsewhere [3]; here we summarise

the recent progress that has been made in understanding

how two important viral sensing mechanisms have

evolved, focussing on both phylogenetic history and

the ongoing natural selection that shapes antiviral

responses of extant populations. We finish by weighing

the relative contributions of positive selection and evol-

utionary constraint during the evolution of viral sensing.

The phylogenetic distribution of viral sensing
mechanisms
Although multiple protein families are known to act as

viral sensors, many recent evolutionary studies have

focussed on the Toll-like receptors (TLRs) and on recep-

tors related to the RNA helicases, such as the Dicers and

the RIG-I-like receptors (RLRs). Dicers act as sensors in

the RNA interference (RNAi) pathway, binding dsRNA

derived from the viral genome, replication intermediates

or subgenomic products, and cleaving it into small RNAs

that are ultimately used to target the virus or its transcripts

for degradation. This is an ancient mechanism that prob-

ably arose prior to the most recent eukaryotic common

ancestor over 1.5 billion years ago, and has since been

conserved in all major eukaryotic lineages, including

plants, fungi, ecdysozoa and vertebrates (illustrated in

Figure 1) [4]. The helicase domain of the RLRs probably

shares a common ancestor with that of Dicer [5], but on

sensing viral dsRNA or other PAMPs, RLRs instead

activate transcription factors such as nuclear factor-kappa

B (NF-kB), and thereby induce the interferon pathway

[6]. The RLRs also have a much more recent origin than

Dicers, being present only in vertebrates, although hom-

ologues to their characteristic CAspase Recruitment

Domains (CARDs) and RNA helicase domains are found

in more basally branching deuterostomes, such as the

tunicate Ciona intestinalis and the purple sea urchin
www.sciencedirect.com
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Phylogenetic distribution of viral sensing mechanisms. Gene family sizes are given, with validated antiviral genes in parentheses (0 = no antiviral genes,

? = antiviral function unknown). The three viral sensing mechanisms vary widely in their evolutionary ages: Dicer arose in the early Eukaryotes, whereas

TLRs evolved in the early Bilateria, and RLRs first appeared in the vertebrates.
Strongylocentrotus purpuratus [5,7]. At present, direct viral

sensing and immune induction functions have only been

shown in vertebrates for two of the three RLRs, retinoic

acid inducible gene I (RIG-I) [6] and melanoma differ-

entiation associated gene 5 (MDA5) [8]. The third RLR,

laboratory of genetics and physiology 2 (LGP2), binds

viral RNA but cannot itself induce an immune response,

instead triggering interferon production indirectly by

signalling to MDA5 [9]. In contrast to the vertebrate-

specific RLRs, the antiviral role of Dicer-like genes is

much more widespread, being present in plants [10],

fungi [11] and animals [12].

The Toll receptors were initially discovered in Droso-
phila, where they are involved in regulating the anti-

bacterial and antifungal immune response [13]. The

phylogenetic distribution (Figure 1) of Toll-like recep-

tors (TLRs) suggests that they originated in the early

Bilateria, before the divergence of protostomes and

deuterostomes. In Drosophila, Toll-7 directly binds

viruses and activates the autophagy response [14��].
In mammals, four TLRs (TLR3, 7, 8 and 9) play a

pivotal role in sensing viral nucleic acids [15–18],

subsequently activating the innate and adaptive

immune responses through IRF-3, IRF-7 and NF-kB

[19]. Other mammalian TLRs recognise different

PAMPs, including lipids (TLR1, 2, 4 and 6) [20–22]

and proteins (TLR5) [23]. This phylogenetic distri-

bution of antiviral function suggests that TLRs are
www.sciencedirect.com 
likely to have evolved a viral sensing role early in

animal evolution, before the divergence of the proto-

stomes and deuterostomes.

The evolution of RNA helicases
The most ancient conserved viral sensors are related to

RNA helicases present in Archaea and Eukaryotes [5].

Two families of sensing helicases have been the subject

of recent evolutionary study: the Dicers [24,25��] and

the Rig-I-like receptors (RLRs) [5,7]. Two of the three

RLRs (RIG-I and MDA5) each harbour two CARD

domains that are integral in triggering the interferon

response [6]. Despite this shared function, the two

CARD domains appear to have substantially different

histories [5], and it has therefore been suggested  that

the CARDs were gained by RIG-I and MDA5 in two

separate events, with the first domain being acquired

before the duplication that formed RIG-I and MDA5,

and the second domain gained after they diverged [5].

Consistent with this, two CARD domains are found

at separate loci in the sea anemone Nematostella vecten-
sis, suggesting that the proposed grafting of these

CARDs onto RLR may have occurred from these loci

after the divergence of the chordates [7]. In contrast to

the CARD domains, however, the order of divergence

of RIG-I, MDA5 and LGP2 themselves remains

unresolved. A neighbour-joining approach suggested

that RIG-I diverged in the early deuterostomes, with

LGP2 and MDA5 diverging later in the vertebrates
Current Opinion in Microbiology 2014, 20:170–175
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[7], while Bayesian and Maximum Likelihood methods

find that LGP2 diverged in the early chordates,

with RIG-I and MDA5 diverging later in the tetrapods

[5].

It is highly likely that the last eukaryotic common ances-

tor possessed one Dicer, which was duplicated to produce

two paralogues in the early Metazoa soon after their

divergence from the other eukaryotes [24,25��]. However,

the timing and extent of paralogue loss, and therefore the

age of the two well-studied insect Dicer paralogues

(Dicer1 & Dicer2), remains unresolved. It is possible

that one of the paralogues was lost in the early Metazoa

soon after the divergence of the Placazoa, and therefore

Dicer1 and Dicer2 are relatively recent duplicates formed

from a lineage-specific duplication in the ancestral arthro-

pod [24]. Alternatively, large-scale lineage-specific loss of

one of these paralogues may have left only the Placazoa

and the arthropods with the two ancient paralogues [25��].
Reconstruction and rooting of this tree is made challen-

ging by the extreme difference in evolutionary rate be-

tween Dicer1 and Dicer2, and by the high divergence to

non-animal Dicers. Wider taxon sampling may mitigate

these problems, and if so, then an ancient origin for

Dicer1 and Dicer2 may be more likely [25��]. Accurate

reconstruction of this phylogeny would help to determine

the extent to which Dicer has retained its presumably

ancestral antiviral role, which has been confirmed in

plants, fungi, arthropods, and most recently mammals

[26,27].

Population-genetic approaches can be used to detect

departures from a standard neutral model of evolution,

and thus infer the action of recent or ongoing natural

selection. These methods have been widely applied to

Dicers and RLRs, and have utilised both within-species

genetic diversity [28�,29–31] and between-species

divergence [1,28�,31,32] to understand the role of

positive selection in shaping these genes. In humans,

RIG-I appears to be tightly constrained [31], possibly

due to the broad range of viruses it detects [33]. In

contrast, positive selection has been detected on human

LGP2 and MDA5 [31], and may have driven selective

sweeps of MDA5, with one variant fixing in Europe and

Asia and an alternative variant selected in South Amer-

ica [30]. Across the mammals, positive selection has

been detected at individual sites in all domains of RIG-

I and MDA5, but only in the helicase domain of LGP2

[34]. Evidence for positive selection has also been

found for Drosophila Dicer2, which evolves extremely

rapidly [1] under strong positive selection [32]. Despite

this, it remains challenging to confidently attribute

these patterns of RLR evolution to virus-mediated

natural selection, as there may be some other shared

trait common to all members of the RLR gene family

that may predispose them to evolve in this way. Never-

theless, as neither rapid evolution nor positive selection
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are detected for insect Dicer1 [32], a Dicer2-homologue

in the microRNA pathway that lacks a major antiviral

role, it seems likely that the rapid evolution of

Dicer2 may be driven specifically by its viral sensing

function.

The evolution of the Toll-like receptors
All TLRs have characteristic leucine-rich repeat (LRR)

and Toll/interleukin-1 receptor (TIR) domains, which

function in PAMP recognition and cell signalling, respect-

ively. These domains appear to have evolved separately

in the early Metazoa, as a vertebrate-like TIR is present

in the Cnidaria [35]. However, the combination of TIR

and LRR domains is seen after the divergence of the

Bilateria from basal Metazoa, but before the divergence

of the protostomes and deuterostomes [35]. A similar age

has been estimated for the TLR adaptor MyD88, which

was identified in both vertebrates and invertebrates [36],

and for the interaction between TLRs, MyD88 and NF-

kB, which has been reported in the oyster Crassostrea gigas
(Lophotrochozoa) [37�]. However, the full TLR signal-

ling pathway appears to have been acquired slowly, as the

other adaptors TIR domain-containing adaptor molecule

(TICAM) and TIR domain-containing adaptor protein

(TIRAP) appear first in the early chordates [38] following

duplication of MyD88 [36].

Direct sensing of viral PAMPs also appears to have

evolved in TLRs before the divergence of the proto-

stomes and deuterostomes, being found in both Droso-
phila [14��] and vertebrates. Intriguingly, differential

expression of TLRs occurs on exposure of C. gigas to

different PAMPs [37�], suggesting that specialisation of

TLR paralogues to specific classes of pathogens may also

have occurred early in the Bilateria. Since its divergence

from other deuterostomes, a dramatic expansion of the

TLR gene family in the basal deuterostome S. purpuratus
has produced 253 paralogues, some of which appear to

have specialised to a larval-specific or antibacterial role

[39]. However, whether any of these paralogues has an

antiviral function, and therefore how viral sensing has

influenced their evolution, remains unknown.

Studies of TLR molecular evolutionary dynamics have

revealed that selective pressures vary between domains,

between different levels in the TLR signalling pathway,

and between TLRs with different functions. At the

domain level, the LRR domain evolves much faster than

the TIR domain [39–42], consistent with the role of the

latter in signalling to cytoplasmic adaptor molecules that

are constrained by their interactions with multiple differ-

ent TLRs. At the pathway level, a negative relationship

between evolutionary rate and pathway position has been

found in both Drosophila [43] and the Metazoa as a whole

[44], suggesting that downstream components are under

stronger purifying selection, possibly because of their

interactions with multiple different upstream factors [44].
www.sciencedirect.com
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At the level of TLR function, four studies have explicitly

compared the molecular evolutionary patterns of viral and

non-viral TLRs in humans [45], rodents [46], primates

[41], and mammals generally [47��]. These studies have

used interspecific divergence at nonsynonymous and

synonymous sites (dN and dS, respectively) to quantify

the rate of protein evolution relative to the neutral

expectation, with some studies going on to infer positive

selection by testing for the existence of individual codon

positions showing a dN/dS ratio greater than one. Com-

parisons that average dN/dS across the whole gene have

all found that viral sensing TLRs evolve more slowly than
Figure 2
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The evolutionary rate (dN/dS — upper panel) and the proportion of

codons inferred to be positively selected (lower panel) in viral sensing

and non-viral sensing TLRs across eight rodent and ten primate species.

Sequences were obtained from GenBank, and their phylogeny

reconstructed using the Bayesian phylogenetic analysis program

MrBayes [49] (see Supplemental File 1 for alignment). Evolutionary rate

was estimated under the M0 model in PAML [50] (error bars represent

one S.E.), and the proportion of adaptive substitutions represents the

estimated proportion of sites with dN/dS > 1 under the M8 model.

Overall, it appears that the primate and rodent viral sensing TLRs evolve

more slowly and have a lower proportion of adaptive substitutions than

other TLRs.

www.sciencedirect.com 
TLRs that sense other pathogens; however, the magni-

tude of this difference in rates varies between focal

lineages. In humans, viral sensing TLRs evolve much

less rapidly than other TLRs, with average dN/dS values

of 0.25 (viral) and 0.81 (non-viral) [45]. Far more modest

differences have been found in rodents [46], primates

[41], and birds [48]. Viral sensing TLRs may evolve more

slowly because of stronger purifying selection, which has

been detected using intraspecific polymorphism data

from birds [48], humans [45] and primates as a whole

[41]. Alternatively, the higher dN/dS ratio seen in TLRs

that sense other PAMPs may reflect higher rates of

positive selection, with a higher proportion of codons

experiencing frequent adaptive substitutions.

Adaptive substitutions have been inferred both at the

TIR and LRR domains and the TLR sequence as a

whole. There is wide variation in the proportion of

positively selected codons that are located in the

PAMP-binding LRR region: this domain harboured all

adaptive substitutions in rodents [46] and the majority in

mammals [47��], but in primates this region contained

none in viral sensing TLRs, and only a small minority in

non-viral TLRs [41]. Across the whole sequence, a mam-

mal-wide study failed to find a significant difference in

the proportion of positively selected codons between viral

and non-viral TLRs [47��]. However, individual studies

of primates [41], rodents [46] and birds [48] identified

fewer positively selected codons in viral sensing com-

pared with non-viral TLRs. This may indicate that host-

virus arms race dynamics exert a weak or negligible effect

on viral sensing TLRs, perhaps because their membrane-

bound location limits viral interference. Instead, their

evolution may simply be constrained by the conserved

nature of viral PAMPs, resulting in low rates of adaptation

and few positively selected codons (illustrated in

Figure 2).

Conclusion
Viral sensors evolve under contrasting selective pressures:

the conserved nature of viral PAMPs may tend to con-

strain evolution, whereas antagonistic host-virus coevolu-

tion may drive rapid evolution. The rapid evolution of

RNA helicases could indicate that coevolution with other

pathogen proteins (such as immune suppressors) is a

major selective pressure on these sensors. In contrast,

the slow evolution of TLRs may suggest the absence of a

host-virus arms race acting directly on the sensor. In the

future, this could be tested by further investigation of

viral immune suppression strategies, and the overall

importance of such strategies in shaping evolution could

be informed by comparative studies of the evolution of

viral sensors in a broader phylogenetic range of taxa.
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