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Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and the most common known
cause of autism. Loss of fragile X mental retardation protein (FMRP) in mice (Fmr1 KO) leads to altered synaptic and
circuit maturation in the hippocampus that is correlated with alterations in hippocampal-dependent behaviors.
Previous studies have demonstrated that loss of FMRP increased the rate of proliferation of progenitor cells and altered
their fate specification in adult Fmr1 KO mice. While these studies clearly demonstrate a role for FMRP in adult
neurogenesis in the hippocampus, it is not known whether the functional synaptic maturation and integration of
adult-born dentate granule cells (abDGCs) into hippocampal circuits is affected in Fmr1 KO mice. Here, we used
retroviral labeling to birthdate abDGCs in Fmr1 KO mice which allowed us to perform targeted patch clamp recording
to measure the development of synaptic inputs to these neurons at precise time points after differentiation. The
frequency and amplitude of spontaneous GABAergic events increased over the first three weeks after differentiation;
however, this normal development of GABAergic synapses was not altered in Fmr1 KO mice. Furthermore, the
relatively depolarized GABA reversal potential (EGABA) in immature abDGCs was unaffected by loss of FMRP as was
the development of dendritic arbor of the adult generated neurons. These studies systematically characterized the
functional development of abDGCs during the first four weeks after differentiation and demonstrate that the maturation
of GABAergic synaptic inputs to these neurons is not grossly affected by the loss of FMRP.
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Introduction
Fragile X syndrome (FXS) is the most common known

genetic cause of autism and intellectual disability. FXS is
caused by the expansion of the CGG repeat in the 5’ UTR
of the Fmr1 gene, which leads to hypermethylation, tran-

scriptional silencing, and loss of expression of the protein
product, fragile X mental retardation protein (FMRP; Wil-
lemsen et al., 2011). FMRP is an RNA-binding protein that
regulates a large number of mRNAs, many of which en-
code synaptic proteins. Dysregulated expression of syn-
aptic proteins is thought to perturb synapse maturation
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Significance Statement

Loss of fragile X mental retardation protein (FMRP) causes Fragile X syndrome (FXS), a devastating
neurodevelopmental disorder that causes multiple alterations in the development of synapses and neurons.
Previous studies have described a role for FMRP in neurogenesis and hippocampal-dependent conditioning
tasks linked to neurogenesis. This study systematically assessed the functional development of GABAergic
inputs to adult born dentate granule cells (abDGCs) during the first four weeks after differentiation of adult
neural stem cells in Fmr1 KO mice.
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and plasticity; however, the specific mechanisms under-
lying synaptic and cognitive deficits in FXS remain un-
clear. There are a growing number of studies
demonstrating that FMRP plays important roles in stem
cells, including adult neural stem cells in the neurogenic
niche in the subgranular zone (SGZ) of the hippocampus
(Li and Zhao, 2014). The importance of adult-born dentate
granule cells (abDGCs) to hippocampal function, memory
processes, and potentially to several neuropsychiatric
disorders (Gonçalves et al., 2016) has raised the possibil-
ity that alterations in neural stem cell proliferation and
maturation and integration of abDGCs contribute to the
pathology of FXS. Proliferation of adult neural progenitors
is enhanced in mice lacking FMRP (Fmr1 KO; Luo et al.,
2010; but also see Eadie et al., 2009), and fate specifica-
tion is altered with fewer neural progenitors differentiating
into neurons (Luo et al., 2010). In addition, it has been
reported that reduced survival of adult-born neurons
leads to an overall reduction in the number of DGCs in
Fmr1 KO mice (Lazarov et al., 2012). Therefore, the evi-
dence suggests that the number of abDGCs is reduced
in Fmr1 KO mice and that FMRP ablation specifically in
adult neural stem cells results in cell autonomous effects
on proliferation, fate specification, and hippocampal-
dependent behaviors (Guo et al., 2011). Despite these
known disruptions in neurogenesis in Fmr1 KO mice, an
outstanding question is whether FMRP loss also affects
how abDGCs mature and integrate into the hippocampal
network after differentiation.

In many neuronal types, FMRP and related proteins
play a role in neuronal development and synaptic func-
tion. There are alterations in the development of synapses
particularly during early developmental critical periods in
the cortex in Fmr1 KO mice (Nimchinsky et al., 2001;
Cruz-Martín et al., 2010; Harlow et al., 2010). In several
instances, these morphologic and functional changes
normalize during development (Bureau et al., 2008); how-
ever, phenotypes associated with these circuits persist in
adult Fmr1 KO mice (Arnett et al., 2014; He et al., 2017).
abDGCs also undergo critical periods of development
during the first few weeks after differentiation when they
are undergoing synapse formation and dendritic remod-
eling (Bergami et al., 2015) and have elevated plasticity
(Ge et al., 2007b). However, it remains unknown whether

loss of FMRP results in disruptions in synapse formation
on abDGCs during this early developmental postmitotic
period when they are actively integrating into the hip-
pocampal network.

GABA synapses are the first inputs to form onto ab-
DGCs and these synapses are initially excitatory due to a
depolarized GABA reversal potential (EGABA) that results
from a relatively high intracellular chloride concentration
in young neurons (Overstreet Wadiche et al., 2005; Ge
et al., 2006). These earliest GABA inputs are important for
survival, dendritic development, and subsequent forma-
tion and unsilencing of glutamatergic synapses (Ge et al.,
2006; Chancey et al., 2013; Song et al., 2013; Alvarez
et al., 2016). The distinct characteristics of immature ab-
DGCs endow these cells with properties that create
unique roles for them in information processing (Ge et al.,
2007a). Ablation of adult neurogenesis leads to impaired
trace and contextual fear conditioning and pattern sepa-
ration, indicating that newly generated neurons play a
distinct role in learning that cannot be replicated by ma-
ture or developmentally born DGCs (Shors et al., 2001;
Clelland et al., 2009; Nakashiba et al., 2012). Interestingly,
these same behaviors that have been shown to require
intact adult hippocampal neurogenesis are impaired in the
Fmr1 KO. Fmr1 KO mice have deficits in trace fear con-
ditioning (Zhao et al., 2005), and this phenotype can be
recapitulated by specific deletion of Fmr1 in adult neural
stem cells (Guo et al., 2011). Therefore, while it is known
that there are reductions in the number of abDGCs and
correlated changes in behavior, it remains to be deter-
mined whether loss of FMRP results in changes in syn-
aptic formation and maturation in abDGCs, which would
alter their integration and activity in the hippocampal cir-
cuit.

Given the critical role of GABA signaling in early post-
mitotic maturation of abDGCs (Ge et al., 2006), and also
the known alterations in GABA signaling during early
postnatal development (He et al., 2014; Nomura et al.,
2017) and in juvenile Fmr1 KO mice (Paluszkiewicz et al.,
2011; Martin et al., 2014; Zhang et al., 2017), we investi-
gated whether the time course of development of inhibi-
tion onto abDGCs is altered in Fmr1 KO mice.

Materials and Methods
Animals

All procedures related to the care and treatment of
animals were performed in accordance with the North-
western University Animal Care Committee’s regulations.
Fmr1 KO mice (C57Bl/6) were maintained by breeding
heterozygous females with WT or KO males. All experi-
ments were performed blind to genotype in age-matched
male littermates. Tail biopsies were used to perform post
hoc genotyping of all mice used in the study.

Retroviral birthdating
A replication incompetent retrovirus based on Moloney

murine leukemia virus (MMLV) expressing RFP was pre-
pared as described (Tashiro et al., 2006, 2015). Briefly,
HEK-293 cells stably expressing GP2 were cotransfected
with RFP and VSVG using Lipofectamine 2000. The media
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were collected from transfected cells 3 and 6 d after
transfection, filtered, and centrifuged at 25,000 rpm to
precipitate the virus. Eight- to 10-week-old Fmr1 WT or
KO males were anesthetized using ketamine/xylazine and
1 �l of virus was injected bilaterally into the SGZ of the
dentate gyrus at a rate of �0.3 �l/min.

Slice preparation and electrophysiology
We prepared 250-�m coronal slices at 14, 21, and 28

(�1) days postinjection (dpi). Slices were prepared using
a Leica Vibratome in ice-cold high-sucrose artificial CSF
(ACSF) containing the following: 85 mM NaCl, 2.5 mM
KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 25 mM glu-
cose, 75 mM sucrose, 0.5 mM CaCl2, and 4 mM MgCl2,
equilibrated with 95% O2 and 5% CO2 and including 10
�M DL-APV and 100 �M kynurenate. Slices were heated
to 28°C in the same sucrose-ACSF, then the sucrose
solution was gradually exchanged for recovery ACSF con-
taining the following: 125 mM NaCl, 2.4 mM KCl, 1.2 mM
NaH2PO4, 25 mM NaHCO3, 25 mM glucose, 1 mM CaCl2,
2 mM MgCl2, 0.01 mM dL-APV, and 0.1 mM kynurenic
acid.

After a 60-min recovery, individual slices were trans-
ferred to a recording chamber and continuously perfused
with oxygenated ACSF containing 2 mM CaCl2 and 1 mM
MgCl2 at an elevated temperature of 32°C. The dentate
gyrus was visually identified and targeted recordings were
made from RFP-expressing dentate granule cells. Re-
cording electrodes were manufactured from borosilicate
glass pipettes and had tip resistances of 4–6 M� when
filled with internal recording solution. For whole-cell re-
cordings, internal recording solution contained the follow-
ing: 95 mM CsF, 25 mM CsCl, 10 mM Cs-HEPES, 10 mM
Cs-EGTA, 2 mM NaCl, 2 mM Mg-ATP, 10 mM QX-314, 5
mM TEA-Cl, and 5 mM 4-AP, pH adjusted to 7.3 with
CsOH. Data were collected and analyzed using pClamp
10 software (Molecular Devices). Neurons were voltage-
clamped at –70 mV to record spontaneous IPSCs (sIP-
SCs) and miniature IPSCs (mIPSCs), which were isolated
by inclusion of D-APV (50 �M), CNQX (10 �M), and TTX (1
�M) for mIPSCs. MiniAnalysis (Synaptosoft) was used to
analyze sIPSCs and mIPSCs. For perforated patch re-
cordings, the pipette solution contained the following: 150
mM KCl and 100 mM HEPES, pH adjusted to 7.2 with
Tris-OH. The pipette tip was filled with gramicidin-free KCl
solution and then backfilled with solution containing
gramicidin (100 �g/ml). GABAergic currents were evoked
using a picospritzer to deliver a 50-ms puff of 10 �M
GABA in the presence of 50 �M D-APV and 10 �M CNQX.
Responses were recorded at holding potentials between
–100 and 0 mV. The GABA reversal potential was calcu-
lated as the x-axis intercept of the best-fit line of the
current�voltage plot.

Two-photon laser scanning microscopy
Labeled abDGCs were patched in the whole cell con-

figuration as described above with Alexa Fluor 488 dye
(50 �M) added to the internal solution. Dye was allowed to
perfuse through the cell for �20 min before image acqui-
sition. Fluorescent images were acquired with picosec-
ond pulsed excitation at 790 nM. Images of the soma and

dendrites were acquired with 0.19-�m2 pixels with 10-�s
pixel dwell time with 1.0-�m focal steps. Neuron Studio
was used to create 3-D reconstructions of the dendrites
and morphology analysis was performed in NeuronStudio
(Wearne et al., 2005) and ImageJ.

Data analysis
Data analysis was performed using Microsoft Excel and

OriginPro 2017 software. mIPSC and sIPSCs were ana-
lyzed using MiniAnalysis (Synaptosoft). Decay kinetics of
mIPSC events was measured as the time to decay from
90% to 37% of the peak amplitude on the falling phase of
the response. Comparisons were made with a Mann–
Whitney U test, unless otherwise indicated. Differences
were considered significant when p � 0.05. Data are
shown as mean � SEM.

Results
Development of spontaneous GABA currents in
abDGCs in Fmr1 KO mice

To identify and birthdate newborn DGCs, we injected a
modified retrovirus expressing RFP into the SGZ of 8- to
10-week-old Fmr1 KO mice and WT littermates (Tashiro
et al., 2015). Retroviral injection clearly labeled neurons
located in the SGZ of the dentate gyrus (Fig. 1A). Evoked
IPSCs have been detected in abDGCs as early as 7 dpi
(Ge et al., 2006) and in our recordings the earliest time
point at which we consistently observed spontaneous
inhibitory events was 14 dpi. Based on this we performed
targeted patch-clamp recordings from RFP-expressing
cells at 14, 21, and 28 dpi. We first measured the fre-
quency of sIPSCs and mIPSCs at these time points.
sIPSC frequency increased over time as abDGCs matured
in both genotypes (Fig. 1B). Despite the known delays in
maturation of properties of neurons in other cortical re-
gions in Fmr1 KO mice, we found that there was no
difference in the sIPSC frequency at any postdifferentia-
tion age of abDGC tested spanning this early period of
development of these neurons (14 dpi WT: 0.028 � 0.004
Hz; 14 dpi KO: 0.032 � 0.004 Hz, n � 6/3 (cells, animals
respectively), p � 0.49 Mann–Whitney U test; 21 dpi WT:
0.480 � 0.074 Hz, n � 14/7, 21 dpi KO: 0.468 � 0.070 Hz,
n � 15/9, p � 0.95 Mann–Whitney U test; 28 dpi WT: 1.16
� 0.031 Hz, n � 12, 4 KO: 0.90 � 0.086 Hz, 11/6, p � 0.70
Mann–Whitney U test; Fig. 1B,D–F). In addition, we mea-
sured action potential independent spontaneous inhibi-
tory events (mIPSCs) in abDGCs, which can be a good
indicator of the number of inhibitory connections, or the
release probability of those synapses. Again, we did not
find a difference in the frequency of these events in com-
parisons between recordings in Fmr1 WT and Fmr1 KO
mice at any of the ages tested (Fig. 1C,G–I). A comparison
of the average mIPSC frequencies in each recording over
time demonstrated an equivalent increase across this
developmental period for abDGCs in both genotypes (Fig.
1C). Together, the lack of a difference in frequency of
sIPSCs or mIPSCs during maturation of abDGCs indi-
cates that there is no difference in the number of inhibitory
synaptic connections in these neurons in the Fmr1 KO
mice during the first 4 weeks after differentiation.
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The amplitude of spontaneous events, particularly mIP-
SCs, is an indicator of the strength of individual synapses
and is expected to increase as abDGCs undergo matura-

tion (Ge et al., 2006). Comparison of the mIPSC ampli-
tudes at each of the days postdifferentiation spanning this
period again did not reveal any difference between re-

Figure 1. Frequency of sIPSCs and mIPSCs is not altered in abDGCs in Fmr1 KO. A, Representative images of 21 dpi abDGCs virally
labeled with RFP. Average sIPSC (B) and mIPSC (C) frequencies across all time points measured in Fmr1 WT (blue) and Fmr1 KO mice
(red). D, Schematic of dendritic morphology of abDGCs and representative traces (top panel), cumulative distribution of interevent-
interval and average frequency of each recorded neuron (inset) of sIPSCs (bottom panel) at 14 dpi, 21 dpi (E) and 28 dpi (F). G, H,
I, Representative traces, cumulative distribution of interevent-intervals and average frequency of mIPSCs in each recorded abDGC
(inset) at 14, 21, and 28 dpi, respectively.
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cordings in each of the genotypes (WT 14 dpi: 10.4 �
0.827 pA, n � 7/3; KO 14 dpi: 11.7 � 1.81 pA, n �,5/5, p
� 0.64, Mann–Whitney U test; WT 21 dpi: 15.9 � 1.45 pA,
n � 12/5, KO 21 dpi: 15.6 � 1.78 pA, n � 12/5, p � 1.00,
Mann–Whitney U test; WT 28 dpi: 15.4 � 1.04 pA, n �
11/4, KO 28 dpi: 16.6 � 1.13 pA, n � 8/3, p � 0.49,

Mann–Whitney U test; Fig. 2A–C). In addition, and con-
sistent with no genotype-mediated changes in synaptic
strength during the development of abDGCs in Fmr1 KO
mice, there were no differences in the amplitude of sIP-
SCs (Fig. 2E). In recordings of both mIPSCs and sIPSCs
there was an equivalent increase of the average amplitude

Figure 2. mIPSC amplitude is unaffected by loss of FMRP, but mIPSC decay is slower in abDGCs in Fmr1 KO. A, Representative
traces of individual and averaged mIPSC events (top) and cumulative distribution and average amplitudes mIPSCs in each recording
measured at 14 dpi, 21 dpi (B) and 28 dpi (C) abDGCs. Average mIPSC amplitude (D) and sIPSC amplitude (E) across all time points
measured in Fmr1 WT (blue) and KO (red). Average decay of mIPSCs in 14 dpi (F), 21 dpi (G), and 28 dpi (H) abDGCs. I, Average
mIPSC decay with zolpidem normalized to decay pre-zolpidem (�p � 0.05, Mann–Whitney U test).
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of events in older neurons in both genotypes (Fig. 2D,E).
Interestingly, at 14 dpi, the average amplitude for both
mIPSCs and sIPSCs was similar, suggesting that at this
time point presynaptic inhibitory neurons make a single
synaptic connection per axon. However, the amplitudes
diverged at 21 dpi, with sIPSC amplitudes larger than
those of mIPSCs, indicating that single presynaptic axons
make multiple contacts onto abDGCs in these older neu-
rons (Fig. 2D,E).

Measuring the decay of mIPSCs, we found that there
was a significant increase in the decay time course as
abDGCs matured in both genotypes that could be indic-
ative of a change in the subunit composition of GABAARs
(Overstreet Wadiche et al., 2005). At the youngest time
measured mIPSC decay was not significantly different in
Fmr1 KO (WT 14 dpi: 2.39 � 0.612 ms, n � 7/3; KO 14
dpi: 2.15 � 0.517 ms, n � 5/4, p � 1.00, Mann–Whitney
U test; Fig. 2F). However, at older ages of abDGCs, the
decay of mIPSCs in Fmr1 KO neurons was slower (WT 21
dpi: 7.45 � 0.722 ms, n � 12/5; KO: 11.1 � 0.987 ms, n
� 12/5, p � 0.008, Mann–Whitney U test; WT 28 dpi: 9.36
� 0.492 ms, n � 11/4; KO 28 dpi: 10.8 � 0.410 ms, n �
8/3 cells, p � 0.041, Mann–Whitney U test; Fig. 2G,H). In
addition, sIPSC decay was not significantly different in
Fmr1 KO (WT 14 dpi: 1.66 � 0.275 ms, n � 6/3; KO 14
dpi: 1.57 � 0.127 ms, n � 6/3; p � 0.7, Mann–Whitney U
test; WT 21 dpi: 12.6 � 1.19 ms, n � 14/8; KO 21 dpi: 16.0
� 1.39 ms, n � 15/9, p � 0.08, Mann–Whitney U test; WT
28 dpi: 14.2 � 1.32 ms, n � 12/4; KO 28 dpi: 13.3 � 0.80
ms, n � 11/6 cells, p � 0.651, Mann–Whitney U test).

Previous studies have found that the decay kinetics
of sIPSCs are slower in abDGCs than in mature granule
cells because of the incorporation of �1 subunit into
postsynaptic GABAA receptors as neurons mature
(Overstreet Wadiche et al., 2005). We tested whether
the increased decay of the mIPSCs in abDGCs in Fmr1
KO mice might reflect a lower �1 subunit incorporation
by measuring the effect of zolpidem, an �1-specific

positive allosteric modulator, on the decay kinetics of
mIPSCs. mIPSCs were recorded at 21 dpi and the
decay measured before and after the addition of 0.5 �M
zolpidem (Fig. 2I). We found that zolpidem lengthened
mIPSC decay in 21 dpi abDGCs in both Fmr1 KO and
WT to the same degree suggesting that �1 subunit
content does not underlie the differences in decay
observed in the Fmr1 KO mice (decay zolpidem/decay
control WT: 1.40 � 0.11, n � 17/7; KO: 1.25 � 0.05, n
� 15/7, p � 0.87, Mann–Whitney U test).

Maturation of the GABA reversal potential (EGABA) in
abDGCs

As abDGCs mature the chloride reversal potential be-
comes progressively hyperpolarized in a similar manner to
what occurs in other developing neurons (Ge et al., 2006;
Chancey et al., 2013). The chloride equilibrium potential in
large part determines the reversal potential for GABAA

receptors (EGABA) and therefore affects the strength of
inhibitory transmission. EGABA reaches its mature value 4
weeks after differentiation in abDGCs (Ge et al., 2006).
Prior analysis of Fmr1 KO mice has demonstrated that
EGABA maturation is delayed in the developing cortex and
hippocampus of Fmr1 KO mice (He et al., 2014; Tyzio
et al., 2014). Therefore, we measured EGABA using perfo-
rated patch recording from abDGCs 21 d after differenti-
ation. In WT abDGCs the reversal potential was still
depolarized from the mature value at this age (WT EGABA:
–55.9 � 0.91 mV, n � 7/3). However, this value did not
differ from that recorded in abDGCs in Fmr1 KO animals
(KO EGABA: –55.6 � 2.17 mV, n � 12/6, p � 0.967,
Mann–Whitney U test; Fig. 3A–C). Therefore, while the
reversal potential for GABA is still relatively immature and
depolarized in 21 dpi abDGCs, there is no effect of the
loss of FMRP on EGABA, as has been reported in other
developing neurons.

Figure 3. EGABA in 21 dpi abDGCs in Fmr1 KO and WT. A, Representative traces of GABA responses from perforated-patch
recordings in 21 dpi abDGCs in Fmr1 WT (top, blue) and Fmr1 KO (bottom, red) measured at three holding potentials (–30, –60, –90
mV). The response to a 50-ms puff of 10 �M GABA was measured at several holding potentials in the presence of 50 �M D-APV and
10 �M CNQX. B, Representative current�voltage curves constructed from responses in two cells (blue WT, red KO). EGABA was
calculated as the x-axis intercept of the best-fit line of the current�voltage plot. C, Grouped EGABA data from all recordings.
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Development of dendrites of abDGCs in Fmr1 KO
mice

Dendritic morphology of abDGCs resembles that of
mature DGCs as early as 21 dpi, when distal dendrites
reach the outer molecular layer and significant arboriza-
tion is observed (Zhao et al., 2006). Dendritic spines begin
to form around 16 dpi, consistent with the fact that glu-
tamatergic signaling is rarely observed before 14 dpi (Ge
et al., 2006; Zhao et al., 2006). We thus sought to deter-
mine if loss of FMRP would lead to alterations in dendritic
morphology in 21 dpi abDGCs during this critical period of
their development. abDGCs were filled with a morpho-
logic dye and imaged using a two-photon microscope
(Fig. 4A). Quantification of their dendritic complexity at 21
dpi, as assessed by Sholl analysis did not uncover any
significant difference between the genotypes (two-way
ANOVA for unbalanced design, p � 0.999 for genotype �
radius interaction; Fig. 4B). In addition, measurement of
total dendritic length did not reveal any difference in 21
dpi abDGCs in Fmr1 KO (WT: 701 � 94.2 �m, n � 8/5;
KO: 729 � 57.5 �m, n � 15/8, p � 0.781, Mann–Whitney
U test), and there was no difference in the number of
dendritic branch points in Fmr1 KO at 21 dpi (WT: 8.63 �

1.92, n � 9/5, KO: 7.20 � 0.66, n � 14/8, p � 0.917,
Mann–Whitney U test; Fig. 4C,D).

Discussion
In this study, we set out to systematically describe the

development of abDGCs in the Fragile X mouse model,
focusing on the formation of GABAergic inputs to these
neurons during the first few weeks after differentiation.
There are multiple studies that have found that loss of
FMRP can delay neuronal development in the Fragile X
brain, therefore, a similar delay in development of ab-
DGCs could have an impact on how these neurons be-
come connected to hippocampal circuits, and how they
contribute to circuit function. Studying GABA synapse
development is particularly relevant as these are the first
synapses to form onto abDGCs and GABA also produces
a trophic effect on abDGCs (Ge et al., 2006; Song et al.,
2013; Alvarez et al., 2016). Surprisingly, our data indicate
that the development of inhibitory signaling onto abDGCs
during the first four weeks is mostly unaffected by the loss
of FMRP in the Fmr1 KO mice. Given the range of impair-
ments in GABA signaling that have been described in the
hippocampus of Fmr1 KO mice including altered expres-
sion of GABA receptor subunits and GAD 65/67, and the

Figure 4. Morphology of 21 dpi abDGCs in Fmr1 KO and WT. A, Representative two-photon images of 21 dpi abDGCs filled with Alexa
Fluor 488 in slices from Fmr1 WT (right) and Fmr1 KO (left) mice. B, Sholl analysis of dendritic complexity of 21 dpi abDGCs in Fmr1
WT (blue) and Fmr1 KO mice (red). Average total dendritic length (C) and total number of branch points (D) of 21 dpi abDGCs in Fmr1
WT (blue) and Fmr1 KO (red) mice.
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alterations in EGABA in Fmr1 KO mice (Braat and Kooy,
2015a), it is surprising that GABA signaling appears to be
unaltered in developing abDGCs during the critical period
of their maturation.

Critical period development and chloride
homeostasis in Fragile X

At the cellular level Fragile X is a complex disorder
because loss of FMRP leads to the dysregulation of ex-
pression of many neuronal proteins (Tang et al., 2015).
The mouse model has been particularly useful in describ-
ing these complex alterations in neuronal development
(Contractor et al., 2015). An important aspect that has
emerged from some of these studies is the alterations in
synaptic development of neurons during early critical pe-
riods in the cortex (Cruz-Martín et al., 2010; Harlow et al.,
2010; Nomura et al., 2017). While these numerous delays
in both excitatory and inhibitory neuron maturation have
been well documented, up until now, it has not been
established whether the development of abDGCs shows
similar alteration in maturation to the developmentally
generated neurons.

Among the known effects in developing neurons is the
delay in the maturation of the GABA reversal potential in
both the somatosensory cortex (He et al., 2014) and the
hippocampus (Tyzio et al., 2014). In abDGCs, EGABA has
been demonstrated to be depolarized during early matu-
ration in the weeks following differentiation (Tozuka et al.,
2005; Ge et al., 2006) in a manner similar to developing
neurons in other regions of the brain in perinatal mice.
This occurs because of the relatively elevated intracellular
chloride concentrations in abDGCs established by the
juvenile chloride transporter NKCC1 (Ge et al., 2006).
Disrupting chloride homeostasis in abDGCs leads to a
profound alteration in the formation of synapses and in
the maturation of the dendritic arbor. As there is growing
evidence of altered EGABA in developing neurons, we also
measured EGABA in abDGCs 21 d after differentiation
when this measure is still maturing and not at its adult
value (Ge et al., 2006). We confirmed that in 21 dpi
abDGCS in both WT and Fmr1 KO mice, the measured
EGABA is still relatively depolarized, but the values of EGABA

were not significantly different between the genotypes.
Therefore, this crucial measure that regulates the strength
of GABA signaling, and has a major impact on neuronal
development, is not affected in abDGCs in Fmr1 KO mice.

GABA and Fragile X
The sequence of the formation of inputs and neu-

rotransmitter signaling onto abDGCs broadly reflects that
of developing neurons in other brain regions, including the
early establishment of tonic and phasic GABAergic sig-
naling followed by the establishment of excitatory con-
nections (Ge et al., 2007a). GABA has an established role
in brain development affecting proliferation (LoTurco
et al., 1995; Haydar et al., 2000), migration, and matura-
tion of progenitors and neurons (Represa and Ben-Ari,
2005; Wang and Kriegstein, 2009). After postnatal devel-
opment, there are multiple known defects in GABA sig-
naling associated with Fragile X, including age- and
region-specific changes in GABAA receptor subunit ex-

pression (Braat and Kooy, 2015b), changes in tonic and
phasic GABA currents onto excitatory neurons (Centonze
et al., 2008; Curia et al., 2009; Olmos-Serrano et al., 2010;
Zhang et al., 2017) as well as defects in interneurons
themselves (Gibson et al., 2008; Nomura et al., 2017).
Expression of several GABAA receptor subunits is re-
duced in the cortex, hippocampus, or forebrain of Fmr1
KO mice (El Idrissi et al., 2005; D’Hulst et al., 2006;
Gantois et al., 2006; Adusei et al., 2010). Expression of the
glutamate decarboxylase enzyme (GAD) responsible for
converting glutamate to GABA is increased in the hip-
pocampus, but decreased in the amygdala of Fmr1 KO
mice (El Idrissi et al., 2005; Olmos-Serrano et al., 2010).
Functionally, both the frequency and amplitude of mIP-
SCs and sIPSCs is reduced in the amygdala of juvenile
Fmr1 KO mice (Olmos-Serrano et al., 2010); however, a
similar alteration is not observed in the subiculum of older
mice (Curia et al., 2009). In some cases, these alterations
in GABAergic signaling occur only early in postnatal de-
velopment (Adusei et al., 2010; Nomura et al., 2017).
Thus, loss of FMRP clearly affects GABA signaling in the
postnatal mouse brain, but whether this is also the case
for abDGCs was not known. By mapping spontaneous
events by recording both sIPSCs and mIPSCs at three
time points after differentiation of abDGCs, we were able
to establish how inhibitory synapses form onto these
neurons. We found that in both genotypes the frequency
of IPSCs increases over time as would be expected if new
synapses were being formed over the post differentiation
period we analyzed. Interestingly, the amplitude of both
the sIPSC and mIPSC events increased between 14 and
21 dpi. The increase in the mean quantal size at this
developmental time point suggests that individual syn-
apses become stronger. At the earliest time points, the
amplitude of both mIPSCs and sIPSCs is equivalent sug-
gesting that presynaptic axons of the inhibitory cells make
a single contact whereas by 21 dpi the mean amplitude of
sIPSCs is double the mean amplitude of quantal events,
suggesting that the sIPSCs represent the release at mul-
tiple synapses. While again we did not observe any ge-
notype differences in these parameters, we did observe
consistent lengthening of the decay kinetics of mIPSCs in
Fmr1 KO mice which were significant in recordings from
both 21 dpi and 28 dpi neurons. Prior work that compared
the decay kinetics of inhibitory events in abDGCs and
mature granule neurons found that the sIPSCs in abDGCs
are slower because of the subunit composition of post-
synaptic GABAA receptors (Overstreet Wadiche et al.,
2005). This study found that the zolpidem sensitivity of
inhibitory events was increased in mature neurons sug-
gesting that the �1 subunit is increasingly incorporated
into neurons as they mature (Overstreet Wadiche et al.,
2005). Given this, we considered the possibility that a
reduction in the incorporation of the �1 subunit in ab-
DGCs in Fmr1 KO mice could underlie the prolonged
decay of mIPSCs in Fmr1 KO. However, we did not
observe a significant difference in the effect of zolpidem
on mIPSC decay in 21 dpi abDGCs between Fmr1 KO and
WT, indicating that a reduction in �1 expression is unlikely
to underlie the changes in mIPSC decay. It is possible that
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alterations in expression of other GABA receptor subunits
or even differences in the location of GABAergic synapses
on developing neurons may underlie the observed change
in mIPSC decays recorded by a somatic electrode. Inter-
estingly, while prior work has reported that abDGCs lack
expression of the GABAA �1 subunit (Overstreet Wadiche
et al., 2005), we found zolpidem had a significant effect on
most mIPSCs in the 21 dpi birth-dated neurons in both
genotypes. This may reflect differences in the populations
of neurons that were analyzed in the previous study which
recorded from POMC-GFP labeled neurons which are a
more heterogeneous aged group (Overstreet et al., 2004).

In addition to the measures of synaptic function, we
also measured the dendritic arbor to quantify both the
complexity as well as the total dendritic length in 21 dpi
abDGCs. A prior study has reported that selective dele-
tion of FMRP in adult neural stem cells isolated from the
dentate gyrus, as well as in situ, caused a reduction in
both the dendritic complexity and total dendritic length
when measured in neurons 56 d after differentiation (Guo
et al., 2011). Dendritic length and complexity are also
reduced in mice with knockout of the FMRP paralog
FXR2P and double knockout of FXR2P and FMRP in-
duced an additive effect on dendrites of abDGCs (Guo
et al., 2015). In our experiments, we patched and filled
abDGCs with morphologic dyes in live slices and imaged
the dendritic arbor at 21 dpi. In these younger neurons,
we did not observe any genotype related differences in
the total dendritic length or complexity in Fmr1 KO mice.
It is possible that this difference in our results and those of
the earlier study is due to a dendritic phenotype that
emerges later on in the development of FMRP lacking
abDGCs. While there have also been reports of region-
specific or developmental age-specific alterations in den-
dritic spine density or immature spine morphology in Fmr1
KO mice, there is no consensus on the effect of loss of
FMRP on dendritic spines (for review, see He and Portera-
Cailliau, 2013). While we did not examine this measure in
these immature abDGCs, prior work has reported normal
dendritic spines in the mature DG in Fmr1 KO (Grossman
et al., 2010).

In summary, we performed a systematic analysis of the
functional properties of GABAergic synapses in abDGCs
during the first four weeks after differentiation in Fmr1 KO
mice. While previous studies have demonstrated that cell
proliferation and fate specification of adult neural stem
cells is altered by FMRP loss, our data suggest that
neurons that develop from these stem cells do not have
major alterations in the maturation of their GABAergic
synaptic inputs and dendrites during the first four weeks
of their development.
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